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Abstract The paper is devoted to quantization of extensive games with the use of both the
Marinatto-Weber and the Eisert-Wilkens-Lewenstein concept of quantum game. We revise
the current conception of quantum ultimatum game and we show why the proposal is unac-
ceptable. To support our approach, we present a new idea of the quantum ultimatum game.
Our scheme also makes a point of departure for a general protocol for quantizing extensive
games.

Keywords Quantum game · Extensive game · Nash equilibrium

1 Introduction

During the last thirteen years of research into quantum games the theory has been already
extended beyond 2 × 2 games. Since the majority of noncooperative conflict problems are
described by games in extensive form, it is interesting to place extensive games in the quan-
tum domain. Although there is still no commonly accepted idea of how to play quantum
extensive games, we have proved in [1] that it is possible to use the framework [2] of strate-
gic quantum game to get some insight into quantum extensive games. Namely, we have
shown that a Hilbert space H = C

2 ⊗ C
2 ⊗ C

2, a unit vector |ψin〉 ∈ H , the collection of
subsets {Uj }j=1,2,3 of SU(2), and appropriately defined functionals E1 and E2 express the
normal representation of a two stage sequential game. Moreover, it allows us to get results
inaccessible in the game played classically. In this paper, the above-mentioned quantum
computing description will be used to a two proposal variant of the ultimatum game [3]. It is
a game in which two players take part. The first player chooses one of two proposals how to
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divide a fixed amount of good. Then the second player either accepts or rejects the proposal.
In the first case, each player receives the part of goods according to player 1’s proposal. In
the second case, the players receive nothing. A game-theoretic analysis shows that player 1
is in a better position. Since player 2’s rational move is to accept each proposal, player 1’s
rational move is to choose a proposal of maximal payoff for her. As we will show in this
paper, the Eisert-Wilkens-Lewenstein (EWL) approach [4] as well as the Marinatto-Weber
(MW) approach [5] can change the scenario of the ultimatum game, significantly improv-
ing the strategic position of player 2. Our paper also provides an argument indicating that
the previous idea [6] of quantum ultimatum game is not sufficient to describe the game in
the quantum domain. We will explain that, in fact, the formerly proposed protocol does not
quantize the ultimatum game but some other kind of 2 × 2 game. The last part of the paper
is devoted to drawing a game tree of the quantum ultimatum game, where we provide the
procedure how to determine the game tree when the game is played according to the MW
approach.

2 Preliminaries to Game Theory

Definitions in the preliminaries are based on [7]. This section starts with the definition of
a finite extensive game.

Definition 1 Let the following components be given.

– A finite set N = {1,2, . . . , n} of players.
– A set H of finite sequences that satisfies the following two properties:

1. the empty sequence ∅ is a member of H ;
2. if (ak)k=1,2,...,K ∈ H and K > 1 then (ak)k=1,2,...,K−1 ∈ H .

Each member of H is a history and each component of a history is an action taken
by a player. A history (a1, a2, . . . , aK) ∈ H is terminal if there is no aK+1 such that
(a1, a2, . . . , aK, aK+1) ∈ H . The set of actions available after the nonterminal history h

is denoted A(h) = {a: (h, a) ∈ H } and the set of terminal histories is denoted Z.
– The player function P :H \ Z → N ∪ {c} that points to a player who takes an action after

the history h. If P (h) = c then chance (the chance-mover) determines the action taken
after the history h.

– A function f that associates with each history h for which P (h) = c an independent
probability distribution f (·|h) on A(h).

– For each player i ∈ N a partition Ii of {h ∈ H \ Z : P (h) = i} with the property that for
each Ii ∈ Ii and for each h, h′ ∈ Ii an equality A(h) = A(h′) := A(Ii) is fulfilled. Every
information set Ii of the partition corresponds to the state of player’s knowledge. When
the player makes move after certain history h belonging to Ii , she knows that the course
of events of the game takes the form of one of histories being part of this information set.
She does not know, however, if it is the history h or the other history from Ii .

– For each player i ∈ N a utility function ui :Z → R which assigns a number (payoff) to
each of the terminal histories.

A six-tuple (N,H,P,f, {Ii}, {ui}) is called a finite extensive game.

