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Abstract A new class of cosmological models in f (R,T ) modified theories of gravity pro-
posed by Harko et al. (Phys. Rev. D 84:024020, 2011), where the gravitational Lagrangian
is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor
T , have been investigated for a specific choice of f (R,T ) = f1(R) + f2(T ) by considering
time dependent deceleration parameter. The concept of time dependent deceleration param-

eter (DP) with some proper assumptions yield the average scale factor a(t) = sinh
1
n (αt),

where n and α are positive constants. For 0 < n ≤ 1, this generates a class of accelerating
models while for n > 1, the models of universe exhibit phase transition from early deceler-
ating phase to present accelerating phase which is in good agreement with the results from
recent astrophysical observations. Our intention is to reconstruct f (R,T ) models inspired
by this special law for the deceleration parameter in connection with the theories of mod-
ified gravity. In the present study we consider the cosmological constant Λ as a function
of the trace of the stress energy-momentum-tensor, and dub such a model “Λ(T ) gravity”
where we have specified a certain form of Λ(T ). Such models may display better unifor-
mity with the cosmological observations. The statefinder diagnostic pair {r, s} parameter has
been embraced to characterize different phases of the universe. We also discuss the physical
consequences of the derived models.
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1 Introduction

Despite the fact that Einstein’s general relativity (EGR) is a triumphal success theory and the
basis for the description of most of gravitational phenomena known to date, it fails to explain
the recent discovery of the accelerating expansion of the universe. The recent observational
data [1–13] strongly indicate that our universe is dominated by a component with negative
pressure, dubbed as dark energy (DE), which constitutes with �3/4 of the critical density.
In order to explain the nature of dark energy and the accelerated expansion, a variety of
the theoretical models have been proposed in the literature such as quintessence, phantom
energy, k-essence, tachyon, f -essence, Chaplygin gas, etc. Among these different models
of DE, the modified gravity theories are f (R) gravity [14–18] and Gauss-Bonnet gravity
or f (G) gravity [19–23]. Another approach to modified gravity theory is so called f (T )

gravity [24–26], where T is scalar torsion. These modified gravities have recently been
verified to explain the late-time accelerated expansion of the Universe.

One of the interesting and prospective versions of modified gravity theories is the
f (R,T ) gravity proposed by Harko et al. [27], where the gravitational Lagrangian is given
by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy ten-
sor T . They have obtained the gravitational field equations in the metric formalism, as
well as, the equation of motion for test particles, which follow from the covariant diver-
gence of the stress-energy tensor. The f (R,T ) gravity models can explain the late time cos-
mic accelerated expansion of the Universe. Recently, Chaubey and Sukla [28], Adhav [29],
Samanta [30], Reddy et al. [31–33] have studied cosmological models in f (R,T ) gravity in
different Bianchi type space-times.

In recent years Bianchi universes are playing important role in observational cosmology,
since the WMAP data [34–36] seem to require an addition to the standard cosmological
model with positive cosmological constant that bears a likeness to the Bianchi morphol-
ogy [37–42]. According to this, the universe should reach to a slightly anisotropic special
geometry in spite of the inflation, contrary to generic inflationary models [43–49] suggesting
a non-trivial isotropization history of universe due to the presence of an anisotropic energy
source. In order to explain the homogeneity and flatness of the presently observed Uni-
verse, it is usually assumed that this has undergone a period of exponential expansion [43,
45–47]. Mostly the expansion of the universe is described within the framework of the ho-
mogeneous and isotropic Friedman-Robertson-Walker (FRW) cosmology. The reasons for
this are purely technical. The simplicity of the field equations and the existence of analyti-
cal solutions in most of the cases have justified this over simplification for the geometry of
space-time. However, there are no compelling physical reasons to assume the former before
the inflationary period. To drop the assumption of homogeneity would make the problem
interactable, while the isotropy of the space is something that can be relaxed and leads to
anisotropy. Several authors [50–54] have studied particular cases of anisotropic models and
found that the scenario predicted by the FRW model stand essentially unchanged even when
large anisotropies were present before the inflationary period. Thus, the anisotropic Bianchi
models become of academical interest. Out of this, in the present study Bianchi type-V
space-time is taken into consideration.

Motivated by the above discussions, in this paper, we propose to study cosmological
model in F(R,T ) gravity in Bianchi type-V space-time by considering f (R,T ) = f1(R)+
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f2(T ). The outline of this paper is as follows: In Sect. 2, gravitational field equation in the
f (R,T ) modified gravity theory is established. Section 3 deals with the basic equations
and quadrature solutions. In Sect. 4, the physical and geometric aspects of the model have
been discussed. Section 5 deals with the physical acceptability of the solutions. Finally,
conclusions are summarized in the last Sect. 6.

