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Abstract We consider the dynamics of quantum correlations of two coupled spin qubits
with Dzyaloshinsky-Moriya (DM) interaction influenced by a local external magnetic field
along the z-direction and coupled to bath spin- 1

2 particles as independent non-Markovian en-
vironment. For this model, we calculate the entanglement measure of concurrence, quantum
discord and quantum dissonance and find effects of DM interaction, bath-system coupling
constant and temperature on the dynamics of quantum correlation. At last, we obtain the
teleportation for this model by using fidelity and observe changes of DM interaction, bath-
system coupling constant, temperature and magnetic field on fidelity.

Keywords Quantum correlation · Non-Markovian dynamics · Dzyaloshinsky-Moriya
interaction

1 Introduction

In open quantum systems we have faced with interactions between system and its surround-
ing environment. These interactions which can led to decoherence, would cause the transi-
tion of system from pure quantum states to mixed ones and change the quantum properties,
especially quantum correlations. Owing to their notable features in developing the idea of
quantum computers, entanglement measures of concurrence and quantum discord which are
two different faces of the quantum correlations have attracted much attention in recent years.
Since quantum discord computation in systems with large dimensions is difficult, an alter-
native approach can be dissonance, a new quantum correlation introduced by K. Modi et al.
[1] which is defined as a relative entropy between separable state and closest classical state
that unlike discord excludes entanglement. Since all three of them (concurrence, discord and
dissonance) have been realized to perform quantum information tasks, the investigation of
decoherent dynamics of them is an important emerging field [2–8].
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Recently, much attention has been paid to the quantum correlation in spin system, such as
the Ising model and all kinds of Heisenberg models [9–13]. XXZ Heisenberg models can be
supplemented with a magnetic term, the so-called Dzyaloshinskii-Moriya (DM) interaction
that arises from spin-orbit coupling and is inevitably influenced by their spin environment.
The coupling of spin systems with a spin bath often leads to strong non-Markovian behavior
which has many physical importances in solid state, such as systems based on the nuclear
spin of donors in semiconductors [14, 15] or on the electron spin in quantum dots [16]. In this
paper, we consider the quantum discord, dissonance and concurrence within two spin qubit
anisotropic XXZ Heisenberg model with antisymmetric DM interaction in the presence of
the bath spin- 1

2 particles as environment. Since the dynamics of the system qubit in the
model we study is highly non-Markovian, do not expect the use of traditional Markovian
master equations.

Also, in this paper we discuss teleportation as one valuable features of quantum infor-
mation theory that is based on non-local properties of entangled states. For studying tele-
portation, we have examined the problem of teleportation fidelity in the presence of DM
interaction, bath-system coupling constant, temperature and magnetic field for entangled
and separable states and considered the defined model as a channel for teleporting the quan-
tum state. This paper is organized as follows: In Sect. 2 we introduce the Hamiltonian model
with DM interaction coupled to an XY spin chain. In Sect. 3 we review the concept of con-
currence, quantum discord and quantum dissonance and discuss the effects of the Dz (the
z-component of the DM interaction), g (the bath-system coupling constant), T (temperate)
for initial entangle state and initial separable state on them. In Sect. 4 we consider this model
as a channel to teleport the quantum state and show the effect of Dz, g, μ0 and T on fidelity.
Conclusions are then presented in Sect. 5.

2 The Model and Its Solution

The quantum system we consider, consists of two spin- 1
2 anisotropic particles with DM in-

teraction influenced by a local external magnetic field along the z-direction coupled to bath
spin- 1

2 particles as the environment. Here the DM interaction is a supplemented magnetic
term arising from any interaction with a particle’s spin with its motion, which can be rep-
resented in the form

∑
ij Dij .(Si × Sj ), where D is the DM vector coupling and the sum is

over the pairs of spins. To see the effects of the DM interaction, we choose the z-component
of the anisotropic parameter D. The total Hamiltonian is Htot = Hs + Hb + Hsb, where Hs

and Hb stand for the Hamiltonians of the system, bath spin respectively and Hsb describes
the interaction between the system and the bath. By considering interaction between the two
anisotropic system-spin particles as a Heisenberg XXZ model, with DM interaction param-
eter Dz, the Hamiltonian of the system is given by