Our deliberations focus on games with perfect recall (although Definition 1 defines ex-
tensive games with imperfect recall as well)—this means games in which at each stage every
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player remembers all the information about a course of the game that she knew earlier (see
[7] and [8] to learn about formal description of this feature).

The notions: action and strategy mean the same in static games, because the players
choose their actions once and simultaneously. In the majority of extensive games a player
can make her decision about an action depending on all the actions taken previously by
herself and also by all other players. In other words, players can make some plans of actions
at their disposal such that these plans point out to a specific action depending on the course
of a game. Such a plan is defined as a strategy in an extensive game.

Definition 2 A pure strategy si of a player i in a game (N,H,P,f, {Ii}, {ui}) is a function
that assigns an action in A(Ii) to each information set Ii ∈ I .

Like in the theory of strategic games, a mixed strategy ti of a player i in an extensive
game is a probability distribution over the set of player i’s pure strategies. Therefore, pure
strategies are of course special cases of mixed strategies and from this place whenever we
shall write strategy without specifying that it is either pure or mixed, this term will cover
both cases. Let us define an outcome O(s) of a strategy profile s = (s1, s2, . . . , sn) in an
extensive game without chance moves to be a terminal history that results when each player
i ∈ N follows the plan of si . More formally, O(s) is the history (a1, a2, . . . , aK) ∈ Z such
that for 0 ≤ k < K we have sP (a1,a2,...,ak)(a1, a2, . . . , ak) = ak+1. If s implies a history that
contains chance moves, the outcome O(s) is an appropriate probability distribution over
histories generated by s.

Definition 3 Let an extensive game Γ = (N,H,P, {Ii}, {ui}) be given. The normal repre-
sentation of Γ is a strategic game (N, {Si}, {u′

i}) in which for each player i ∈ N :

– Si is the set of pure strategies of a player i in Γ ;
– u′

i :
∏

i∈N Si → R is defined as u′
i (s) := ui(O(s)) for every s ∈ ∏

i∈N Si and i ∈ N .

One of the most important notions in game theory is a notion of an equilibrium introduced
by John Nash in [9]. A Nash equilibrium is a profile of strategies where the strategy of each
player is optimal if the choice of her opponents is fixed. In other words, in an equilibrium
none of the players has any reason to unilaterally deviate from the equilibrium strategy.
A precise formulation is as follows:

Definition 4 Let (N, {Si}I∈N, {ui}i∈N) be a strategic game. A strategy profile (t∗1 , . . . , t∗n ) is
a Nash equilibrium (NE) if for each player i ∈ N and for all si ∈ Si

ui

(
t∗i , t∗−i

) ≥ ui

(
si, t

∗
−i

)
, where t∗−i = (

t∗1 , . . . , t∗i−1, t
∗
i+1, . . . , t

∗
n

)
. (1)

A Nash equilibrium in an extensive game with perfect recall is a Nash equilibrium of
its normal representation, hence Definition 4 applies to strategic games as well as extensive
ones.

3 The Ultimatum Game

The ultimatum game is a problem in which two players face a division of some amount €
of money. The first player makes the second one a proposal of how to divide € between
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Fig. 1 A two proposal ultimatum game Γ1: an extensive form (a) and a normal form (b)

them. Then the second player has to decide either accept or reject that proposal. The accep-
tance means each player receives a part of € according to the first player’s proposal. If the
second player rejects the proposal, each player receives nothing. Let us consider the vari-
ant of the ultimatum game in which player 1 has two proposals to share €: a fair division
uf = (€/2,€/2) and unfair one uu = (δ€, (1 − δ)€), where the δ is a fixed factor such that
1/2 < δ < 1. This problem is an extensive game with perfect information that takes the form

Γ1 = ({1,2},H,P, {Ii}, u
)

(2)

with components defined as follows:

– H = {∅, c0, c1, (c0, d0), (c0, d1), (c1, e0), (c1, e1)};
– P (∅) = 1, P (c0) = P (c1) = 2;
– I1 = {∅}, I2 = {{(c0)}, {(c1)}};
– u(c0, d0) = (€/2,€/2), u(c1, e0) = (δ€, (1 − δ)€), u(c0, d1) = u(c1, e1) = (0,0).