2 f (R,T ) Modified Gravity Theory

The theory suggests a modified gravity action given by

S = 1

16π

∫
f (R,T )

√−gd4x +
∫

Lm

√−gd4x, (1)

where f (R,T ) is an arbitrary function of the Ricci scalar, R, and the trace T of the stress-
energy tensor of the matter, Tμν . Lm is the matter Lagrangian density. The stress-energy
tensor of matter is defined as

Tμν = − 2√−g

δ
√−gLm

δgμν
, (2)

and its trace by T = gμνTμν . Assuming that the Lagrangian density Lm of matter depends
only on the metric tensor components gμν and not on its derivatives leads to

Tμν = gμνLm − 2
∂Lm

∂gμν
. (3)

Here and in this subsection, we use the unit of G = c = 1. As past related studies, a theory
whose Lagrangian density is described by an arbitrary function of R and the Lagrangian
density of matter as F(R,LM) has been explored in Harko and Lobo [55]. Moreover, in
Poplawski [56] a theory in which the cosmological constant is written by a function of the
trace of the stress-energy tensor as Λ(T ) has been investigated.

Varying the action S with respect to the metric tensor components gμν , the gravitational
field equations of f (R,T ) gravity is obtained as

fR(R,T )Rμν − 1

2
f (R,T )gμν + (gμν�− ∇μ∇ν)fR(R,T )

= 8πTμν − fT (R,T )Tμν − fT (R,T )Θμν (4)

with Θμν ≡ gij (
δTij

δgμν ), which follows from the relation δ(
gij Tij

δgμν ) = Tμν +Θμν and �= ∇ i∇i ,

fR(R,T ) ≡ ∂f (R,T )

∂R
, fT (R,T ) ≡ ∂f (R,T )

∂T
and ∇i denotes the covariant derivative. The con-

traction of Eq. (4) yields fR(R,T )R + 3�fR(R,T ) − 2f (R,T ) = (8π − fT (R,T ))T −
fT (R,T )Θ with Θ ≡ gμνΘμν . Combining Eq. (4) and the contracted equation and elimi-
nating the �fR(R,T ) term from these equations, we obtain

fR(R,T )

(
Rμν − 1

3
Rgμν

)
+ 1

6
f (R,T )gμν

= (
8π − fT (R,T )

)(
Tμν − 1

3
T gμν

)
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− fT (R,T )

(
Θμν − 1

3
Θgμν

)
+ ∇μ∇νfR(R,T ). (5)

On the other hand, the covariant divergence of Eq. (1) as well as the energy-momentum
conservation law ∇μ[fR(R,T ) − 1

2 f (R,T )gμν + (gμν� − ∇μ∇μ)fR(R,T )] ≡ 0, which
corresponds to the divergence of the left-hand side of Eq. (1), we acquire the divergence of
Tμν as

∇μTμν = fT (R,T )

8π − 1
2fT (R,T )

[
(Tμν + Θμν)∇μ lnfT (R,T ) + ∇μΘμν

]
. (6)

In addition, from Tμν = gμνLM − 2(
∂LM

∂gμν ) we have

δTij

δgμν
=

(
δgij

δgμν
+ 1

2
gij gμν

)
LM − 1

2
gijTμν − 2

∂2LM

∂gμν∂gij
. (7)

Using the relation
δgij

δgμν = −giγ gjσ δγ σ
μν with δγσ

μν = δgγ σ

δgμν , which follows from giγ gγj = δ
j

i ,
we obtain Θμν as given by

Θμν = −2Tμν + gμνLm − 2gij ∂2Lm

∂gμν∂gij
. (8)

Provided that matter is regarded as a perfect fluid, the stress-energy tensor of the matter
Lagrangian is given by

Tμν = (ρ + p)uμuν − pgμν, (9)

where uμ = (0,0,0,1) is the four velocity in the moving coordinates which satisfies the
conditions uμuν = 1 and uμ∇νuμ = 0. ρ and p are the energy density and pressure of the
fluid respectively. With the use of Eq. (8), we obtain for the variation of the stress-energy of
a perfect fluid the expression

Θμν = −2Tμν − pgμν. (10)

Since the field equations in f (R,T ) gravity also depend on the physical nature of the matter
field (through the tensor Θμν ), for each choice of f we can obtain several theoretical models.
Three explicit specification of the functional form of f has been considered in Harko et al.
[27]

f (R,T ) =

⎧⎪⎨
⎪⎩

R + 2f (T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T ).