Hs = ε
(
Sz

1s + Sz
2s

) + JzS
z
1sS

z
2s + J

(
S+

1sS
−
2s + S−

1sS
+
2s

) + iDz

(
S+

1sS
−
2s − S−

1sS
+
2s

)
. (1)

We restrict the interaction between the N -components of the bath spin and the system-bath
so that it can be described by Heisenberg XY model as

Hb = g0

N

N∑

j �=k

(
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jbS
−
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jbS
+
kb

)
, (2)
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For clarity, the (s) subscript refers to the system and (b) to the bath spin, where the pa-
rameter ε characterizes the intensity of the magnetic field applied along the z-axis and Dz

the z-component of the DM interaction. The coefficients Jz, J , g0 and g correspond to the
real coupling constants with Jz, J > 0 in the anti-ferromagnetic case and Jz, J < 0 in the
ferromagnetic case. By using the collective angular momentum operators J± = ∑N

j=1 S±
jb

and the Holstein-Primakoff transformation as J+ = a†(
√

N − a†a) and J− = (
√

N − a†a)a

with [a, a†] = 1, the Hamiltonians of the bath spin Hb and interaction Hsb can be rewritten
as

Hb = g0

{

a†

(

1 − a†a

N

)

a +
√

1 − a†a

N
aa†

√

1 − a†a

N

}

− g0, (4)

Hsb = g

{
(
S+

1s + S+
2s

)
√

1 − a†a

N
a + (

S−
1s + S−

2s

)
a†

√

1 − a†a

N

}

. (5)

By considering the thermodynamic limit (i.e., N → ∞) at a finite temperature, the above
equations are reduced to

Hb = 2g0a
†a, (6)

Hsb = g
{(

S+
1s + S+

2s

)
a + (

S−
1s + S−

2s

)
a†

}
. (7)

Observe that the bath spin is reduced into a single-mode bosonic thermal field with non-
Markovian effects on the dynamics of our system. Since this thermal field will not stay in
a thermal equilibrium state as usually assumed for an environment with very large degrees
of freedom therefore, the master equation approach cannot be useful. Following the special
operative technique introduced in [8], by tracing the degree of freedom of the environment
from density matrix

ρtot (t) = e−iHtot t ρtot (0)eiHtot t , (8)

we can get the exact non-Markovian dynamics of reduced density matrix for the system at
arbitrary finite temperatures. We assume that the initial density matrix for the total system
can be described by a pure and separable states as ρtot (0) = ρs(0) ⊗ ρb , where ρb refers to
the initial density operator of the single-mode bosonic thermal field which is represented
in a thermal equilibrium by the Boltzmann distribution as ρb = 1

Z
exp[−Hb/kBT ], with the

partition function Z = (1−exp[−2g0/kBT ])−1, where kB is Boltzmann’s constant which we
henceforth set to one. Two spin particles of the system are initially prepared in a normalized
state with maximum quantum correlation as

∣
∣ψs(0)

〉 = α|00〉 + β|11〉, (9)

it is easy to check that, the reduced density matrix for the system in the standard basis
|00〉, |01〉, |10〉, |11〉 has the form:

ρs(t) = 1

Z
Trb

[|α|2(e−iHtot t |00〉e−Hb/T 〈00|eiHtot t
)

+ |β|2(e−iHtot t |11〉e−Hb/T 〈11|eiHtot t
)

+ αβ∗(e−iHtot t |00〉e−Hb/T 〈11|eiHtot t
)

+ α∗β
(
e−iHtot t |11〉e−Hb/T 〈00|eiHtot t

)]
. (10)
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By converting the time evolution equation of the system under the action of the total Hamil-
tonian in a set of coupled non-commuting operator variable equations introduced in [8] we
can see that

e−iHtot t |00〉 = A(t)|00〉 + B(t)|01〉 + C(t)|10〉 + D(t)|11〉. (11)

Where coefficients A(t),B(t),C(t) and D(t) are functions of operators a and a† and do not
commute with each other. The Schrödinger equation for e−iHtot t |00〉, is

d

dt

(
e−iHtot t |00〉) = −iHtot

(
e−iHtot t |00〉), (12)

which by replacing Eq. (11), transforms to 4 coupled first-order differential equations of
non-commuting operator variables as

d

dt
A(t) = −i

{(
Jz − ε + 2g0a

†a
)
A(t) + ga†

(
B(t) + C(t)

)}
,

d

dt
B(t) = −i

{(−Jz + 2g0a
†a

)
B(t) + (J − 2iDz)C(t) + gaA(t) + ga†D(t)

}
,

d

dt
C(t) = −i

{(−Jz + 2g0a
†a

)
C(t) + (J + 2iDz)B(t) + gaA(t) + ga†D(t)

}
,

d

dt
D(t) = −i

{(
Jz + ε + 2g0a

†a
)
D(t) + ga

(
B(t) + C(t)

)}
.

