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Abstract We study dense coding under the condition that the sender’s encoding operations
be imperfect. In order to formally describe the effect of the imperfect encoding operations,
we use four kinds of quantum noise processes. In this way, the imperfect operation is the
corresponding perfect operation followed by a quantum noise process. We show the rela-
tion among the average probability of decoding the correct information, the non-maximally
entangled state, the imperfect encoding operations, and the receiver’s measurement basis.

Keywords Dense coding · Encoding operation · Non-maximally entanglement ·
Measurement

1 Introduction

Dense coding [1] is one of the most important applications of quantum entanglement [2],
the key resource of quantum information processing [3]. In the standard scheme of dense
coding [1], there are two communicating parties that we refer to as Alice and Bob. They
initially share an entangled pair of qubits. Alice first performs a quantum operation on her
qubit to encode 2 bits of information into the entangled pair. Then she sends her qubit to Bob
through a quantum channel. After receiving Alice’s qubit, Bob manipulates on both qubits
of the entangled pair to decode 2 bits of information. Thus, Alice has transmitted 2 bits of
information to Bob by sending only 1 qubit.

Many aspects of dense coding have been studied. Among these are generalizations to
non-maximally entangled pairs [4–6], to high dimensional quantum systems [6–9], to multi-
qubit entangled pairs [7–18], to deterministic dense coding [19–24], to controlled dense
coding [25–28], and to simultaneous dense coding [29].

Recently, Di Franco and Ballester investigated teleportation [30] in the case that the re-
ceiver’s conditional operations that he needs to perform on his/her qubit, in order to recon-
struct the original state to be teleported, is imperfect. They found that an optimization of the
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teleportation fidelity can be performed by properly replacing the Bell basis in the measure-
ment with an orthogonal non-maximally entangled basis [31].

Teleportation and dense coding are closely related [5, 32]. These two protocols both
use entanglement resource between a sender Alice and a receiver Bob. In the teleportation
protocol, Alice performs a Bell basis measurement while Bob performs a recovery operation.
In the dense coding protocol, Alice performs an encoding operation while Bob performs a
Bell basis measurement.

In this paper, we investigate dense coding in the case that Alice’s encoding operations
are imperfect. In our model, the result of an imperfect operation is described as the action
of a quantum noise process on the output state of the perfect operation. We consider four
kinds of quantum noise processes: the depolarizing channel, the bit flip channel, the phase
flip channel, and the bit-phase flip channel. We show the relation among the average proba-
bility of decoding the correct information, the non-maximally entangled state, the imperfect
encoding operations, and the receiver’s measurement basis. We also give Bob’s orthogonal
non-maximally entangled measurement basis which maximizes the probability of decoding
the correct information.

The remainder of the paper is organized as follows. In Sect. 2, we first describe our model
for the non-maximally entangled pairs, imperfect encoding operations and measurement
bases. In Sect. 3, Sect. 4, Sect. 5, Sect. 6, we use four kinds of quantum noise processes to
describe the imperfect encoding operations. Section 7 is a brief conclusion.

2 Model

In this section, we give the formal description of the entanglement resource, Alice’s imper-
fect encoding operations, and Bob’s measurement for our model.

According to the Schmidt decomposition [3], a pure non-maximally entangled pair of 2
qubits can be written as

∣
∣φ(E)

〉 = cos θ |00〉 + sin θ |11〉, (1)

where θ ∈ (0,π/4] is a parameter measuring the amount of entanglement. |φ(E)〉 reduces to
a Bell state when θ = π/4. In our model, the entangled state initially shared between Alice
and Bob is a pseudo-pure state, which is particularly interesting in the context of quantum
information processing with nuclear magnetic resonance (NMR) [33–39]. The pseudo-pure
state shared between Alice and Bob can be written as

ρ(E) = δ
∣
∣φ(E)

〉〈

φ(E)
∣
∣ + (1 − δ)

I

4
, (2)

where δ ∈ [0,1]. ρ(E) can be interpreted as a statistical mixture in which a fraction δ of the
qubits is in the pure state |φ(E)〉. ρ(E) reduces to the pure state |φ(E)〉 when δ = 1.