The cosmological consequences for the class f (R,T ) = R +2f (T ) have been recently dis-
cussed in details by many authors [28–33, 57]. Recently, Shamir et al. [58] and Chaubey and
Sukla [28] have discussed Bianchi type-I & V and a general class of Bianchi models respec-
tively in F(R,T ) gravity by considering f (R,T ) = R + 2f (T ). In this paper we are con-
sidering the cosmological consequences of the class for which f (R,T ) = f1(R) + f2(T ).
Our derived cosmological model is totally different and new from that of other authors men-
tioned here. So far the physically important cosmological term Λ which is a candidate for
dark energy remains less attended. So, our derived model may lead to better understanding
of the characteristic of Bianchi type-V models.
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The gravitational field equation (4) becomes

f ′
1(R)Rμν − 1

2
f1(R)gμν + (gμν�− ∇μ∇ν)f

′
1(R)

= 8πTμν + f ′
2(T )Tμν +

(
f ′

2(T )p + 1

2
f2(T )

)
gμν, (11)

where the prime denotes differentiation with respect to the argument. the field equations of
the standard f (R) gravity can be recovered for p = 0 (the dust case) and f2(T ) = 0. We
consider a particular form of the functions f1(R) = λ1R and f2(T ) = λ2T where λ1 and λ2

are arbitrary parameters. In this article we take λ1 = λ2 = λ so that f (R,T ) = λ(R + T ).
Equation (11) can now be rewritten as

λRμν − 1

2
λ(R + T )gμν + (gμν�− ∇μ∇ν)λ

= 8πTμν − λTμν + λ(2Tμν + pgμν). (12)

Setting (gμν�− ∇μ∇ν)λ = 0, we get

λGμν = 8πTμν + λTμν +
(

λp + 1

2
λT

)
gμν, (13)

where Gμν = Rμν − 1
2 gμνR is the Einstein tensor. This could be rearranged as

Gμν −
(

p + 1

2
T

)
gμν = 8π + λ

λ
Tμν. (14)

Recalling Einstein equations with cosmological constant

Gμν − Λgμν = −8πTμν. (15)

We choose a negative small value for the arbitrary λ so that we have the same sign of the
RHS of (13) and (14), we keep this choice of λ throughout. The term (p + 1

2T ) can now be
regarded as a cosmological constant. Hence we write

Λ ≡ Λ(T ) = p + 1

2
T . (16)

The dependence of the cosmological constant Λ on the trace of the energy momentum ten-
sor T has been proposed before by Poplawski [56] where the cosmological constant in the
gravitational Lagrangian is a function of the trace of the energy-momentum tensor, and con-
sequently the model was denoted “Λ(T ) gravity”. It was argued that recent cosmological
data favor a variable cosmological constant which is consistent with Λ(T ) gravity without
the need to specify an exact form of the function Λ(T ). Λ(T ) gravity is more general than
the Palatini f (R) and could be reduced to it if the pressure of matter is neglected (Mag-
nano [59], Poplawski [60, 61]). Considering the perfect fluid case, the trace T = −3p + ρ,
for our model. Hence Eq. (16) reduces to

Λ = 1

2
(ρ − p). (17)
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3 The Basic Equations and Quadrature Solutions

Modern observations (WMAP data for example) indicate that the universe is not completely
symmetric [34–36]. From that point of view Bianchi models (which represents spatially
homogeneous and anisotropic spaces) are more appropriate in describing the universe as it
has less symmetry than the standard FRW models. We use the following metric of general
class of Bianchi cosmological model

ds2 = dt2 − A2dx2 − e−2βx
[
B2dy2 − C2dz2

]
, (18)

where β is a constant and the functions A(t), B(t) and C(t) are the three anisotropic di-
rections of expansion in normal three dimensional space. Those three functions are equal
in FRW models due to the radial symmetry and so we have only one function a(t) there.
The average scale factor a, the spatial volume V and the average Hubble’s parameter H are
defined as

a = (ABC)
1
3 , (19)

V = a3 = ABC, (20)

and

H = 1

3
(H1 + H2 + H3), (21)

respectively with H1 = Ȧ
A

, H2 = Ḃ
B

and H3 = Ċ
C

. Here and elsewhere the dot denotes differ-
entiation with respect to cosmic time t . From Eqs. (1), (2) and (3) we get