(13)

From Eq. (11), the initial conditions are given by

A(0) = 1, B(0) = C(0) = D(0) = 0. (14)

Therefore, by finding the proper transformations of non-commuting operator variables, we
can rewrite Eq. (13) as the coupled differential equations of complex-number variables. In
this model, we can reach our goal by using transformations as

A(t) = e−2ig0(n̂−1)tA1(t),

B(t) = ae−2ig0(n̂−1)tB1(t),

C(t) = ae−2ig0(n̂−1)tC1(t),

D(t) = aae−2ig0(n̂−1)tD1(t).

(15)

Where operator variables A1(t),B1(t),C1(t) and D1(t) are functions of n̂ = a†a, and com-
mute with each other. Under these transformations the coupled differential equations of
non-commuting operator variables change to the coupled differential equations of complex-
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number and commuting operator variables as

d

dt
A1(t) = −i

{
(Jz − ε + 2g0)A1(t) + gn̂

(
B1(t) + C1(t)

)}
,

d

dt
B1(t) = −i

{−JzB1(t) + (J + 2iDz)C1(t) + gA1(t) + g(n̂ − 1)D1(t)
}
,

d

dt
C1(t) = −i

{−JzC1(t) + (J − 2iDz)B1(t) + gA1(t) + g(n̂ − 1)D1(t)
}
,

d

dt
D1(t) = −i

{
(−Jz + ε − 2g0)D1(t) + g

(
B1(t) + C1(t)

)}
.

(16)

By solving Eq. (13) in the usual way with initial condition A1(0) = 1, and B1(0) = C1(0) =
D1(0) = 0, we can evaluate the time evolution of the initial two spins state of |00〉. A similar
analysis as above can be made if the two spins is initially prepared in |11〉 state. Let

e−iHtot t |11〉 = Ã(t)|00〉 + B̃(t)|01〉 + C̃(t)|10〉 + D̃(t)|11〉. (17)

In this case, the proper transformations of non-commuting operator variables have the form:

Ã(t) = a†a†e−2ig0(n̂+1)t Ã1(t),

B̃(t) = a†e−2ig0(n̂+1)t B̃1(t),

C̃(t) = a†e−2ig0(n̂+1)t C̃1(t),

D̃(t) = e−2ig0(n̂+1)t D̃1(t).

(18)

Insertion of these transformations into Eq. (13) yields

d

dt
Ã1(t) = −i

{
(Jz − ε + 2g0)Ã1(t) + gn̂

(
B̃1(t) + C̃1(t)

)}
,

d

dt
B̃1(t) = −i

{−JzB̃1(t) + (J + 2iDz)C̃1(t) + g(n̂ + 2)Ã1(t) + gD̃1(t)
}
,

d

dt
C̃1(t) = −i

{−JzC̃1(t) + (J − 2iDz)B̃1(t) + g(n̂ + 2)Ã1(t) + gD̃1(t)
}
,

d

dt
D̃1(t) = −i

{
(Jz + ε − 2g0)D̃1(t) + g(n̂ + 1)

(
B̃1(t) + C̃1(t)

)}
.

