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Abstract By using the abstract structures investigated in the first Part of this article, we
develop a semantics for an epistemic language, which expresses sentences like “Alice knows
that Bob does not understand that π is irrational”. One is dealing with a holistic form of
quantum computational semantics, where entanglement plays a fundamental role; thus, the
meaning of a global expression determines the contextual meanings of its parts, but generally
not the other way around. The epistemic situations represented in this semantics seem to
reflect some characteristic limitations of the real processes of acquiring information. Since
knowledge is not generally closed under logical consequence, the unpleasant phenomenon
of logical omniscience is here avoided.

Keywords Contextual meaning · Holistic model · Epistemic semantic

E. Beltrametti
Dipartimento di Fisica, Università di Genova, Via Dodecaneso, 33, 16146 Genova, Italy
e-mail: enrico.beltrametti@ge.infn.it

M.L. Dalla Chiara
Dipartimento di Filosofia, Università di Firenze, Via Bolognese 52, 50139 Firenze, Italy
e-mail: dallachiara@unifi.it

R. Giuntini · G. Sergioli (�)
Dipartimento di Filosofia e Teoria delle Scienze Umane, Università di Cagliari, Via Is Mirrionis 1,
09123 Cagliari, Italy
e-mail: giuseppe.sergioli@gmail.com

R. Giuntini
e-mail: giuntini@unica.it

R. Leporini
Dipartimento di Ingegneria, Università di Bergamo, viale Marconi 5, 24044 Dalmine BG, Italy
e-mail: roberto.leporini@unibg.it

mailto:enrico.beltrametti@ge.infn.it
mailto:dallachiara@unifi.it
mailto:giuseppe.sergioli@gmail.com
mailto:giuntini@unica.it
mailto:roberto.leporini@unibg.it


3294 Int J Theor Phys (2014) 53:3293–3307

1 The Epistemic Quantum Computational Syntax

The structures, investigated in the first Part of this article, provide the mathematical basis
for the development of our epistemic semantics.1 The basic intuitive idea can be sketched as
follows: pieces of quantum information (qumixes) can be denoted by the sentences of a for-
mal language, whose logical connectives correspond to some quantum gates, while the two
fundamental epistemic operators (to understand and to know) are interpreted as epistemic
operations living in semantic models based on convenient epistemic quantum computational
structures. Accordingly, sentences like “At time t Alice knows that Bob does not understand
that π is irrational” turn out to denote particular examples of qumixes, representing possible
states of quantum objects. Let us first introduce the epistemic language that will be used.
This language, indicated by LEpQC , contains atomic sentences (say, “the spin-value in the
x-direction is up”), including two privileged sentences t and f that represent the truth-values
Truth and Falsity, respectively. We will use q, r, . . . as metavariables for atomic sentences,
and α, β, . . . as metavariables for sentences. The quantum computational connectives of
LEpQC are: the negation ¬ (which corresponds to the gate Negation), the square root of
the identity

√
id (which corresponds to Hadamard-gate), a ternary connective ᵀ (which

corresponds to the Toffoli-gate), the exclusive disjunction
⊎

(which corresponds to XOR).
The epistemic sub-language of LEpQC contains: a finite set of names for epistemic agents
(a, b, . . .); a set of names (t1, t2, . . .) for the elements of a given time-sequence; the epistemic
operators U (to understand) and K (to know).

For any sentences α, β , γ , the expressions ¬α,
√

id α, ᵀ(α,β, γ ), α
⊎

β are sentences.
For any sentence α, for any agent-name a (say, Alice), for any time-name t , the expressions
U atα (at time t agent a understands the sentence α) and Katα (at time t agent a knows the
sentence α) are sentences. Notice that nested epistemic operators are allowed: an expres-
sion like Kat¬U btα is a well-formed sentence. The connectives ¬,

√
id, ᵀ,

⊎
are called

gate-connectives. Any subexpression U at or Kat of an epistemic sentence will be called an
epistemic connective.

We recall that, for any truth-perspective T, the Toffoli-gate permits one to define a re-
versible conjunction ANDT (for any ρ ∈ D(H(m)) and for any σ ∈ D(H(n))):

ANDT(ρ,σ ) := DT(m,n,1)

T

(
ρ ⊗ σ ⊗ TP

(1)

0

)
.