The four encoding operations that Alice uses to encode 2 bits of information are the Pauli
matrices:

I =
[

1 0
0 1

]

, Z =
[

1 0
0 −1

]

, X =
[

0 1
1 0

]

, Y =
[

0 −i

i 0

]

. (3)

The result of an imperfect encoding operation is described as the action of a quantum
noise process on the output state of the perfect operation. A quantum noise process E can
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be characterized in an operator-sum representation

E (σ ) =
∑

μ

KμσK†
μ, (4)

where σ is a density matrix, {Kμ} is the set of Kraus operators,
∑

KμK†
μ = I [3]. We

suppose that each encoding operation V ∈ {I,Z,X,Y } has different reliability, so their cor-
responding quantum noise process E V with Kraus operators {KV

μ } has different parameters.
This can be justified by the fact that different operations require different times to be per-
formed [31]. The output state of the encoding operation V is (V ⊗ I )ρ(E)(V † ⊗ I ), and the
state after the quantum noise process E V is

ρV = (

E V ⊗ I
)[

(V ⊗ I )ρ(E)
(

V † ⊗ I
)] =

∑

μ

(

KV
μ V ⊗ I

)

ρ(E)
(

V †KV †
μ ⊗ I

)

. (5)

After receiving Alice’s qubit, Bob measures both qubits in the following non-maximally
entangled orthonormal basis:

|φI 〉 = cosφ|00〉 + sinφ|11〉,
|φZ〉 = sinφ|00〉 − cosφ|11〉,
|φX〉 = cosφ′|01〉 + sinφ′|10〉,
|φY 〉 = sinφ′|01〉 − cosφ′|10〉,

(6)

where φ,φ′ ∈ [0,π/2]. Each measurement result |φV 〉 corresponds to Alice’s encoding op-
eration V . {|φV 〉}V =I,Z,X,Y reduces to the Bell basis when φ = φ′ = π/4. If Alice chooses
the encoding operation V according to her information to be encoded, the probability for
Bob to decode the correct information is

PV = tr
(|φV 〉〈φV |ρV

)

, (7)

and the average probability for Bob to decode the correct information is

P (av) = 1

4

∑

V

PV . (8)

We have given the formal description of the entanglement resource, Alice’s imperfect
encoding operations, and Bob’s measurement for our further discussion. For θ = π/4, δ = 1,
E = I , φ = φ = π/4, this model is the standard dense coding in the perfect setting.

3 Depolarizing Channel

The depolarizing channel is an important type of quantum noise [3]. Imagine we take a
single qubit, and with probability p that qubit is depolarized. That is, it is replaced by the
completely mixed state, I/2. With probability 1 −p the qubit is left untouched. The state of
the quantum system after the noise is

E (σ ) = p
I

2
+ (1 − p)σ, (9)
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where p ∈ [0,1]. In the operator-sum representation, the depolarizing channel has Kraus
operators

K1 =
√

1 − 3

4
pI, K2 =

√
p

2
Z, K3 =

√
p

2
X, K4 =

√
p

2
Y. (10)

Suppose that the parameter p of the depolarizing channel depends on the encoding oper-
ation V and is denoted as pV . The state after the imperfect encoding operation V is

ρV =
∑

μ

(

KV
μ V ⊗ I

)

ρ(E)
(

V †KV †
μ ⊗ I

)

=
(

1 − 3

4
pV

)

(V ⊗ I )ρ(E)
(

V † ⊗ I
) + pV

4
(ZV ⊗ I )ρ(E)

(

V †Z ⊗ I
)

+ pV

4
(XV ⊗ I )ρ(E)

(

V †X ⊗ I
) + pV

4
(YV ⊗ I )ρ(E)

(

V †Y ⊗ I
)

. (11)

If Alice chooses the encoding operation V according to her information to be encoded,
the probability for Bob to decode the correct information is

PV = tr
(|φV 〉〈φV |ρV

)

= δ

[(

1 − 3

4
pV

)
∣
∣〈φV |(V ⊗ I )

∣
∣φ(E)

〉∣
∣
2 + pV

4

∣
∣〈φV |(ZV ⊗ I )

∣
∣φ(E)

〉∣
∣
2

+ pV

4

∣
∣〈φV |(XV ⊗ I )

∣
∣φ(E)

〉∣
∣
2 + pV

4

∣
∣〈φV |(YV ⊗ I )

∣
∣φ(E)

〉∣
∣
2
]

+ 1 − δ

4
. (12)

For V = I,Z,X,Y , we have

PI = δ

[(

1 − 3

4
pI

)

cos2(φ − θ) + pI

4
cos2(φ + θ)

]

+ 1 − δ

4
,

PZ = δ

[(

1 − 3

4
pZ

)

sin2(φ + θ) + pZ

4
sin2(φ − θ)

]

+ 1 − δ

4
,

PX = δ

[(

1 − 3

4
pX

)

sin2
(

φ′ + θ
) + pX

4
sin2

(

φ′ − θ
)
]

+ 1 − δ

4
,

PY = δ

[(

1 − 3

4
pY

)

cos2
(

φ′ − θ
) + pY

4
cos2

(

φ′ + θ
)
]

+ 1 − δ

4
.