The extensive and the normal representation of Γ1 are shown in Fig. 1 (notation diej means
the strategy that specifies action di (ej ) at the first (second) information set of the second
player). Equilibrium analysis of the normal representation gives us three pure Nash equi-
libria: (c0, d0e1), (c1, d0e0) and (c1, d1e0). There are also mixed equilibria: a profile where
player 1 chooses c0 and player 2 chooses d0e0 with probability p ≤ 1/(2δ) and d0e1 with
probability 1 − p, and a profile where player 1 decides to play c1 and player 2 chooses any
probability distribution over strategies d0e0 and d1e0. However, we can put these ones aside
since both mixed equilibria generate the same utility outcomes as the pure ones: (€/2,€/2)

and (δ€, (1 − δ)€), respectively. The key feature that makes the game Γ1 so curious is that
only equilibrium profile (c1, d0e0) with the unfair outcome (δ€, (1 − δ)€) is a reason-
able scenario among all the equilibria of the ultimatum game (many experiments show that
people are inclined to choose fair division (€/2,€/2), however we stick to the basic as-
sumption of game theory that players are striving to maximize their payoffs). The strategy
combination (c1, d0e0) is the unique equilibrium that is subgame perfect—the well-known
equilibrium refinement formulated by Selten [12]. It is a profile of strategies that induces a
Nash equilibrium in every subgame (there are three subgames in Γ1: the entire game, a game
after the action c0 and a game after the action c1). The subgame perfection rejects equilibria
that are not credible. Let us consider, for example, the profile (c0, d0e1). Here, the strategy
d0e1 of player 2 demands action e1 when player 1 chooses c1. However, when c1 occurs, a
rational move of player 2 is e0. Similar analysis shows that also profile (c1, d1e0) is not a
subgame perfect equilibrium. Note that we can easily determine subgame perfect equilibria
in any two stage extensive game with perfect information (or even in a wider class of exten-
sive games) through an analysis of its normal representation. In the game Γ1 an action taken



3252 Int J Theor Phys (2014) 53:3248–3261

by player 1 determines a subgame in which only player 2 makes a move. Thus a subgame
perfect equilibrium in Γ1 is a Nash equilibrium with a property that a strategy of player 2
is the best response to every strategy of player 1 (i.e., a strategy that weakly dominates the
others). We will take advantage of this fact in the further part of the paper.

4 Criticism of the Previous Approach to Quantum Ultimatum Game

A misrepresentation of the classical ultimatum game is the source of its incorrect quantum
representation in [6]. The Author describes the ultimatum problem as a 2 × 2 game and
then applies the MW and EWL schemes to construct the quantum game. However, as we
have seen in Fig. 1b, only dimension 2 × 4 is proper to represent the ultimatum game in
normal form. A hypothetical case of the ultimatum game in which player 2 has only two
strategies considered by the Author of [6] implies that player 2 is deprived of capability
to make her move conditioned on the action of the first player. That is tantamount to an
event where the players take their actions at the same time or one of the players chooses
her action as the second but she does not have any information about an action taken by her
opponent. It does not correspond to a description of the ultimatum game where the second
player knows a proposal of her opponent and makes her action depending on the move of the
first player. Although the player 2 has only two actions: accept or reject in the two-proposal
ultimatum game, in fact she has four pure strategies defined as her plans of an action at each
of her information sets. Therefore, a 2×2 strategic game cannot depict the ultimatum game.
Consequently, the MW and the EWL approach used for quantization of a 2 × 2 game cannot
produce a quantum version of this game; neither of these quantum realizations contains the
classical ultimatum game.