Accordingly, from a syntactical point of view, it is reasonable to define (metalinguistically)
the logical conjunction ∧ as follows (for any sentences α and β):

α ∧ β := ᵀ(α,β, f).

We will now introduce some syntactical notions that will be used in our semantics.

Definition 1.1

• α is called a gate-sentence iff either α is atomic or the principal connective of α is a
gate-connective.

• α is called an epistemic sentence iff α has the form Kat β .

Definition 1.2 (The Atomic Complexity of a Sentence) The atomic complexity At(α) of a
sentence α is the number of occurrences of atomic sentences in α.

1See [1, 3, 5–7].
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For instance, At(ᵀ(q,q, f)) = 3. We will also indicate by α(n) a sentence whose atomic
complexity is n. The notion of atomic complexity plays an important semantic role. As we
will see, the meaning of any sentence whose atomic complexity is n shall live in the domain
D(H(n)). For this reason, H(At(α)) (briefly indicated by Hα) will be also called the semantic
space of α.

Any sentence α can be naturally decomposed into its parts, giving rise to a special con-
figuration called the syntactical tree of α (indicated by STreeα).

Roughly, STreeα can be represented as a finite sequence of levels:

Levelk(α)

...

Level1(α),

where:

• each Leveli (α) (with 1 ≤ i ≤ k) is a sequence (β1, . . . , βm) of subformulas of α;
• the bottom level Level1(α) is α;
• the top level Levelk(α) is the sequence (q1, . . . ,qr ), where q1, . . . ,qr are the atomic oc-

currences in α;
• for any i (with 1 ≤ i < k), Leveli+1(α) is the sequence obtained by dropping the principal

gate-connective in all molecular gate-sentences occurring at Leveli (α), by dropping the
epistemic connectives (U at , Kat ) in all epistemic sentences occurring at Leveli (α) and by
repeating all the atomic sentences that occur at Leveli (α).

By Height of α (indicated by Height(α)) we mean the number of levels of the syntactical
tree of α.

As an example, consider the following sentence:

α = Kat¬(q ∧ ¬q) = Kat¬
(
ᵀ(q,¬q, f)

)

(say, “At time t Alice knows the non-contradiction principle”, instantiated by means of the
atomic sentence q).

The syntactical tree of α is the following sequence of levels:

Level5(α) = (q,q, f)

Level4(α) = (q,¬q; f)

Level3(α) = (
ᵀ(q,¬q, f)

)

Level2(α) = (¬ ᵀ (q,¬q, f)
)

Level1(α) = (
Kat¬

(
ᵀ(q,¬q, f)

))
.

Clearly, Height(ᵀ(q,¬q, f)) = 5.
More precisely, the syntactical tree of a sentence (whose atomic complexity is r) is de-

fined as follows.

Definition 1.3 (The Syntactical Tree of α) The syntactical tree of α is the following se-
quence of sentence-sequences:

STreeα = (
Level1(α), . . . ,Levelk(α)

)
,
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where:

• Level1(α) = (α);
• Leveli+1 is defined as follows for any i such that 1 ≤ i < k. The possible cases are:

(1) Leveli (α) does not contain any connective. Hence, Leveli (α) = (q1, . . . ,qr ) and
Height(α) = i;

(2) Leveli (α) = (β1, . . . , βm), and for at least one j , βj has a (principal) connective. Con-
sider the following sequence of sentence-sequences:

∫ ′
1, . . . , ∫ ′

m,

where

∫ ′
h =

{
(βh), if βh is atomic;
∫ ∗
h , otherwise,

with

∫ ∗
h =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(δ), if βh = ¬δ or βh = √
id δ;

(γ, δ, θ), if βh = ᵀ(γ, δ, θ);
(γ, δ), if βh = γ

⊎
δ;

(δ), if βh = U at δ or βh = Kat δ.

Then,

Leveli+1(α) = ∫ ′
1 • · · · • ∫ ′

m,

where • represents the sequence-composition.

2 The Epistemic Quantum Computational Semantics

We will now give the basic definitions of our semantics. We will apply to epistemic situations
a holistic version of quantum computational semantics (which has been naturally inspired
by the characteristic holistic features of the quantum theoretic formalism).2 In this semantics
any model assigns to any sentence a global meaning that determines the contextual meanings
of all its parts (from the whole to the parts!). It may happen that one and the same sentence
receives different meanings in different contexts.