(13)

The average probability for Bob to decode the correct information is

P (av) = 1

4

∑

V

PV

= 1

4
+ 1

16
δ
{

4 −
∑

pV + cos 2θ
[

(pZ − pI ) cos 2φ + (pX − pY ) cos 2φ′]

+ 2 sin 2θ
[

(2 − pI − pZ) sin 2φ + (2 − pX − pY ) sin 2φ′]
}

. (14)

The optimal values of φ and φ′ to maximize the value of P (av) is summarized in Table 1.



Int J Theor Phys (2013) 52:3779–3789 3783

Table 1 The optimal values of φ and φ′ to maximize the value of P (av) (Depolarizing channel)

The values of θ,pI ,pZ,pX,pY The optimal values of φ and φ′

θ = π/4 (maximal entanglement) φ = φ′ = π/4 (Bell measurement)

θ �= π/4 (non-maximal
entanglement)

pI = pZ , pX = pY φ = φ′ = π/4 (Bell measurement)

pI = pZ , pX �= pY φ = π/4

tan 2φ′ = 4−2(pX+pY )
pX−pY

tan 2θ

pI �= pZ , pX = pY tan 2φ = 4−2(pI +pZ)
pZ−pI

tan 2θ

φ′ = π/4

pI �= pZ , pX �= pY tan 2φ = 4−2(pI +pZ)
pZ−pI

tan 2θ

tan 2φ′ = 4−2(pX+pY )
pX−pY

tan 2θ

In the case where θ = π/4, namely Alice and Bob share a maximally entangled pair, the
maximal value of P (av) is reached when φ = φ′ = π/4. That is to say, the Bell measurement
is optimal.

In the case where θ �= π/4,pI = pZ and pX = pY , the maximal value of P (av) is reached
when φ = φ′ = π/4. The Bell measurement is optimal.

In the case where θ �= π/4,pI = pZ and pX �= pY , the maximal value of P (av) is reached
when φ = π/4 and tan 2φ′ = [4 − 2(pX + pY )] tan 2θ/(pX − pY ).

In the case where θ �= π/4,pI �= pZ and pX = pY , the maximal value of P (av) is reached
when tan 2φ = [4 − 2(pI + pZ)] tan 2θ/(pZ − pI ) and φ′ = π/4.

In the case where θ �= π/4,pI �= pZ and pX �= pY , the maximal value of P (av) is
reached when tan 2φ = [4 − 2(pI + pZ)] tan 2θ/(pZ − pI ) and tan 2φ′ = [4 − 2(pX +
pY )] tan 2θ/(pX − pY ).

The behavior of P (av) for δ = 1,pI = 0,pZ = pX = pY , and for the optimal values of φ

and φ′, against pZ and θ , is presented in Fig. 1.

4 Bit Flip Channel

The bit flip channel flips the state of a qubit from |0〉 to |1〉 (and vice versa) with probability
p [3]. The state of the quantum system after the noise is

E (σ ) = (1 − p)σ + pXσX, (15)

where p ∈ [0,1]. In the operator-sum representation, the bit flip channel has Kraus operators

K1 = √

1 − pI, K2 = √
pX. (16)

Suppose that the parameter p of the bit flip channel depends on the encoding operation
V and is denoted as pV . The state after the imperfect encoding operation V is

ρV =
∑

μ

(

KV
μ V ⊗ I

)

ρ(E)
(

V †KV †
μ ⊗ I

)

= (1 − pV )(V ⊗ I )ρ(E)
(

V † ⊗ I
) + pV (XV ⊗ I )ρ(E)

(

V †X ⊗ I
)

. (17)
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Fig. 1 The behavior of P (av) for δ = 1, pI = 0, pZ = pX = pY , and for the optimal values of φ and φ′ ,
against pZ and θ , in the case where the quantum noise process describing the imperfect encoding operation
is a depolarizing channel

If Alice chooses the encoding operation V according to her information to be encoded,
the probability for Bob to decode the correct information is

PV = tr
(|φV 〉〈φV |ρV

)

= δ
[

(1 − pV )
∣
∣〈φV |(V ⊗ I )

∣
∣φ(E)

〉∣
∣
2 + pV

∣
∣〈φV |(XV ⊗ I )

∣
∣φ(E)

〉∣
∣
2] + 1 − δ

4
. (18)

For V = I,Z,X,Y , we have

PI = δ(1 − pI ) cos2(φ − θ) + 1 − δ

4
,

PZ = δ(1 − pZ) sin2(φ + θ) + 1 − δ

4
,

PX = δ(1 − pX) sin2
(

φ′ + θ
) + 1 − δ

4
,

PY = δ(1 − pY ) cos2
(

φ′ − θ
) + 1 − δ

4
.

