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Abstract Anisotropic Locally Rotationally Symmetric Bianchi-I (LRSBI) cosmological
model is investigated with variable gravitational and cosmological constants in the frame-
work of Einstein’s general relativity. The shear scalar is considered to be proportional to the
expansion scalar. The dynamics of the anisotropic universe with variable G and Λ are dis-
cussed. Our calculations for the Supernova constraints concerning the luminosity distance
provide reasonable results.
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1 Introduction

Cosmologies with anisotropic models are being investigated in recent times. The spatially
homogeneous and anisotropic Bianchi type models are more interesting because of their
ability to explain the cosmic evolution in early phase of universe. More ever, Bianchi type
models have simple mathematical forms. Quadrupole anisotropy is an intrinsic property of
the background radiation. The observed quadrupole amplitude has a lower value compared
to that predicted from the best fit ΛCDM model. As supported from experimental data
from Wilkinson Microwave Anisotropy Probe (WMAP), the low value of the quadrupole
anisotropy seems to be inescapable [1]. Anisotropic models can also account for certain
large scale anomalies of the isotropic standard cosmologies such as detection of large- scale
velocity flows significantly larger than those predicted in standard cosmology, a statistically
significant alignment and planarity of the CMB quadrupole and octupole modes and the
observed large scale alignment in quasar polarization vectors [2]. However, it should be
noted here that there still persists uncertainty on these large angle anisotropies and they
remain as open problems.
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Newtonian gravitational constant G appears as a coupling constant between the matter
field and geometry of the universe in Einstein’s general theory of relativity and it is usually
considered as a constant. However, recent experimental as well as theoretical calculations
offer that it should vary with time. Dirac first raised the interesting possibility that in a
changing universe the constant may also change [3, 4] with time. After Dirac’s proposal,
there have been many attempts to modify Einstein’s general relativity with the incorporation
of time varying G. Empirically, local constraints on the rate of variation of G can be derived
from Lunar Laser Ranging. From the ranging data to the Viking landers on Mars, the sim-
ple time variation in the effective Newtonian gravitational constant Ġ

G
could be limited to

(0.2 ± 0.4) × 10−11 yr−1 [5]. However, the quoted errors in this estimation are much large,
which may have stemmed from the lack of knowledge of the masses of asteroids. There are
also measurements which offer a variation of such fundamental constants. The experimental
range of variation of Ġ

G
seems to be 10−12 yr−1 < Ġ

G
< 10−10 yr−1 [6].

Classical cosmological models with cosmological constant gained much importance in
recent times because of its implications in explaining the present accelerated phase of ex-
pansion of universe. A non-zero positive cosmological constant Λ ∼ 2h2 × 10−56 cm−2 is
required to account for the observations [7–10]. The old and unsettled cosmological constant
problem [11–14], centers around the large difference in the theoretical prediction of Λ from
quantum theories associating the vacuum state energy density and its observational values.
The observed small but non-zero positive cosmological constant requires a fine tuning prob-
lem in physics. In order to get an adhoc solution to the problem, an evolving cosmological
constant has been considered by many authors [15–18]. In view of this, cosmological mod-
els with variable Newtonian gravitational constant G and cosmological constant Λ have
generated a lot of interest in recent times. The time variation of G is intimately related to
the time variation of the cosmological constant Λ [19, 20]. If one considers a time varying
cosmological constant term, then it is necessary that one should consider a time varying
gravitational constant term in the usual Einstein field equation. This approach is interesting
in the sense that it provides a link in the variation of the Newtonian gravitational constant
with the cosmological constant while leaving the form of Einstein field equations formally
unchanged. Many authors, Arbab [21–23], Singh et al. [24], Tiwari [25], Mukhopadhyay et
al. [26], Ram and Verma [27], Singh [28], Yadav [29], Sharif and Khanum [30], Pradhan et
al. [31–34], Singh et al. [35] have discussed G varying cosmologies.

In the present work, we have investigated LRS Bianchi type-I bulk viscous anisotropic
cosmological model in the framework of Einstein’s relativity with variable gravitational and
cosmological constants. In order to get viable models, we have assumed that the shear scalar
is directly proportional to the scalar expansion and the contribution of the bulk viscosity to
the total pressure is proportional to the rest energy density. Such a barotropic bulk viscous
pressure is required to explain the accelerated expansion of the universe [36, 37]. The mo-
tivation behind the work is to investigate the dynamics of the anisotropic model pertaining
to the time variation of Newtonian gravitational constant keeping in view the limits of the
Supernova constraints.