Before defining holistic models, we will first introduce the weaker notion of quasi-model
of the language LEpQC .

Definition 2.1 (Quasi-model) A quasi-model of the language LEpQC is a system

Mq = (T ,Ag,EpSit,den)

where:

2See [4] and [2].
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(1) (T ,Ag,EpSit) is an epistemic quantum computational structure;3

(2) den is a function that interprets the individual names of the language. By simplicity, we
put:

den(a) = a; den(t) = t.

Apparently, quasi-models represent partial interpretations of the language: while names
of times and of agents receive an interpretation in the framework of a given epistemic situa-
tion, meanings of sentences are not determined.

In the first Part of this article we have seen that knowledge operations cannot be gener-
ally represented as qumix gates. At the same time, once fixed an epistemic quantum com-
putational structure S = (T ,Ag,EpSit), one can naturally define the following notion of
pseudo-gate with respect to S .

Definition 2.2 (Pseudo-gate) Let S = (T ,Ag,EpSit) be an epistemic quantum computa-
tional structure. A pseudo-gate of S is an operator-product

X(n1)

1 ⊗ · · · ⊗ X(nm)
m ,

where any X(ni )

i (with 1 ≤ i ≤ m) is either a qumix gate DG
(ni )

T
with respect to a truth-

perspective T or an epistemic operation (U(ni )
at

or K(ni )
at

) of S .

One can show that for any choice of a truth-perspective T and of a quasi-model
Mq = (T ,Ag,EpSit,den), the syntactical tree of a sentence α uniquely determines a se-
quence of pseudo-gates, that will be called the (T, Mq )-pseudo-gate tree of α.

As an example, consider again the sentence

α = Kat¬(q ∧ ¬q) = Kat¬
(
ᵀ(q,¬q, f)

)

and its syntactical tree.
Apparently, Level4(α) is obtained from Level5(α) by repeating the first occurrence of q,

by negating the second occurrence of q and by repeating f. Hence the pseudo-gate that
corresponds to Level4(α) will be DI(1) ⊗ DNOT(1)

T
⊗ DI(1). Level3(α) is obtained from

Level4(α) by applying to the three sentences occurring at Level4(α) the connective ᵀ. Hence
the pseudo-gate that corresponds to Level3(α) will be DT(1,1,1)

T
. Level2(α) is obtained from

Level3(α) by applying to the sentence occurring at Level3(α) the connective ¬. Hence the
pseudo-gate that corresponds to Level2(α) will be DNOT(3)

T
. Finally, Level1(α) is obtained

from Level2(α) by applying to the sentence occurring at Level2(α) the epistemic connec-
tive Kat . Hence the pseudo-gate that corresponds to Level1(α) will be K(3)

at
.

On this basis, the (T, Mq )-pseudo-gate tree of the sentence

α = Kat¬(q ∧ ¬q) = Kat¬
(
ᵀ(q,¬q, f)

)

can be identified with the following sequence consisting of four pseudo-gates:

(D
I(1) ⊗ DNOT(1)

T
⊗ DI(1),DT(1,1,1)

T
,DNOT(3)

T
,K(3)

at

)
.

Notice that the truth-perspectives T and Tat
may be different.

The general definition of (T, Mq )-pseudo-gate tree is the following:

3See Sect. 3 of the first Part of this article.
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Definition 2.3 ((T, Mq )-pseudo-gate tree) Let α be a sentence such that Height(α) = k.
The (T, Mq )-pseudo-gate tree of α is the sequence of pseudo-gates

PsTreeα
T = (α

O(k−1)

T
, . . . , αO(1)

T

)
,

that is defined as follows. Suppose that

Leveli−1(α) = (
β

(r1)

1 , . . . , β(rm)
m

)
,

(where 1 < i ≤ k). We put:

αO(i−1)

T
= αX(r1)

T
⊗ · · · ⊗ αX(rm)

T
,

where any αX
(rj )

T
is a pseudo-gate defined on H(rj ) such that:

αX
(rj )

T
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI(rj ), if β
(rj )

j is atomic;
DNOT

(rj )

T
, if β

(rj )

j = ¬δ;
D

√
I

(rj )

T
, if β

(rj )

j = √
id δ;

DT(u,v,w)

T
, if β

(rj )

j = ᵀ(γ (u), δ(v), θ (w));
DXOR(u,v)

T
, if β

(rj )

j = γ (u)
⊎

δ(v);
U

(rj )
at

, if β
(rj )

j = U at δ;
K

(rj )
at

, if β
(rj )

j = Kat δ.