(19)

We calculate all operations for initial state then add the DM interaction parameter Dz and
obtain transformed state or dynamics of this system in this case. So the density matrix with
DM interaction is

ρs(t) =

⎛

⎜
⎜
⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ∗
14 0 0 ρ44

⎞

⎟
⎟
⎠ , (20)
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where

ρ11 = 1

Z

∞∑

n=0

(|α|2Ã1(t)Ã
†
1(t) + (n + 1)(n + 2)|β|2A1(t)A

†
1(t)

)
e−2ng0/T ,

ρ14 = e4igt

Z

∞∑

n=0

αβ∗Ã1(t)D
†
1e

−2ng0/T ,

ρ22 = ρ23 = ρ32 = ρ33 = 1

Z

{

|β|2B1(t)B
†
1 (t)

+
∞∑

n=1

(|α|2nB̃1(t)B̃
†
1 (t) + (n + 1)|β|2B1(t)B

†
1 (t)

)
e−2ng0/T

}

,

ρ44 = 1

Z

{

|β|2D1(t)D
†
1(t)

(
1 + e−2g0/T

)

+
∞∑

n=2

(|α|2n(n − 1)D̃1(t)D̃
†
1(t) + |β|2D1(t)D

†
1(t)

)
e−2ng0/T

}

.

(21)

3 Dynamics of Quantum Correlations

3.1 Concurrence

To investigate the entanglement dynamics of our bipartite system, we apply Wootters con-
currence [17]. The concurrence can be calculated explicitly by the time-dependent density
matrix ρs(t) of the two spins. The quantum state Eq. (21) is entangled if and only if either
ρ22ρ33 < |ρ14|2 or ρ11ρ44 < |ρ23|2. Both conditions cannot hold simultaneously [18]. The
entanglement of this state is obtained as

C
(
ρs(t)

) = √
ρ11ρ44 + |ρ14| −

∣
∣√ρ11ρ44 − |ρ14|

∣
∣ − 2ρ22. (22)

In this section, we investigate concurrence for entangled state and demonstrate the properties
of variable DM coupling parameter Dz on concurrence. In Fig. 1, we calculate concurrence
with jz = j = 0.0 and g0 = g = 1.0 and figure out that by increasing the parameter Dz, the
concurrence increases.

3.2 Quantum Discord

Quantum discord introduced independently by Ollivier with Zurek and Henderson with Ve-
dral [2, 3] and it aims to capture all the non-classical correlations present in a system. So
quantum discord defined as the difference between total correlation and classical correlation.

D(ρ) = Itot (ρ) − Icc(ρ). (23)

Here, Itot (ρ), total correlation in a bipartite quantum state ρ is measured by quantum mutual
information given by

Itot (ρ) = S(ρA) + S(ρB) − S(ρ), (24)
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Fig. 1 The time evolution of the
concurrence versus t for initial
two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 0.0. Other
parameters are ε = 2.0,

g0 = g = 1.0, for
Dz = 2.0,Dz = 0.3

Fig. 2 The time evolution of the
quantum discord versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 0.0. Other
parameters are ε = 2.0,

g0 = g = 1.0, T = 2.0 for
Dz = 0.2,Dz = 3.0

where S(ρ) = −Tr(ρ logρ), is the von Neumann entropy, ρA = TrB(ρ), and ρB = TrA(ρ),
are the reduced density operators for subsystems A and B , respectively. And Icc(ρ), classical
correlation is measured by the following expression

Icc(ρ) = sup
{Λk }

I
(
ρ|{Λk}

)
, (25)

where the maximum is taken over all projective measurements performed locally on qubits,
described by a set of orthogonal projectors {Λk} = |i〉〈i|, k = 1,2.

Conditional density operator ρk associated with the measurement k state is:

pk := Tr
[
(I ⊗ Λk)ρ(I ⊗ Λk)

]
. (26)

In a bipartite quantum state with density matrix operator ρs(t) that includes two parts and
has the form of two-qubit X states [19]. With this, we obtain quantum discord for density
matrix with DM interaction parameter Dz Eq. (12) and investigate Dz, g and the influence of
temperature T on quantum discord. In Fig. 2, quantum discord for entangled state with given
parameters versus t for different values of Dz is plotted and it is found that by increasing
Dz the QD is increased but in Fig. 3, QD for separable state with given parameters versus
t for different values of Dz is plotted and it is figured out that by increasing Dz, the QD
is decreased and this implies that QD for entangled and separable states have inverse ratio.
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Fig. 3 The time evolution of the
quantum discord versus t for
initial two-qubit state
|ψs(0)〉 = |00〉 for J = 0.0 and
Jz = 0.0. Other parameters are
ε = 2.0, g0 = g = 1.0, T = 2.0
for Dz = 0.2,Dz = 4.0