(19)

The average probability for Bob to decode the correct information is

P (av) = 1

4

∑

V

PV

= 1

4
+ 1

8
δ
{

2 −
∑

pV + cos 2θ
[

(pZ − pI ) cos 2φ + (pX − pY ) cos 2φ′]

+ sin 2θ
[

(2 − pI − pZ) sin 2φ + (2 − pX − pY ) sin 2φ′]
}

. (20)
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Table 2 The optimal values of φ and φ′ to maximize the value of P (av) (Bit flip channel)

The values of θ,pI ,pZ,pX,pY The optimal values of φ and φ′

θ = π/4 (maximal entanglement) φ = φ′ = π/4 (Bell measurement)

θ �= π/4
(non-maximal entanglement)

pI = pZ , pX = pY φ = φ′ = π/4 (Bell measurement)

pI = pZ , pX �= pY φ = π/4

tan 2φ′ = 2−pX−pY
pX−pY

tan 2θ

pI �= pZ , pX = pY tan 2φ = 2−pI −pZ
pZ−pI

tan 2θ

φ′ = π/4

pI �= pZ , pX �= pY tan 2φ = 2−pI −pZ
pZ−pI

tan 2θ

tan 2φ′ = 2−pX−pY
pX−pY

tan 2θ

The optimal values of φ and φ′ to maximize the value of P (av) is summarized in Table 2.
In the case where θ = π/4, namely Alice and Bob share a maximally entangled pair, the

maximal value of P (av) is reached when φ = φ′ = π/4. That is to say, the Bell measurement
is optimal.

In the case where θ �= π/4,pI = pZ and pX = pY , the maximal value of P (av) is reached
when φ = φ′ = π/4. The Bell measurement is optimal.

In the case where θ �= π/4,pI = pZ and pX �= pY , the maximal value of P (av) is reached
when φ = π/4 and tan 2φ′ = (2 − pX − pY ) tan 2θ/(pX − pY ).

In the case where θ �= π/4,pI �= pZ and pX = pY , the maximal value of P (av) is reached
when tan 2φ = (2 − pI − pZ) tan 2θ/(pZ − pI ) and φ′ = π/4.

In the case where θ �= π/4,pI �= pZ and pX �= pY , the maximal value of P (av) is
reached when tan 2φ = (2−pI −pZ) tan 2θ/(pZ −pI ) and tan 2φ′ = (2−pX −pY ) tan 2θ/

(pX − pY ).
The behavior of P (av) for δ = 1,pI = 0,pZ = pX = pY , and for the optimal values of φ

and φ′, against pZ and θ , is presented in Fig. 2.

5 Phase Flip Channel

The phase flip channel flips the sign of |1〉 to give −|1〉 with probability p, and leaves |0〉
unchanged [3]. The state of the quantum system after the noise is

E (σ ) = (1 − p)σ + pZσZ, (21)

where p ∈ [0,1]. In the operator-sum representation, the phase flip channel has Kraus oper-
ators

K1 = √

1 − pI, K2 = √
pZ. (22)

Suppose that the parameter p of the phase flip channel depends on the encoding operation
V and is denoted as pV . The state after the imperfect encoding operation V is

ρV =
∑

μ

(

KV
μ V ⊗ I

)

ρ(E)
(

V †KV †
μ ⊗ I

)

= (1 − pV )(V ⊗ I )ρ(E)
(

V † ⊗ I
) + pV (ZV ⊗ I )ρ(E)

(

V †Z ⊗ I
)

. (23)
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Fig. 2 The behavior of P (av) for δ = 1, pI = 0, pZ = pX = pY , and for the optimal values of φ and φ′ ,
against pZ and θ , in the case where the quantum noise process describing the imperfect encoding operation
is a bit flip channel

If Alice chooses the encoding operation V according to her information to be encoded,
the probability for Bob to decode the correct information is

PV = tr
(|φV 〉〈φV |ρV

)

= δ
[

(1 − pV )
∣
∣〈φV |(V ⊗ I )

∣
∣φ(E)

〉∣
∣
2 + pV

∣
∣〈φV |(ZV ⊗ I )

∣
∣φ(E)

〉∣
∣
2] + 1 − δ

4
. (24)

For V = I,Z,X,Y , we have

PI = δ
[

(1 − pI ) cos2(φ − θ) + pI cos2(φ + θ)
] + 1 − δ

4
,

PZ = δ
[

(1 − pZ) sin2(φ + θ) + pZ sin2(φ − θ)
] + 1 − δ

4
, (25)

PX = δ
[

(1 − pX) sin2
(

φ′ + θ
) + pX sin2

(

φ′ − θ
)] + 1 − δ

4
,

PY = δ
[

(1 − pY ) cos2
(

φ′ − θ
) + pY cos2

(

φ′ + θ
)] + 1 − δ

4
.