Consider now a sentence α and let (αO(k−1)

T
, . . . , αO(1)

T
) be the (T, Mq )-pseudo-gate tree

of α. Any choice of a qumix ρ in Hα determines a sequence (ρk, . . . , ρ1) of qumixes of Hα ,
where:

ρk = ρ

ρk−1 = αO(k−1)

T
(ρk)

...

ρ1 = αO(1)

T
(ρ2).

The qumix ρk can be regarded as a possible input-information concerning the atomic parts
of α, while ρ1 represents the output-information about α, given the input-information ρk .
Each ρi corresponds to the information about Leveli (α), given the input-information ρk .

How to determine an information about the parts of α under a given input? It is natural
to apply the reduced state function that determines for any state ρ of a composite system
S = S1 + · · · + Sn the state Redi1,...,im(ρ) of any subsystem Si1 + · · · + Sim (where 1 ≤ i1 ≤
n, . . . ,1 ≤ im ≤ n). Consider the syntactical tree of α and suppose that:

Leveli (α) = (βi1 , . . . , βir ).
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We know that the (T, Mq )-pseudo-gate tree of α and the choice of an input ρk (in Hα)
determine a sequence of qumixes:

ρk � Levelk(α) = (q1, . . . ,qt )

...

ρi � Leveli (α) = (βi1 , . . . , βir )

...

ρ1 � Level1(α) = (α).

We can consider Redj (ρi), the reduced information of ρi with respect to the j -th part.
From a semantic point of view, this object can be regarded as a contextual information about
βij (the subformula of α occurring at the j -th position at Leveli (α)) under the input ρk .

We can now define the notion of holistic model, which assigns meanings to all sentences
of the language, for any choice of a truth-perspective T.

Definition 2.4 (Holistic Model) A holistic model of the language LEpQC is a system

M = (
T ,Ag,EpSit,den, MHol

)

where:

(1) (T ,Ag,EpSit,den) is a quasi-model Mq of the language.
(2) MHol is a map that associates to any truth-perspective T a map MHolT representing

a holistic interpretation of the sentences of the language. The following conditions are
required.
(2.1) For any sentence α, the interpretation MHolT associates to each level of the

syntactical tree of α a meaning, represented by a qumix living in Hα (the semantic
space of α).

(2.2) Let (αO(k−1)

T
, . . . , αO(1)

T
) be the (T, Mq)-pseudo-gate tree of sentence α and let

1 ≤ i < Height(α). Then,

MHolT

(
Leveli (α)

) = αO(i)

T

(M
HolT

(
Leveli+1(α)

))
.

In other words, the global meaning of each level (different from the top level) is
obtained by applying the corresponding pseudo-gate to the meaning of the level
that occurs immediately above.

(2.3) Let Leveli (α) = (β1, . . . , βr). Then: βj = f ⇒ Redj (MHolT(Leveli (α))) =
TP

(1)

0 ; βj = t ⇒ Redj (MHolT(Leveli (α))) = TP
(1)

1 , for any j (1 ≤ j ≤ r). In
other words, the contextual meanings of f and of t are always the T-Falsity and
the T-Truth, respectively.

On this basis, we put:

MHolT(α) := MHolT

(
Level1(α)

)
,

for any sentence α.
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As an example, consider again the sentence

α = Kat¬(q ∧ ¬q) = Kat¬
(
ᵀ(q,¬q, f)

)
.

As we have seen, any (T, Mq)-pseudo-gate-tree of α will have the following form:

(D
I(1) ⊗ DNOT(1)

T
⊗ DI(1),DT(1,1,1)

T
,DNOT(3)

T
,K(3)

at

)
.

Take a model

M = (
T ,Ag,EpSit,den, MHol

)

such that:

• MHolI(LevelHeight(α)(α)) = MHolI((q,q, f)) = P|ψ〉, where

|ψ〉 = 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ |0〉.