The organization of the paper is as follows. In Sect. 2, the basic equations for the
anisotropic LRSBI model have been derived assuming the shear scalar to be directly propor-
tional to the scalar expansion. The dynamics of the universe are discussed for the imperfect
bulk viscous cosmic fluid with time varying gravitational constant and a rolling down dark
energy component in Sect. 3. The statefinder parameters which provide a better idea about
the geometrical evolution of universe are derived in Sect. 4. In Sect. 5, the supernova con-
straints concerning the luminosity distance along with look back time have been discussed.
At the end, the results of the present work are summarized in Sect. 6.
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2 The Basic Equations for Anisotropic Universe

The classical accelerated phase of expansion of the universe is modeled through a cosmo-
logical constant in Einstein’s field equation

Rij − 1

2
gijR = −8πG(t)Tij + Λ(t)gij , (1)

where the symbols have their usual meaning. The universe is believed to have a perfect fluid
distribution with dissipative phenomena coming from bulk viscosity. The presence of bulk
viscosity in the cosmic fluid has already been recognized in connection with the observed
accelerated expansion [36, 37]. In the field equation (1), the unit is chosen in such a manner
that the speed of light in vacuum is unity.

In commoving coordinates, the energy-momentum tensor is given by

Tij = (ρ + p)uiuj + pgij , (2)

where ui are the four velocity vectors defined as ui = δi
4 and they satisfy the relation

uiuj = −1. ρ is the proper rest energy density and p is the total effective pressure which
includes the proper pressure p and contribution of bulk viscosity to pressure such that
p = p − ξ(t)ul

;l , ξ(t) being the time dependent bulk viscous coefficient.
Anisotropic LRSBI universe is modeled through the metric

ds2 = −dt2 + A2
(
dx2 + dy2

) + B2 dz2, (3)

where the metric potentials A and B are considered as the functions of cosmic time only.
The plane symmetric metric is considered in such a way that the axis of symmetry lies along
z-direction. The expansion scalar θ = ul

;l for this metric can be expressed as

θ = 2
Ȧ

A
+ Ḃ

B
. (4)

The overhead dots on the metric potentials represent the ordinary time derivatives. Defining
the directional Hubble parameters as H1 = Ȧ

A
and H2 = Ḃ

B
, the mean Hubble parameter can

be written as H = 1
3 (2H1 + H2) and θ = ul

;l = 3H . The shear scalar σ for the metric (3) is
defined as

σ 2 = 1

2

[∑

i

H 2
i − 1

3
θ2

]
= 1

3
(H1 − H2)

2. (5)

The shear scalar may be taken to be proportional to the expansion scalar which envisages a
linear relationship between the Hubble parameters H1 and H2,

H2 = kH1 (6)

which leads to a relation between the metric potentials A and B as

B = Ak, (7)

where the constant k is assumed to be positive and it takes care of the anisotropic nature
of the model. If k = 1, the model is isotropic and anisotropic otherwise. The mean Hubble
parameter can now be expressed as H = 1

3 (k + 2)H1. Consequently, the shear scalar can be
expressed in terms of the Hubble parameter H as

σ 2 = 3

(
k − 1

k + 2

)2

H 2. (8)
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The field equation (1), for the metric (3) now assumes the explicit forms

Ḣ + 3H 2 = 0, (9)

and

9(2k + 1)H 2 = (k + 2)2[8πGρ + Λ]. (10)

Equation (9) yields,

H = 1

3t + k1
, (11)

where k1 is an integration constant. Consequently, the radius scale factor of the universe can
be

a = a1

(
3

k1
t + 1

) 1
3

. (12)

a1 is a positive constant. The metric potentials can be expressed as A = A0(3t + k1)
1

k+2 and

B = B0(3t + k1)
k

k+2 where A0 and B0 are positive integration constants. The deceleration
parameter q = − ä

aH 2 = −1 − Ḣ

H 2 = 2 comes out to be a positive constant implying that the
universe is decelerating in the present time. At the present time, t = t0, the Hubble parameter
H = H0 and the radius scale factor a = a0. In terms of the respective values at the present
time, the Hubble parameter and the radius scale factor can be expressed as

H(t) = H0

3H0(t − t0) + 1
(13)

and

a(t) = a0

[
3H0(t − t0) + 1

]1/3
. (14)

The vanishing covariant divergence of the Einstein tensor Rij − 1
2gijR yields [38–40],

ρ̇ + 3H(ρ + p) +
(

Ġ

G
ρ + Λ̇

8πG

)
= 0. (15)

Assuming that the total matter content of the universe is conserved, the energy density of
the matter obeys the usual conservation law T

ij

;j = 0. Therefore Eq. (15) splits into two
independent equations,

ρ̇ + 3H(ρ + p) = 0 (16)

and

Ġ

G
= − Λ̇

8πGρ
. (17)