H = 1

3

V̇

V
= 1

3

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
. (22)

Now the cosmological equations for the energy momentum tensor (9) and the metric (18)
are

ḂĊ

AC
+ B̈

B
+ C̈

C
− β2

A2
=

(
8π + λ

λ

)
p − Λ, (23)

ȦĊ

AC
+ Ä

A
+ C̈

C
− β2

A2
=

(
8π + λ

λ

)
p − Λ, (24)

ȦḂ

AB
+ Ä

A
+ B̈

B
− β2

A2
=

(
8π + λ

λ

)
p − Λ, (25)

ȦḂ

AB
+ ȦĊ

AC
+ ḂĊ

BC
− 3β2

A2
= −

(
8π + λ

λ

)
ρ − Λ, (26)

2
Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (27)

In the next proceeding of the paper we take constant (β) as unity without any loss of gener-
ality.

Integrating Eq. (27) and absorbing the integration constant into B or C, we obtain

A2 = BC, (28)



Int J Theor Phys (2014) 53:289–306 295

without any loss of generality. Subtracting (23) from (24), (23) from (25), and (24) from
(25) and taking second integral of each, we obtain the following three relations respectively:

A

B
= d1 exp

(
k1

∫
dt

a3

)
, (29)

A

C
= d2 exp

(
k2

∫
dt

a3

)
, (30)

and

B

C
= d3 exp

(
k3

∫
dt

a3

)
, (31)

where d1, d2, d3, k1, k2 and k3 are constants of integration. Finally, using a = (ABC)
1
3 , we

write the metric functions from (29)–(31) in explicit form as

A(t) = l1a exp

(
m1

∫
a−3dt

)
, (32)

B(t) = l2a exp

(
m2

∫
a−3dt

)
, (33)

C(t) = l3a exp

(
m3

∫
a−3dt

)
, (34)

where

l1 = 3
√

d1d2, l2 = 3
√

d−1
1 d3, l3 = 3

√
(d2d3)−1, (35)

and

m1 = k1 + k2

3
, m2 = k3 − k1

3
, m3 = −(k2 + k3)

3
. (36)

The constants m1,m2,m3 and l1, l2, l3 satisfy the fallowing two relations:

m1 + m2 + m3 = 0, l1l2l3 = 1. (37)

Substituting Eq. (28) in Eqs. (32)–(34), we obtain

l1 = 1, l2 = l−1
3 = c1, m1 = 0, m2 = −m3 = c2, (38)

where c1 and c2 are constants. Again, substituting Eq. (38) in Eqs. (32)−(34), the quadrature
form of the metric functions in terms of average scale factor a can be written as

A(t) = a, (39)

B(t) = c1a exp

(
c2

∫
dt

a3

)
, (40)

C(t) = a

c1
exp

(
−c2

∫
dt

a3

)
. (41)

Following Pradhan [62], Pradhan et al. [63] and Chawla et al. [64], the modified gravity
field equations can be solved by considering the time-dependent deceleration parameter
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which yield the average scale factor as

a(t) = (
sinh(αt)

) 1
n . (42)

The derivation and the motivation to choose such scale factor has already been described
in details by Pradhan [62]. This relation (42) generalizes the value of scale factor obtained
by Pradhan et al. [65, 66] in connection with the study of dark energy models in Bianchi
type-V I0 space-time and cosmological models with variable q and Λ-term respectively. In
literature it is common to use a constant deceleration parameter [28–33, 67–69], as it duly
gives a power law for metric function or corresponding quantity. The motivation to choose
such time dependent DP is behind the fact that the universe is accelerated expansion at
present as observed in recent observations of Type Ia supernova (Riess et al. [4, 5]; Perlmut-
ter et al. [1]; Tonry et al. [9]; Clocchiatti et al. [10]) and CMB anisotropies (Bennett et al.
[6]; de Bernardis et al. [70]; Hanany et al. [71]) and decelerated expansion in the past. Also,
the transition redshift from deceleration expansion to accelerated expansion is about 0.5.
Now for a Universe which was decelerating in past and accelerating at the present time, the
DP must show signature flipping (see the Refs. [72–74]. So, there is no scope for a constant
DP at present epoch. So, in general, the DP is not a constant but time variable.