• EpSit assigns to agent at the epistemic situation

(Tat
,EpDat

,Uat ,Kat ),

where EpDat
= D and Kat (ρ) = ρ, for any ρ ∈ D. In other words, at has a maximal

epistemic capacity.4

We obtain: MHolI(Kat¬(q ∧ ¬q)) = P|ϕ〉, where: |ϕ〉 = K(3)
at
NOT(3)

I T(1,1,1)
I (I(1) ⊗

NOT(1)
I ⊗ I(1))( 1√

2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 + |1〉) ⊗ |0〉) = 1

2 (|0,1,1〉 + |0,0,1〉 + |1,1,0〉 +
|1,0,1〉). Hence, pI(MHolI(Kat¬(q ∧ ¬q))) = 3

4 �= 1. This example clearly shows how
even an agent with a maximal epistemic capacity does not necessarily know a very simple
instance of the non-contradiction principle!

Unlike standard compositional semantics, any MHolT(α) represents a kind of au-
tonomous semantic context that is not necessarily correlated to the meanings of other sen-
tences. At the same time, given a sentence γ , MHolT determines the contextual meaning,
with respect to the context MHolT(γ ), of any occurrence of a subformula β in the syntac-
tical tree of γ .

Definition 2.5 (Contextual Meaning) Consider a sentence γ such that

Leveli (γ ) = (βi1 , . . . , βir ).

The contextual meaning of the occurrence βij with respect to the context MHolT(γ ) is
defined as follows:

MHolγ

T
(βij ) := Redj

(M
HolT

(
Leveli (γ )

))
.

Hence, in particular, we have for any sentence γ

MHolγ

T
(γ ) = MHolT

(
Level1(γ )

) = MHolT(γ ).

4See Sect. 3 of the first Part of this article.
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Generally, different occurrences βij and βhk
of one and the same subformula β in the

syntactical tree of γ may receive different contextual meanings. In other words, we may
have:

MHolγ

T
(βij ) �= MHolγ

T
(βhk

).

When this is not the case, we will say that one is dealing with a normal model.

Definition 2.6 (Normal Holistic Model) A normal holistic model of the language LEpQC

is a holistic model M such that for any truth-perspective T and for any sentence γ , the
interpretation MHolT determines for any occurrence βij of a subformula β of γ in the
syntactical tree of γ the same contextual meaning, which will be uniformly indicated by
MHolγ

T
(β).

In the following we will always refer to normal holistic models.
Suppose that β is a subformula of two different formulas γ and δ. Generally, we have:

MHolγ

T
(β) �= MHolδ

T(β).

In other words, sentences may receive different contextual meanings in different contexts
also in the case of the normal holistic semantics.

To what extent do contextual meanings and gates (associated to the logical connectives)
commute? An answer to this question is given by the following theorem.

Theorem 2.1 Consider a holistic model M = (T ,Ag,EpSit,den, MHol) and a truth-
perspective T.

1. Let ¬α be a subformula of γ . Suppose that ¬α = βij (the formula occurring at the j -th
position of the i-th level in the syntactical tree of γ ), while α = β(i+1)k . We have:

MHolγ

T
(¬α) = Redj

(M
HolT

(
Leveli (γ )

))

= DNOT(At(α))

T

(
Redk

(M
HolT

(
Leveli+1(γ )

)))

= DNOT(At(α))

T

(M
Holγ

T
(α)

)
.

2. Let
√

id α be a subformula of γ . Suppose that
√

id α = βij , while α = β(i+1)k . We have:

MHolγ

T
(
√

id α) = Redj
(M

HolT

(
Leveli (γ )

))

= D
√
I

(At(α))

T

(
Redk

(M
HolT

(
Leveli+1(γ )

)))

= D
√
I

(At(α))

T

(M
Holγ

T
(α)

)
.

3. Let ᵀ(α1, α2, α3) be a subformula of γ . Suppose that in the syntactical tree of γ :
ᵀ(α1, α2, α3) = βij , while α1 = β(i+1)k1

, α2 = β(i+1)k2
, α3 = β(i+1)k3

. We have:

MHolγ

T

(
ᵀ(α1, α2, α3)

) = Redj
(M

HolT

(
Leveli (γ )

))

= DT(At(α1),At(α2),At(α3))

T

(
Redk1,k2,k3

(M
HolT

(
Leveli+1(γ )

)))
.