It is evident from Eq. (17) that, the time variation of Newtonian Gravitational constant is
linked with the time dependence of cosmological constant. A rolling down cosmological
constant in classical cosmological models is considered to account for the recent observa-
tions envisaging an accelerated expansion of the universe which necessitates the use of a
time varying Newtonian Gravitational constant in the field equations.
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3 Bulk Viscous Model

A barotropic bulk viscous pressure defined through ξθ = ζρ with ζ ≥ 0 is required to ex-
plain the observed accelerated expansion of the universe [36, 37]. For a barotropic cosmic
fluid, the proper pressure is related to the energy density as p = ω0ρ, 0 ≤ ω0 ≤ 1. The com-
bined effect of the proper pressure and the bulk viscous barotropic pressure leads to a total
negative effective pressure p = ωρ, where the new equation of state parameter ω is related
to the old one ω0 as ω0 − ζ . The antigravity effect of the total negative effective pressure
provides the necessary acceleration. The observational limits on the equation of state pa-
rameter ω from SN Ia data are −1.67 < ω < −0.62 [41] and that from a combination of SN
Ia data with CMB anisotropy and galaxy clustering statistics are −1.3 < ω < −0.79 [42].
Inflation at an early stage scales the parameter ω, which combined with the above data and
dark energy constraint ω > −1 suggests a physical condition [43].

For a barotropic bulk viscous cosmic fluid, (16) reduces to

ρ̇

ρ
= −3(ω + 1)H (18)

which on integration yields,

ρ = ρ1

(3t + k1)(ω+1)
, (19)

where ρ1 is an integration constant.
The proper pressure becomes

p = ω0ρ1

(3t + k1)(ω+1)
. (20)

In the present epoch, t = t0, the rest energy density of the universe becomes ρ = ρc, and
(19) reduces to

ρ = ρc

(
H

H0

)(ω+1)

. (21)

The time variation of the rest energy density and the proper pressure depends on the value
of the equation of state parameter ω. If ω < −1, then the rest energy density and proper
pressure increase with the growth of time and the other way around if ω > −1. Since the
rest energy density of the universe should decrease with the growth of cosmic time, the
reasonable limit for the equation of state parameter should be ω > −1. The scalar expansion,
the shear scalar and the coefficient of bulk viscosity can be expressed as

θ = 3

3t + k1
, (22)

σ 2 = 3

(
k − 1

k + 2

)2 1

(3t + k1)2
(23)

and

ξ =
(

ζρ0

3

)
1

(3t + k1)ω
. (24)

In terms of the Hubble parameter in the present time these quantities can be expresses as

θ = θ0

[3H0(t − t0) + 1] , (25)
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σ 2 = σ 2
0

[3H0(t − t0) + 1]2
, (26)

and

ξ = ξ0

[3H0(t − t0) + 1]ω . (27)

In the above equations (25)–(27), θ0, σ0 and ξ0 represent the values at the present time. In
the beginning of universe, i.e. at t → 0, the scalar expansion and the shear scalar assume
large constant values, where as with the growth of cosmic time they decrease to null values
as t → ∞. Since limt→∞ σ

θ
�= 0, the anisotropy of the model is maintained throughout. The

coefficient of viscosity ξ evolves with time and its evolution depends on ω. For ω > 0, it
decreases with time whereas it increases for ω < 0. For ω > 0 and t < t0, ξ > ξ0 and for
the time afterwards the present epoch ξ < ξ0. The time dependence of the bulk viscosity
becomes just the opposite if ω < 0.

The differentiation of (10) with respect to time along with (11) and (17), results into

G = 18(2k + 1)

8πρ0(ω + 1)(k + 2)2

(
3H0(t − t0) + 1

H0

)(ω−1)

(28)

and consequently,

Λ = 9
2k + 1

(k + 2)2

(
ω − 1

ω + 1

)(
H0

3H0(t − t0) + 1

)2

. (29)

If the Newtonian gravitational constant and the cosmological constant in the present time
are represented by G0 and Λ0 respectively then (28) and (29) reduce to

G = G0

[
3H0(t − t0) + 1

](ω−1)
(30)

and

Λ = Λ0

[3H0(t − t0) + 1]2
. (31)

The cosmological constant can also be expressed in terms of the Newtonian gravitational
constant as

Λ = Λ0

(
G

G0

)− 2
ω−1

. (32)