Fig. 4 The time evolution of the
quantum discord versus t for
initial two-qubit state
|ψs(0)〉 = |00〉 for J = 0.0 and
Jz = 0.0. Other parameters are
ε = 2.0, g0 = 1.0, T = 2.0 and
Dz = 1.0 for g = 0.2, g = 2.0

Fig. 5 The time evolution of the
quantum discord versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 0.0. Other
parameters are ε = 2.0, g0 = 1.0
and Dz = 1.0 for g = 0.2 and
g = 2.0

In Fig. 4, QD for entangled state with given parameters versus t for different values of g

is plotted and it is found that by increasing g QD is increased. However in Fig. 5, QD for
separable state with given parameters versus t for different values of g is plotted and it
is seen that by increasing g, QD is decreased and we find out that QD for entangled and
separable states have inverse ratio. In Fig. 6, QD for entangled state and in Fig. 7, QD for
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Fig. 6 The time evolution of the
quantum discord versus T and t

for initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 1.0. Other
parameters are ε = 1.0,

g0 = g = 1.0 and Dz = 0.5

Fig. 7 The time evolution of the
quantum discord versus T and t

for initial two-qubit state
|ψs(0)〉 = |00〉 for J = 0.0 and
Jz = 1.0. Other parameters are
ε = 1.0, g0 = g = 1.0 and
Dz = 0.5

initial separable state with given parameters versus time and temperature T is plotted and it
is found by increasing T , quantum discord is decreased.

3.3 Quantum Dissonance

In this part, we study quantum correlation in separable systems called quantum dissonance
that is based on relative entropy [1]. Dissonance as a measure of non-classical correlation
without entanglement is defined as the distance from the closest separable state of the given
state to the closest classical state of the separable state. According to the above definition,
density matrix σ is said to be separable if it can be written as σ = Σipiρ

A
i ⊗ ρB

i , Σipi = 1,
pi ≥ 0, so that the dissonance is defined as

Q = min
χ∈σ

S(σ‖χ), (27)

where χ = ∑
kn

pk1...kn |k1 . . . kn〉〈k1 . . . kn| = ∑
−→
k

p−→
k
|−→k 〉〈−→k |, is the closest separable state

for N partite and Σ−→
k
|−→k 〉〈−→k |, is complete set of projectors [20]. In this relation we use the

quantum relative entropy:

S(x‖y) := tr(x logx − x logy). (28)

Which is a measure of distinguishable between quantum states. It is also worth noting that
the relative entropy function is asymmetric, that is, S(x‖y) �= S(y‖x).
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Fig. 8 The time evolution of the
quantum dissonance versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 0.0. Other
parameters are ε = 4.0,

g0 = g = 0.5 and Dz = 0.2 and
Dz = 0.4

Fig. 9 The time evolution of the
quantum dissonance versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 0.0. Other
parameters are ε = 4.0,

g0 = 0.5,Dz = 1 and g = 0.2
and g = 2.0

In this paper, we investigate dissonance versus Dz (the z-component of the DM interac-
tion), g (the bath-system coupling constant), T (temperate), and for density matrix Eq. (12)
the dissonance is equal to:

Q = −ρ11 log2 ρ11 − ρ14 log2 ρ14 − ρ33 log2 ρ33 − ρ44 log2 ρ44

+ 1

2
(ρ14 + ρ33 − A) log2

1

2
(ρ14 + ρ33 − A) + 1

2
(ρ14 + ρ33 + A) log2

1

2
(ρ14 + ρ33 + A)

+ 1

2
(ρ11 + ρ44 − B) log2

1

2
(ρ11 + ρ44 − B) + 1

2
(ρ11 + ρ44 + B) log2

1

2
(ρ11 + ρ44 + B),

(29)

where

A = √
ρ14ρ

∗
14 + 4ρ23ρ32 − 2ρ14ρ33 + ρ33ρ

∗
33,

and

B = √
ρ11ρ

∗
11 + 4ρ14ρ41 − 2ρ11ρ44 + ρ44ρ

∗
44.