3302 Int J Theor Phys (2014) 53:3293–3307

4. Let α1 �α2 be a subformula of γ . Suppose that in the syntactical tree of γ : α1 �α2 = βij ,
while α1 = β(i+1)k1

, α2 = β(i+1)k2
. We have:

MHolγ

T
(α1 � α2) = Redj

(M
HolT

(
Leveli (γ )

))

= DXOR(At(α1),At(α2))

T

(
Redk1,k2

(M
HolT

(
Leveli+1(γ )

)))
.

5. Let Uat α be a subformula of γ . Suppose that Uat α = βij , while α = β(i+1)k . We have:

MHolγ

T
(Uat α) = Redj

(M
HolT

(
Leveli (γ )

))

= U(At(α))
at

(
Redk

(M
HolT

(
Leveli+1(γ )

)))

= U(At(α))
at

(M
Holγ

T
(α)

)
.

6. Let Kat α be a subformula of γ . Suppose that Kat α = βij , while α = β(i+1)k . We have:

MHolγ

T
(Kat α) = Redj

(M
HolT

(
Leveli (γ )

))

= K(At(α))
at

(
Redk

(M
HolT

(
Leveli+1(γ )

)))

= K(At(α))
at

(M
Holγ

T
(α)

)
.

Proof By definition of syntactical tree, of pseudo-gate tree, of normal holistic model and of
contextual meaning. �

Notice that, generally, the contextual meaning of a conjunction is not the conjunction of
the contextual meanings of the two members. As a counterexample, consider the following
contradictory sentence:

γ = q ∧ ¬q = ᵀ(q,¬q, f),

whose syntactical tree is:

Level3(γ ) = (q,q, f)

Level2(γ ) = (q,¬q, f)

Level1(γ ) = ᵀ(q,¬q, f).

Consider a model M such that:

MHolI
(
Level3(γ )

) = P 1√
2
(|0,1,0〉+|1,0,0〉)

(which is a maximally entangled quregister with respect to the first and to the second part.)5

Hence:

MHolI
(
Level1(γ )

) = MHolI(γ ) = MHolγ
I(γ ) = P 1√

2
(|0,0,0〉+|1,1,1〉)

5See Sect. 2 of the first Part of this article.
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(which is a maximally entangled quregister). At the same time, we have:

MHolγ
I(q) = MHolγ

I(¬q) = 1

2
P

(1)

0 + 1

2
P

(1)

1 ,

which is a proper mixture. Consequently:

DT(1,1,1)
(M

Holγ
I(q) ⊗ MHolγ

I(¬q) ⊗ MHolγ
I(f)

) �= MHolγ
I

(
ᵀ(q,¬q, f)

)
.

Notice that: pI(MHolγ
I(q ∧ ¬q)) = 1

2 ; while: pI(DT(1,1,1,)(MHolγ
I(q) ⊗ MHolγ

I(¬q) ⊗
MHolγ

I(f))) = 1
4 .

Definition 2.7 (Harmonic and Sound Models) Let M = (T ,Ag,EpSit,den, MHol) be a
model.

• M is called harmonic iff the epistemic structure of M is harmonic, i.e. all agents of
the structure share the same truth-perspective T. Furthermore, the interpretation-function
MHol is only defined for the truth-perspective T.

• M is called sound iff all agents at of M have a sound epistemic capacity (i.e. assign the
“right” probability-values to the truth-values of their truth-perspectives).6

By harmonic epistemic quantum computational semantics (sound epistemic quantum
computational semantics) we will mean the semantics that only refers to harmonic mod-
els (sound models).

We can now define the notions of truth, validity and logical consequence.

Definition 2.8 (Contextual Truth) Let α be a subformula of γ . �(γ,M,T) α (the sentence
α is true with respect to the context γ , the model M and the truth-perspective T) iff
pT(MHolγ

T
(α)) = 1.

Definition 2.9 (Truth) �(M,T) α (the sentence α is true with respect to the model M and
the truth-perspective T) iff �(α,M,T) α.

Hence, the concept of truth turns out to be a special case of the concept of contextual
truth.

Definition 2.10 (Contextual Validity) Let α be a subformula of γ .