Equations (39)–(41) with the help of (42), we obtain the metric functions as

A(t) = sinh
1
n (αt), (43)

B(t) = c1 sinh
1
n (αt) exp

[
c2(−1)

n+3
2n

2α
cosh(αt)F (t)

]
, (44)

C(t) = 1

c1
sinh

1
n (αt) exp

[
−c2(−1)

(n+3)
2n

2α
cosh(αt)F (t)

]
, (45)

where

F(t) = 1 + 1

6

(
1 + 3

n

)
cosh2(αt)+ 3

40

(
1 + 3

n

)(
1 + 1

n

)
cosh4(αt)+ o

[
cosh(αt)

]6
. (46)

4 Physical and Geometric Properties of Model

Using Eqs. (43)−(45) in (23)−(26) and solving with (17), we obtain the expressions for
pressure (p), energy density (ρ) and cosmological constant (Λ) for the model (18) as

p(t) = λ

F1(t)

(
C1 cosh2(αt) + C2 cosh4(αt) + C3 cosh6(αt) + C4 cosh8(αt)

+ C5 sinh
2(n−1)

n (αt) + C6

)
, (47)

ρ(t) = − 1

F1(t)

(
K1 cosh2(αt) + K2 cosh4(αt) + K3 cosh6(αt)

+ K4 cosh8(αt) + K5 sinh
2(n−1)

n (αt) + K6

)
, (48)

Λ = 1

2F1(t)

[
(K1 − λC1) cosh2(αt) + (K5 − λC5) sinh

2(n−1)
b (αt) + (K6 − C4)

]
, (49)
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where

F1(t) = 16n2(8π + λ) sinh2(αt), (50)

C1 = 4n2c2
2 + 12nc2

2, (51)

C2 = 18nc2
2 + 3n2c2

2 + 9c2
2, (52)

C3 = 2n2c2
2 + 18c2

2, (53)

C4 = −n2c2
2 + 6nc2

2 + 9c2
2, (54)

C5 = 16n2, (55)

C6 = 4n2c2
2 − 16α2n, (56)

K1 = 4n2c2
2λ + 12nc2

2λ − 96λα2 − 768α2π, (57)

K2 = 18nc2
2λ + 3n2c2

2λ + 9c2
2λ, (58)

K3 = 2c2
2λn2 + 18c2

2λ, (59)

K4 = −n2c2
2λ + 6nc2

2λ + 9c2
2λ, (60)

K5 = 16n2(32π + 5λ), (61)

K6 = 4n2λc2
2 + 16nλα2 + 356nπα2. (62)

Figure 1(a) depicts the variation of pressure versus time for λ = −0.1, c1 = 1.1, c2 = 1,
α = 1 and n = 0.1 as a representative case. From the figure we observe that pressure is
increasing function of time. It starts from a large negative value and approaches to a small
negative value near zero. From the discovery of the accelerated expansion of the universe,
it is generally assumed that this cosmic acceleration is due to some kind of energy-matter
with negative pressure known as ‘dark energy’.

The energy density has been graphed versus time in Fig. 1(b). It is evident that the energy
density remains always positive and decreasing function of time and it converges to zero as
t → ∞ as expected.

The behavior of the universe in this model will be determined by the cosmological term
Λ, this term has the same effect as a uniform mass density ρeff = −Λ which is constant
in time. A positive value of Λ corresponds to a negative effective mass density (repulsion).
Hence, we expect that in the universe with a positive value of Λ the expansion will tend to
accelerate whereas in the universe with negative value of Λ the expansion will slow down,
stop and reverse. Figure 1(c) is the plot of cosmological term Λ versus time. From this figure,
we observe that Λ is decreasing function of time t and it approaches a small positive value
at late time (i.e. at present epoch). Recent cosmological observations [1–5, 9, 10] suggest
the existence of a positive cosmological constant Λ with the magnitude Λ(G�/c3) ≈ 10−123.
These observations on magnitude and red-shift of type Ia supernova suggest that our universe
may be an accelerating one with induced cosmological density through the cosmological Λ-
term. Thus, the nature of Λ in our derived models are supported by recent observations. For
detailed description via different theoretical models and cosmography tests, one can see the
recent review by Bamba et al. [75] where it is shown that dark energy universes may mimic
the ΛCDM model currently (consistent with the recent observational data).