In order to represent the properties of variable DM coupling parameter Dz on dissonance for
entangled state (Fig. 8), is plotted versus t and it is found that by increasing Dz dissonance
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Fig. 10 The time evolution of
the quantum dissonance versus T

for initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 1.0. Other
parameters are ε = 2.0,

g0 = g = 0.5, and Dz = 1.0

Fig. 11 The fidelity versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 1.0. Other
parameters are ε = 4.0,

g0 = g = 2.0 and μ0 = 0.5 for
Dz = 0.1 and Dz = 0.1

first is increased then reduced to zero. In Fig. 9, dissonance versus t for different values
of g is plotted for entangled state and it is inferred that by increasing g, the dissonance is
increased and in Fig. 10, dissonance versus t and temperature T is plotted for entangled
state that has a declining trend.

4 Teleportation of Qubit States via Two Coupled Spins

Quantum teleportation is about transferring quantum states from one particle to another at a
distance. Bennett et al. have shown this process for the first time in about fifteen years ago
[21]. For calculating teleportation we use a measure which is called fidelity. In this paper,
we discuss the effects of the Dz (the z-component of the DM interaction), g (the bath-
system coupling constant), T (temperate) and μ0 (magnetic field) on fidelity. By applying
these parameters to fidelity we want to control the teleportation process by using of the
noisy channel. We use the density matrix (11) as a channel to teleport the quantum state
|ψin〉 = sin( θ

2 )|0〉 + eiφ cos( θ
2 )|1〉. To do this, first we consider teleportation by using two-
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Fig. 12 The fidelity versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 1.0. Other
parameters are
ε = 2.0, g = 0.5,μ0 = 0.5 and
Dz = 1.0 for g = 1.0, g = 3.0

Fig. 13 The fidelity versus t for
initial two-qubit state
|ψs(0)〉 = 1√

2 (|00〉 + |11〉) for

J = 0.0 and Jz = 1.0. Other
parameters are
ε = 6.0, g0 = g = 1.0,μ0 = 0.5
and Dz = 0.1 for T = 0.2 and
T = 5.0

qubit state ρx as a channel:

ρx =

⎛

⎜
⎜
⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞

⎟
⎟
⎠ . (30)

In this case the output state is reduced to

ρout = Tr1,2

[
Uρin ⊗ ρxU

†
]
, (31)

where U is a unitary operator. The fidelity of the quantum teleportation measures how much
information is preserved and given by

F = 〈ψin|ρout |ψin〉, (32)

We get the fidelity for this channel in the following form:

F = 1

4

((
3 + cos(2θ)

)
ρ11 + 2 sin2(θ)

(
ρ14 + ρ22 + cos(2φ)(ρ23 + ρ32) + ρ33 + ρ41

)

+ (
3 + cos(2θ)

)
ρ44

)
. (33)
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In order to demonstrate the effects of different DM coupling parameters Dz on fidelity, in
Fig. 11, the quantum fidelity for initial two qubit entangled states versus t is plotted for
different values of Dz and the implication of this figure is that by increasing Dz the number
of oscillations is increased. In Fig. 12, fidelity for entangled state versus t for different values
of g is plotted and it is found that by increasing g, amplitude of oscillation is increased but
the number of oscillations is decreased. In Fig. 13, fidelity for entangled state versus t for
different values of temperature T is plotted and it can be inferred that by increasing T ,
the amplitude of oscillations is decreased. Finally, the effect of μ0 on fidelity is that by
increasing μ0 the number of oscillations is increased too much.

5 Conclusions

In summary, we have investigated the quantum discord and entanglement measures of con-
currence and quantum dissonance within two-qubit anisotropic XXZ Heisenberg model by
antisymmetric DM interaction tunable parameter, such as Dz influenced by a local external
magnetic field along the z-direction in the presence of spin bath. We found that by increas-
ing Dz the value of concurrence, quantum discord and quantum dissonance increases for
entangled state and decreases for separable state, and for g we get an inverse ratio for both
entangled and separable states. In addition, we found that increasing the value of T (temper-
ature) will reduce the amount of the concurrence, quantum discord and quantum dissonance.
We propose that in open quantum systems that we cannot reduce the devastating effects of
T and g by tuning Jz and Dz properly or exchanging the constituent material of the central
spins can improve quantities of the concurrence, quantum discord and dissonance. Finally,
we obtained the fidelity of this model and realized that Dz, μ0, g and T influenced on the
amplitude and oscillations of fidelity.
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