• �(γ,T) α (the sentence α is valid with respect to the context γ and the truth-perspective
T) iff for any model M, �(γ,M,T) α.

• �γ α (the sentence α is valid with respect to the context γ ) iff for any truth- perspective
T, �(γ,T) α.

Definition 2.11 (Validity)

• �T α (the sentence α is valid with respect to the truth-perspective T) iff �(α,T) α.
• � α (the sentence α is valid) iff �α α.

6See Sect. 3 of the first Part of this article.
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Definition 2.12 (Consequence with Respect to a Quasi-model Mq ) Let γ be a sentence
such that α and β are subformulas of γ and let T be a truth-perspective.

• α �(γ,Mq ,T) β (the sentence β is a consequence of the sentence α with respect to the
context γ , the quasi-model Mq and the truth-perspective T) iff for any model M based
on Mq :

�(γ,M,T) α ⇒ �(γ,M,T) β.

• α �(γ,Mq ) β (the sentence β is a consequence of the sentence α with respect to the context
γ and the quasi-model Mq ) iff for any truth-perspective T, α �(γ,Mq ,T) β .

Definition 2.13 (Logical Consequence) Let γ be a sentence such that α and β are subfor-
mulas of γ and let T be a truth-perspective.

• α �(γ,T) β (β is a logical consequence of α with respect to the context γ and the truth-
perspective T) iff for any quasi-model Mq , α �(γ,Mq ,T) β .

• α �γ β (β is a logical consequence of α with respect to the context γ ) iff for any truth-
perspective T, α �(γ,T) β .

• α � β (β is a logical consequence of α iff for any context γ such that α and β are subfor-
mulas of γ,α �γ β .

The concepts of consequence and of logical consequence, defined above, correspond to
weak concepts, being defined in terms of T-Truth, and not in terms of the preorder relation
T (as one could expect). From an intuitive point of view, however, such weak notions turn
out to be more interesting in the case of epistemic situations described in the framework of
a holistic semantics.

Notice that only the contextual notion of logical consequence turns out to satisfy transi-
tivity (α �γ β and β �γ δ ⇒ α �γ δ). Full transitivity (α � β and β � δ ⇒ α � δ) is naturally
violated in the holistic semantics.

As expected, in the particular case of the harmonic epistemic semantics (where all agents
share the same truth-perspective) the definitions of truth, validity and logical consequence
can be simplified, since the reference to T is no longer necessary. Accordingly, in such a
case we will write:

�Harm
(γ,M) α; �Harm

M α (harmonic truth);
�Harm

γ α; �Harm α (harmonic validity);
α �Harm

(γ,Mq ) β; α �Harm
γ β; α �Harm β (harmonic logical consequence).

3 Some Epistemic Situations

We will now illustrate some significant examples of epistemic situations that arise in this
semantics. We will always refer to models

M = (
T ,Ag,EpSit,den,M Hol

)

such that den(a) = a;den(t) = t.
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(1) Katα �Harm α. In the harmonic semantics, sentences that are known by a given agent at
a given time are true.
(1) is an immediate consequence of the definition of logical consequence and of Theo-
rem 2.1.

(2) As a particular case of (1) we obtain:

KatαKatα �Harm Katα.

Knowing of knowing implies knowing. But not the other way around!
(3) In the non-harmonic semantics only the two following conditions (which are weaker

than (1) and (2)) hold for any quasi-model Mq and any agent at of Mq :
(3.1) Katα �(Mq ,Tat

) α;
(3.2) KatαKatα �(Mq ,Tat

) Katα.
(4) Kat Kbtα �Harm α. In the harmonic semantics, knowing that another agent knows a given

sentence implies that the sentence in question holds. At the same time, we will have:

Kat Kbtα �
Harm Katα.

Alice might know that Bob knows a given sentence, without knowing herself the sen-
tence in question!

(5) In the harmonic sound semantics (where for any agent at, Kat

Tat P
(1)

1 = Tat P
(1)

1 and
Kat

Tat P
(1)

0 = Tat P
(1)

0 ) we have:

�Harm Kat t; �Harm Kat¬f.

Hence, there are sentences that every agent knows.
(6) Kat (α ∧ β) � Katα; Kat (α ∧ β) � Kat β . Knowing a conjunction does not generally

imply knowing its members.
(7) �(γ,M) Katα and �(γ,M) Katβ � �(γ,M) Kat (α ∧ β).