The Newtonian gravitational constant G varies with time. G increases with the increase
in time if ω > 1 and G decreases with the increase in time if ω < 1. If ω = 1, G becomes a
pure constant and equals to its present value. The cosmological constant Λ evolves from a
large value at the beginning of the universe to a very small value at a large cosmic time. It is
interesting to note that the time variation of the cosmological constant does not depend on
the equation of state parameter whereas the time variation of the G depends on it. Present
day observation requires a small but positive cosmological constant in classical cosmolog-
ical models to account for the observed accelerated expansion of the universe. It is evident
from (29) that, Λ0 = 9 2k+1

(k+2)2 ( ω−1
ω+1 )(H0)

2 can be positive only if ω > 1 or ω < −1. However,
a decaying rest energy density favours ω > −1. The consideration of positive Λ0 along with
the fact that the rest energy density should decrease with time, leads to an increasing G dur-
ing the cosmic evolution. It is interesting to note from the outcome of this model that, at the
beginning of the universe, G has a small value which depends on the value of the effective
equation of state parameter ω and the anisotropic parameter k. The sign of G is positive for
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ω > 0 and is negative for ω < −1. Based upon the physical constraints, it can be inferred that
G comes out to be positive for the present model. As is evident from the field equation (1),
the vanishing G implies that, at the beginning of the universe, the dominant role for energy
is played by the cosmological constant. Equation (32) shows that the increment or decre-
ment in G is decided by the variation in the cosmological constant and both the variation
is governed by the value of the effective equation of state parameter. In the absence of bulk
viscosity ω = ω0, 0 ≤ ω0 ≤ 1 and hence the Newtonian gravitational constant G decrease
with time. As is evident from (29), the cosmological constant becomes negative or zero in
the absence of bulk viscosity. Since the observational facts favour a positive cosmological
constant at the present epoch, inclusion of bulk viscosity becomes a necessity in the present
model.

The relationship between the growth of the scale factor and the variation of the gravita-
tional constant can be determined from the relation

G = G0

(
a

a0

)3(ω−1)

. (33)

The Newtonian gravitational constant depends on the growth of the radius scale fac-
tor. With the growth of the radius scale factor, whether G will increase or decrease that is
decided by the equation of state parameter. For an increasing G, ω > 1 and for a decreas-
ing G, ω < 1. From (28), it can be inferred that Ġ

G
= 3(ω−1)H0

[3H0(t−t0)+1] which comes out to be a
positive quantity. The relationship between the cosmological constant and the mean Hubble

parameter becomes Λ ∝ H 2 which is equivalent to Λ ∝ ρ( 2
ω+1 ). For a Machian cosmological

solution, the quantity Gρ should satisfy the condition Gρ ∝ H 2. The LRSBI model satisfies
this condition for Machian solution.

4 State Finder Parameters for Varying G

The state finder parameters pair {r, s} has great geometrical significance. The statefinder pair
is a geometrical diagnosis in the sense that it depends upon the expansion factor and hence
upon the metric describing space-time. In the expansion history of the universe if the decel-
eration parameter q is negative, there is cosmic acceleration and cosmic deceleration for a
positive value of q . In most of the situation it is very difficult to extract information on the
dynamical evolution of the equation of state parameter from q . In order to get information
about the dynamical properties of the equation of state parameter, higher order derivatives
of the scale factor are required. These statefinder parameters involving the second and third
time derivatives of radius scale factor of the universe are used in the holographic dark energy
models to differentiate between different models. These parameters are defined as

r =
...
a

aH 3
, (34)

and

s = r − Ω

3(q − Ω
2 )

, (35)

where,

Ω = Ωm + ΩΛ = 3(2k + 1)

(k + 2)2
.

The state finder parameter r can also be expressed in terms of the deceleration parameter
q as r = 2q2 + q − q̇

H
and is also called cosmic jerk. Since for the present model q = 2, i.e.



Int J Theor Phys (2013) 52:4218–4228 4225

q̇ = 0, the r − q relation is described through r = 2q2 + q . For the present model, the state
finder parameters can be expressed as [44]

r = 10 (36)

and

s = 20(k + 2)2 − 6(2k + 1)

12(k + 2)2 − 9(2k + 1)
(37)

so that s = 1
10 ( 20(k+2)2−6(2k+1)

12(k+2)2−9(2k+1)
)r .

The trajectories in the s–r plane for different cosmological models have different be-
haviours. For a given value of the anisotropic parameter, the plot of s ∼ r behaves like a
straight line. If the values of the pair {r, s} in the present time can be extracted from precise
observational data in model independent manner, various cosmological models can then be
well tested.