The physical parameters such as directional Hubble parameters (Hi ), Hubble parameter
(H ), expansion scalar (θ ), spatial volume (V ), anisotropy parameter (Am), shear scalar (σ )
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Fig. 1 Plots of p, ρ, Λ, R and Am versus cosmic time t . Here λ = −0.1, c1 = 1.1, c2 = 1, α = 1 and
n = 0.1
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and deceleration parameter (q) are, respectively, given by

H1 = α

n
coth(αt), (63)

H2 = α

n
coth(αt) + c2

sinh
3
n (αt)

, (64)

H3 = α

n
coth(αt) − c2

sinh
3
n (αt)

, (65)

θ = 3H = 3α

n
coth(αt), (66)

V = ABC = (
sinh(αt)

) 3
n , (67)

Am = 1

3

(
nc2

α coth(αt) sinh
3
n (αt)

)2

, (68)

σ 2 =
(

c2

sinh
3
n (αt)

)2

, (69)

q = n
(
1 − tanh2(αt)

) − 1. (70)

From Eq. (70), we observe that q > 0 for t < 1
α

tanh−1(1 − 1
n
)

1
2 and q < 0 for t >

1
α

tanh−1(1 − 1
n
)

1
2 . It is also observed that for 0 < n ≤ 1, our model is in accelerating phase

but for n > 1, our model is evolving from decelerating phase to accelerating phase. It follows
that in our derived model, one can choose the value of n which gives the physical behav-
ior of DP consistent with the observations. Also, recent observations from SNe Ia, expose
that the present universe is accelerating and the value of DP lies to some place in the range
−1 ≤ q < 0.

For the present Universe (t0 = 13.8 GYr) with q0 = −0.73 (Cunha [76]), Eq. (70) yields
the following relationship between the constants n and α:

α = 1

13.8
tanh−1

[
1 − 0.27

n

] 1
2

. (71)

It is self explanatory from the above relation that for the present Universe, the model is valid
only for n > 0.27. It is observed that for 0 < n ≤ 1, our model is in accelerating phase but
for n > 1, our model is evolving from decelerating phase to accelerating phase. It follows
that in our derived model, one can choose the value of n which gives the physical behavior
of DP consistent with the observations.

From Eqs. (67) and (66), we observe that the spatial volume is zero at t = 0 and the ex-
pansion scalar is infinite, which show that the universe starts evolving with zero volume at
t = 0 which is big bang scenario. From Eqs. (43)–(45), we observe that the spatial scale fac-
tors are zero at the initial epoch t = 0 and hence the model has a point type singularity [77].
We observe that proper volume increases exponentially with time. The physical quantities
isotopic pressure (p), proper energy density (ρ), Hubble factor (H ) and shear scalar (σ ) di-
verge at t = 0. As t → ∞, volume becomes infinite where as p, ρ, H , θ approach to zero. It
is important to note here that limt→0(

ρ

θ2 ) spread out to be constant. Therefore, the model of
the universe goes up homogeneity and matter is dynamically negligible near the origin. This
is in good agreement with the result already given by Collins [78]. Finally, we can say that
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the model represents a shearing, non-rotating, expanding and accelerating universe, which
starts with a big bang singularity and approaches to isotropy at the present epoch.

The dynamics of the mean anisotropic parameter depends on two constant n and c2. From
Eq. (68), we observe that at late time when t → ∞, Am → 0. Thus, our model has transition
from initial anisotropy to isotropy at present epoch which is in good harmony with current
observations. Figure 1(e) depicts the variation of anisotropic parameter (Am) versus cosmic
time t . From the figure, we observe that Am decreases with time and tends to zero as t → ∞.
Thus, the observed isotropy of the universe can be achieved in our model at present epoch.
In the frame of pure f (R) gravity, the pioneer works (Nojiri and Odintsov [79, 80]) present
very natural unification of the early-time inflation and late-time acceleration. According to
this observation which a is sub-case of current model there is no place for large anisotropy
after inflation. But the case in the present model is different. In our derived model q < 0 for
t > tc , where the critical time tc = 1

α
tanh−1(1 − 1

n
)

1
2 . Also we observe that the average scale

factor a(t) → 0 as t → 0 and also a(t) → ∞ as t → ∞. This indicates that there exists
inflation.

The Ricci scalar for the solution is given by

R = − 1

8n2[cosh(αt) − 1]
[
4
[
c2

2

(
3n + n2

) + 24α2
]

cosh2(αt)

+ 3c2
2

(
n2 + 9

)
cosh4(αt) + 2c2

2

(
n2 + 9

)
cosh6(αt)

− c2
2

(
n2 − 6n − 9

)
cosh8(αt) + 48n2 sinh

2n−2
n (αt) − 48α2n + 4n2c2

2

]
. (72)

The evolution of Ricci scalar R with cosmic time is shown in Fig. 1(d). We observe that the
curvature is positive through the whole evolution of the universe and R → 0 as t → ∞ and
R → ∞ when t → 0 indicating the initial singularity.