Knowledge is not generally closed under conjunction.
(8) Let M be a model and let at be an agent of M.

�(M,Tat
) Kat (α ∧ ¬α).

Contradictions are never known.
In order to prove (8), suppose, by contradiction, that there exists a model M and an
agent at such that: �(M,Tat

) Kat (α ∧ ¬α).
Then, pTat

(MHolTat
(Kat (α ∧ ¬α))) = 1.

By definition of model and by Theorem 2.1 we have:

MHolTat

(
Kat (α ∧ ¬α)

) = Kat

(M
HolTat

(α ∧ ¬α)
)
.

Consequently, by hypothesis, pTat
(Kat

(MHolTat
(α ∧ ¬α))) = 1. Thus, by the prop-

erties of knowledge operations: pTat
(MHolTat

(α ∧ ¬α)) = 1, which is impossible,
owing to the following Lemma (of the holistic semantics).

Lemma 3.1 For any sentence α, for any truth-perspective T and for any holistic model M,

pT

(M
HolT(α ∧ ¬α)

) �= 1.
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(9) In the non-harmonic semantics the following situation is possible:

�(M,Tat
) Kat Kbt f.

In other words, according to the truth-perspective of Alice it is true that Alice (at time t )
knows that Bob (at time t ) knows the Falsity of Alice’s truth-perspective.
As an example, consider a (non-harmonic) model M with two agents at and bt satisfy-
ing the following conditions:
(a) the epistemic distance between the truth-perspectives of at and of bt is greater than

or equal to 1
2 .7 In such a case we have:

Tat P
(1)

1 Tbt

Tat P
(1)

0

(according to Bob’s truth-perspective, Alice’s Truth precedes Alice’s Falsity);
(b) Kbt

Tat P
(1)

0 = Tat P
(1)

1 (the information according to which Bob knows Alice’s Fal-
sity is true with respect to Alice’s truth-perspective);

(c) Kat

Tat P
(1)

1 = Tat P
(1)

1
(Alice at time t has a sound epistemic capacity).

Consider the syntactical tree of Kat Kbt f:

Level3(Kat Kbt f) = (f)

Level2(Kat Kbt f) = (Kbt f)

Level1(Kat Kbt f) = (Kat Kbt f).

The qumixes assigned by MHolTat
to the levels of this tree are:

MHolTat

(
Level3(Kat Kbt f)

) = Tat P
(1)

0

(by definition of model);

MHolTat

(
Level2(Kat Kbt f)

) = Kbt

(M
HolTat

(
Level3(Kat Kbt f)

)) = Tat P
(1)

1

(by definition of model and by (b));

MHolTat

(
Level1(Kat Kbt f)

) = Kbt

(M
HolTat

(
Level2(Kat Kbt f)

)) = Tat P
(1)

1

(by definition of model and by (c)).
Hence, pTat

(MHolTat
(Kat Kbt f)) = 1 and �(M,Tat

) Kat Kbt f. Notice that

�(M,Tat
) Kat Kbt f � �(M,Tbt

) Kbt f.

In other words, the following situation is possible:

• According to Alice’s truth-perspective, it is true that Alice knows that Bob knows the
Falsity.

• However, according to Bob’s truth-perspective it is not true that Bob knows the Fal-
sity.

7The concept of epistemic distance has been defined in Sect. 2 of the first Part of this article.
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Roughly, we might say: Alice knows that Bob is wrong. However, Bob is not aware of
being wrong!

The epistemic situations illustrated above seem to reflect pretty well some characteristic
limitations of the real processes of acquiring information and knowledge. Owing to the limits
of epistemic domains, understanding and knowing are not generally closed under logical
consequence. Hence, the unpleasant phenomenon of logical omniscience is here avoided.
We have, in particular, that knowledge is not generally closed under logical conjunction, as
in fact happens in the case of concrete memories both of human and of artificial intelligence.
It is also admitted that an agent can understand (or know) a conjunction, without being
able to understand (to know) its members. Such situation, which might appear prima facie
somewhat “irrational”, seems to be instead deeply in agreement with our use of natural
languages, where sometimes agents show to use correctly and to understand some global
expressions without being able to understand their (meaningful) parts.
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