The average probability for Bob to decode the correct information is

P (av) = 1

4

∑

V

PV

= 1

4
+ 1

4
δ
{

1 + sin 2θ
[

(1 − pI − pZ) sin 2φ + (1 − pX − pY ) sin 2φ′]}. (26)
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Table 3 The optimal values of φ and φ′ to maximize the value of P (av) (Phase flip channel or Bit-phase flip
channel)

The values of pI ,pZ,pX,pY Optimal values of φ and φ′

pI + pZ � 1, pX + pY � 1 φ = π/4, φ′ = π/4 (Bell measurement)

pI + pZ � 1, pX + pY > 1 φ = π/4, φ′ = 0

pI + pZ > 1, pX + pY � 1 φ = 0, φ′ = π/4

pI + pZ > 1, pX + pY > 1 φ = 0, φ′ = 0

Fig. 3 The behavior of P (av) for δ = 1,pI = 0,pZ = pX = pY , and for the optimal values of φ and φ′ ,
against pZ and θ , in the case where the quantum noise process describing the imperfect encoding operation
is a phase flip channel or a bit-phase flip channel

The optimal values of φ and φ′ to maximize the value of P (av) is summarized in Table 3.
In the case where pI + pZ � 1 and pX + pY � 1, the maximal value of P (av) is reached

when φ = φ′ = π/4. That is to say, the Bell measurement is optimal.
In the case where pI + pZ � 1 and pX + pY > 1, the maximal value of P (av) is reached

when φ = π/4 and φ′ = 0.
In the case where pI + pZ > 1 and pX + pY � 1, the maximal value of P (av) is reached

when φ = 0 and φ′ = π/4.
In the case where pI + pZ > 1 and pX + pY > 1, the maximal value of P (av) is reached

when φ = φ′ = 0.
The behavior of P (av) for δ = 1,pI = 0,pZ = pX = pY , and for the optimal values of φ

and φ′, against pZ and θ , is presented in Fig. 3.
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6 Bit-Phase Flip Channel

The bit-phase flip channel is a combination of a bit flip and a phase flip [3]. The state of the
quantum system after the noise is

E (σ ) = (1 − p)σ + pYσY, (27)

where p ∈ [0,1]. In the operator-sum representation, the bit-phase flip channel has Kraus
operators

K1 = √

1 − pI, K2 = √
p Y. (28)

Suppose that the parameter p of the bit-phase flip channel depends on the encoding
operation V and is denoted as pV . The state after the imperfect encoding operation is

ρV =
∑

μ

(

KV
μ V ⊗ I

)

ρ(E)
(

V †KV †
μ ⊗ I

)

= (1 − pV )(V ⊗ I )ρ(E)
(

V † ⊗ I
) + pV (YV ⊗ I )ρ(E)

(

V †Y ⊗ I
)

. (29)

If Alice chooses the encoding operation V according to her information to be encoded,
the probability for Bob to decode the correct information is

PV = tr
(|φV 〉〈φV |ρV

)

= δ
[

(1 − pV )
∣
∣〈φV |(V ⊗ I )

∣
∣φ(E)

〉∣
∣
2 + pV

∣
∣〈φV |(YV ⊗ I )

∣
∣φ(E)

〉∣
∣
2] + 1 − δ

4
. (30)

The average probability for Bob to decode the correct information is

P (av) = 1

4

∑

V

PV

= 1

4
+ 1

4
δ
{

1 + sin 2θ
[

(1 − pI − pZ) sin 2φ + (1 − pX − pY ) sin 2φ′]}. (31)

Equation (31) is the same as Eq. (26), so the behavior of P (av) is the same as the phase
flip channel.

7 Conclusion

In this paper, we have investigated the dense coding process with imperfect encoding oper-
ations. We characterize the imperfect encoding operation as the perfect encoding operation
followed by the quantum noise process. Four kinds of quantum noise processes have been
considered. We have shown the relation among the average probability of decoding the cor-
rect information, the non-maximally entangled state, the imperfect encoding operations, and
the receiver’s measurement basis. We have gave the receiver’s orthogonal non-maximally
entangled measurement basis which maximizes the probability of decoding the correct in-
formation.
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