5 Physical Acceptability of the Solutions

For the stability of corresponding solutions, we should check that our model is physically
acceptable.

• Sound speed:
It is required that the velocity of sound υs should be less than velocity of light (c). As

we are working in the gravitational units with unit speed of light, i.e. the velocity of sound
exists within the range 0 ≤ υs = (

dp

dρ
) ≤ 1.

We obtain the sound speed as

υs = dp

dρ
= g(t)

h(t)
, (73)

where

g(t) = λ sinh
2
n (αt)

[
3c2

2(n + 3)2 cosh8(αt) + 24c2
2(n + 3) cosh6(αt)

+ 9c2
2

(
n2 + 2n + 7

)
cosh4(αt) + 6c2

2

(
n2 + 6n + 3

)
cosh2(αt)

+ 12nc2
2 − 16nα2

] + 16n sinh2(αt) (74)
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and

h(t) = sinh
2
n (αt)

[
6c2

2λ
(
n2 + 3

)
cosh2(αt) + 18c2

2λ cosh2(αt)

+ 9c2
2λ

(
n2 + 9

)
cosh4(αt) + (n + 3) cosh6(αt) + 3c2

2(n + 3)2λ cosh8(αt)

+ 256α2π(n − 3) + 16λα2(n − 6) + 512nπ + 80nλ
]
. (75)

Here we observe that υs < 1. Figure 2(d) depicts the plot of sound speed with time. We
observe that υs < 1 throughout the evolution of the universe.

• Energy conditions:
The weak energy conditions (WEC) and dominant energy conditions (DEC) are given

by

(i) ρ ≥ 0, (ii) ρ − p ≥ 0 and (iii) ρ + p ≥ 0.

The strong energy conditions (SEC) are given by ρ + 3p ≥ 0.
The left hand side of energy conditions have been graphed in Figs. 1(b), 2(a), 2(b), and

2(c). From these figures, we observe that
– The WEC and DEC for the derived model are satisfied.
– The SEC is also satisfied.
It has been shown by Wald [81] that under very general conditions all Bianchi cosmolo-
gies (except Bianchi IX) with a cosmological constant and an energy momentum tensor
satisfying the strong and dominant energy conditions, will unavoidably enter a phase of
exponential expansion. With the help of this result Jensen and Stein-Schabes [82] showed
that if the number e-folds the Universe expands during its exponential phase is given by
N then it will take a time of the order t � e2N

√
Λ for anisotropy to have any effect on

the observable universe. One remarkable result is the independence of this result from the
type or magnitude of the initial anisotropy.

• Statefinder diagnostic:
The various cosmological observational data support the Λ cold dark matter (ΛCDM)

model, in which the cosmological constant Λ plays a role of dark energy in general rela-
tivity. At the current stage, the ΛCDM model is considered to be a standard cosmological
model. Sahni et al. [83] have introduced a pair of parameters {r, s}, called Statefinder pa-
rameters. In fact, trajectories in the {r, s} plane corresponding to different cosmological
models demonstrate qualitatively different behavior. The statefinder parameters can effec-
tively differentiate between different form of dark energy and provide simple diagnosis
regarding whether a particular model fits into the basic observational data. The above
statefinder diagnostic pair has the following form:

r = 1 + 3
Ḣ

H 2
+ Ḧ

H 3
and s = r − 1

3(q − 1
2 )

, (76)

to differentiate among different form of dark energy. Here H is the Hubble parameter
and q is the deceleration parameter. The two parameters {r, s} are dimensionless and are
geometrical since they are derived from the cosmic scale factor a(t) alone, though one
can reproduce them in terms of the parameters of dark energy and dark matter. This pair
provides information about dark energy in a model-independent way, that is, it categorizes
dark energy in the context of back-ground geometry only which is not dependent on
theory of gravity. Hence, geometrical variables are universal.
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Fig. 2 The plots of energy conditions, sound speed υs verses time and also s versus r . Here λ = −0.1,
c1 = 1.1, c2 = 1, α = 1 and n = 0.1
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For our model, the parameters {r, s} can be explicitly written in terms of t as

r = 1

nH 2

[
nH 2 − 3α2csch2(αt) + α3 coth2

{
1 − 2csch2(αt)

}]
, (77)

s = −2

3nH 2(2q − 1)

[
3α2csch2(αt) − α3 coth2

{
1 + 2csch2(αt)

}]
. (78)

So we can get the relation between r and s as

s = 1

3(q − 1
2 )

(r − 1). (79)

Figure 2(e) depicts the variation of s against r . From Fig. 2(e), we observe that s is
negative when r ≥ 1. The figure shows that the universe starts from an Einstein static era
(r → ∞, s → −∞) and goes to the ΛCDM model (r = 1, s = 0).