5 Supernovae Constraints: Luminosity Distance

The luminosity distance is also considered as a better tool to determine the equation of state.
For isotropic models the luminosity distance is defined as

dL = d(1 + z), (38)

where the redshift satisfies 1+ z = a0
a

, a0 is the value of the radius scale factor in the present
epoch and d is the proper distance. The proper distance between a source and observer is
calculated from the fact that, if a photon emitted by a source with coordinate d at time t and
received by an observer located at the origin at a time t0, then

d =
∫ a0

a

da

aȧ
= a0

∫ t0

t

dt

a
. (39)

In case of isotropic models, two galaxies with same redshift appear to be at the same lumi-
nosity distance from the observer. But in case of anisotropic metric as in (3), we can obtain
different distances for a given redshift. In other words the brightness depends on the distance
and the angle of observation [45].

For an anisotropic metric with symmetry axis lying along z-axis the luminosity dis-
tance dL of a source at redshift, seen along a direction p̂(|p̂| = a0) is given by [2, 46, 47]

dL = (z, p̂) = (1 + z)

∫ t0

t

dt

(
∑

i A
2
i p̂i

2
)1/2

, (40)

where A1 = A2 = A and A3 = B and

1 + z =
(∑

i

p̂2
i

A2
i

)1/2

. (41)

It may be noted here that, for small observational angles these expressions reduce to the
usual isotropic relations. In the present work, we restrict ourselves to the Supernovae present
within small observational angles.

For the present model with the radius scale factor given in Eq. (14) the proper distance
becomes

d = 1

2H0

[
1 −

(
H0

H

) 2
3
]

(42)



4226 Int J Theor Phys (2013) 52:4218–4228

and in terms of the redshift

d = 1

2H0

[
1 − (1 + z)−2

]
. (43)

For early universe z → ∞, the proper distance d → 1
2H0

and at late times z → −1, the

proper distance approaches a large value behaving like d ∼ (1+z)−2

2H0
.

The Luminosity distance can now be expressed as

dL = 1

2H0

[
(1 + z) − (1 + z)−1

]
. (44)

For early universe with inflationary epoch, z → ∞, the Luminosity distance dL → ∞ and

at late times z → −1, it behaves like dL ∼ − (1+z)−1

2H0
.

If a photon is emitted by a source at the instant t and received at time t0, then the photon
travel time or the look back time t − t0 is defined as

t − t0 = −
∫ z

0

dz

H(z)(1 + z)
. (45)

From Eqs. (13) and (14), we get

t − t0 = 1

3H0

[
H0

H
− 1

]
, (46)

which can be expressed in terms of the redshift as

t − t0 = 1

3H0

[
(1 + z)−3 − 1

]
. (47)

At the early inflationary epoch, the look back time becomes − 1
3H0

and at late time of evolu-

tion t − t0 ∼ (1+z)−3

3H0
.

Recent observations of Supernova Ia provide information regarding the second and third
derivatives of the luminosity distance, d2 and d3 respectively, with respect to the redshift.
Particularly the third derivative d3 is more important as it contains information about the cur-
vature of the universe and the state finder parameter r . For a flat universe, these parameters
are expressed as

d2 = 1

2
(1 − q0), (48)

d3 = 1

6

(
3q2

0 + q0 − r0 − 1
)
, (49)

where q0 and r0 represent the respective values at the present epoch. Since q = 2 and r = 10,
d2 and d3 assume the values −0.5 and 2.25 respectively.

6 Summary and Conclusion

We have investigated bulk viscous anisotropic LRSBI cosmological model in the frame-
work of General Relativity with variable gravitational and cosmological constants. The time
varying nature of the cosmological constant is very much linked to the time variation of the
gravitational constant. In order to get viable models, we have assumed that the shear scalar
is proportional to the scalar expansion and the contribution of bulk viscosity to pressure is
proportional to the rest energy density. The time varying nature of Λ and G depends on
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the bulk viscosity and the anisotropy of the universe. The extracted time variation of the G

satisfies the Machian cosmological solution. In the absence of bulk viscosity, the gravita-
tional constant decreases with time and increases otherwise. In the bulk viscous model, the
cosmological constant decays from a very large value at the beginning of the universe to a
small positive value. However in the absence of bulk viscosity, the cosmological constant
assumes negative value which necessitates the inclusion of bulk viscosity in the present
model. The variation of G depends on the variation of the cosmological constant and the
radius scale factor. The equation of state parameter and hence the bulk viscosity affects the
time variation of the properties of the universe. We have calculated the state finder parameter
or jerk parameter for the model discussed to get idea about the dynamics of the universe.
Our calculations of the Supernova constraints concerning the luminosity distance provide
reasonable results.
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