Therefore, on the basis of above discussions and analysis, our corresponding solutions
are physically acceptable.

6 Discussions

Evolution of Bianchi type-V cosmological model is studied in presence of perfect fluid and
variable cosmological constant in f (R,T ) theory of gravity (Harko et al. [27]), where the
gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the
trace of the stress-energy tensor T . For each choice of the function f (R,T ), we get differ-
ent theoretical models. Three examples have been given in Harko et al. [27] (i) f (R,T ) =
R + 2f (T ), (ii) f (R,T ) = f1(R) + f2(T ) and (iii) f (R,T ) = f1(R) + f2(R)f3(T ). The
cosmological consequences of the case (i) has been discussed before by several authors. In
this paper, the gravitational field equation has been established by taking case (ii) into con-
sideration. To find the deterministic solution, we have considered a time dependent deceler-

ation parameter which yields a scale factor as a(t) = sinh
1
n (αt), where n and α are positive

constants. For n > 1, this generates a transition of the universe from the early decelerating
phase to the recent accelerating phase.

The current observations of the large-scale cosmic microwave background suggest that
our physical universe is expanding isotropic and homogeneous models with a positive cos-
mological constant. The analysis of CMB fluctuations may confirm this picture. But other
analysis reveal some inconsistency. Analysis of WMAP data sets shows that the universe
could have a preferred directions (Pullen et al. [84]; Samal et al. [85]; Groeneboom and
Eriksen [86]; and Armendáriz-Picón et al. [87]). The ILC−WMAP data maps show seven
axes well aligned with one another and the direction Virgo. For this reason Bianchi models
are important in the study of anisotropies.

The main features of the models are as follows:

• In summary, we considered the modified gravity which naturally unifies two expansion
phases of the universe: inflation at early times and cosmic acceleration at current epoch.

• The models are based on exact solutions of the f (R,T ) gravity field equations for the
anisotropic Bianchi-V space-time filled with perfect fluid with time dependent Λ-term.

• The model represents an expanding, shearing, non-rotating and accelerating universe.
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• For suitable choice of constants the anisotropic parameter Am tends to zero for sufficiently
large time (Fig. 1(e)). Hence, the present model is isotropic at late time which is consistent
to the current observations.

• It has been found that Λ is a decreasing function of time and it converges to a small posi-
tive value at late time. The nature of decaying vacuum energy density Λ(t) in our derived
model is supported by recent cosmological observations. These observations on magni-
tude and red-shift of type Ia supernova suggest that our universe may be an accelerating
one with induced cosmological density through the cosmological Λ-term.

• In literature it is a plebeian practice to consider constant deceleration parameter. Now for
a Universe which was decelerated in past and accelerating at present epoch, the DP must
show signature flipping as already discussed. Therefore, our consideration of DP to be
variable is physically justified. Our derived model is accelerating at present epoch.

• For different choice of n, we can generate a class of viable cosmological models of the
universe in Bianchi type-V space-time. For example, if we set n = 1 in Eq. (42), we find
a = sinh(αt) which is used by Pradhan et al. [65] in studying the accelerating dark energy
models in Bianchi type-V I0 space-time and Pradhan et al. [66] in studying Bianchi type-I
cosmological models with time dependent Λ-term. It is observed that such models are
also in good harmony with current observations.

• We observe that our derived solutions are physically acceptable in concordance with the
fulfillment of WEC, DEC and SEC. The sound speed υs < 1 (see in Fig. 2(d)). The models
in f (R,T ) theory of gravity has stability and has initial singularity. Wald [81] pointed out
that Bianchi cosmologies (except Bianchi IX) with Λ and satisfying DEC and SEC will
enter in a phase of exponential expansion.

• {r, s} diagram (Fig. 2(e)) shows that the evolution of the universe starts from Einstein
static era (r → ∞, s → −∞) and approaches to ΛCDM model (r = 1, s = 0). So, from
the Statefinder parameter {r, s}, the behavior of different stages of the evolution of the
universe have been generated.

Thus, the solutions demonstrated in this paper may be useful for better understanding of
the characteristic of Bianchi type-V cosmological models in the evolution of the universe
within the framework of f (R,T ) gravity theory.
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