5 The Quantum Ultimatum Game Obtained by Quantization of the Normal
Representation of the Classical Game

First, let us remind the protocol for playing quantum games defined in [1]. It is a six-tuple

Γ QI = (
H ,N, |ψin〉, ξ, {Uj }, {Ei}

)
, (3)

where the components are defined as follows:

– H is a complex Hilbert space (C2)⊗m with an orthonormal basis B.
– N is a set of players with the property that |N | ≤ m.
– |ψin〉 is the initial state of a system of m qubits |ϕ1〉, |ϕ2〉, . . . , |ϕm〉.
– ξ : {1,2, . . . ,m} → N is a surjective mapping. A value ξ(j) indicates a player who carries

out a unitary operation on a qubit |ϕj 〉.
– For each j ∈ {1,2, . . . ,m} the set Uj is a subset consisting of unitary operators from the

group SU(2) that are available for a qubit j . A (pure) strategy of a player i is a map τi that
assigns a unitary operation Uj ∈ Uj to a qubit |ϕj 〉 for every j ∈ ξ−1(i). The final state
|ψfin〉 when the players have performed their strategies on corresponding qubits is defined
as

|ψfin〉 := (τ1, τ2, . . . , τn)|ψin〉 =
⊗

i∈N

⊗

j∈ξ−1(i)

Uj |ψin〉. (4)
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– For each i ∈ N the map Ei is a utility (payoff) functional that specifies a utility for the
player i. The functional Ei is defined by the formula

Ei =
∑

|b〉∈B

vi(b)
∣
∣〈b|ψfin〉

∣
∣2

, where vi(b) ∈ R. (5)

The above scheme is adapted for extensive games with two available actions at each infor-
mation set so that we could use only qubits for convenience. Any classical game richer in
actions can be transferred to quantum domain by using quantum objects of higher dimen-
sionality.

The idea framed in [1] is based on identifying unitary operators performed on a qubit with
actions chosen at an information set of classical game. Therefore, three qubits are required to
express the ultimatum game in quantum information language. Since the first player has one
information set and the second player has two ones, player 1 performs a unitary operation on
only one qubit and player 2 operates on the rest. Like in [6] we examine the two approaches:
the MW approach and the EWL approach to quantizing Γ1.

5.1 The MW Approach

Let us consider the following six-tuple

Γ MW
1 = (

Hc, {1,2}, |ψin〉, ξ,
{{σ0, σ1}i

}
, {Ei}

)
, (6)

where

– Hc is a Hilbert space (C2)⊗3 with the computational basis states |x1, x2, x3〉, xj = 0,1;
– the initial state |ψin〉 is a general pure state of three qubits

|ψin〉 =
∑

x∈{0,1}3

λx |x〉, where λx ∈ C and
∑

x∈{0,1}3

|λx |2 = 1; (7)

– the map ξ on {1,2,3} given by the formula ξ(j) = { 1, if j=1;
2, if j∈{2,3}.

– σ0 = ( 1 0
0 1

)
and σ1 = ( 0 1

1 0

)
;

– the payoffs functionals Ei , i = 1,2, are of the form

E1 = 1

2
€

∑

x3

∣
∣〈00x3|ψfin〉

∣
∣2 + δ€

∑

x2

∣
∣〈1x20|ψfin〉

∣
∣2; (8)

E2 = 1

2
€

∑

x3

∣
∣〈00x3|ψfin〉

∣
∣2 + (1 − δ)€

∑

x2

∣
∣〈1x20|ψfin〉

∣
∣2

. (9)

By definition of ξ in Γ MW
1 , player 1 acts on the first qubit and treats the operators σ 1

0 and σ 1
1

as her strategies. Player 2 acts on the second and the third qubit, hence her pure strategies
are σ 2

0 ⊗ σ 3
0 , σ 2

0 ⊗ σ 3
1 , σ 2

1 ⊗ σ 3
0 and σ 2

1 ⊗ σ 3
1 (the upper index denotes a qubit on which an

operation is made).
Let us determine for each profile (σ 1

κ1
, (σ 2

κ2
, σ 3

κ3
)), where κ1, κ2, κ3 ∈ {0,1}, the corre-

sponding expected utility Ei by using formulae (4)–(5) and the specification of (6). We
illustrate it by calculating Ei(σ

1
0 , (σ 2

1 , σ 3
0 )) for i = 1,2. The initial state after choosing the

profile (σ 1
0 , (σ 2

1 , σ 3
0 )) by the players takes the form |ψfin〉 = σ 1

0 ⊗ σ 2
1 ⊗ σ 3

0 |ψin〉. Thus, we
have

|ψfin〉 =
∑

x1,x2,x3∈{0,1}
λx1,x2,x3 |x1, x2, x3〉, (10)
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Fig. 2 The MW approach to the normal representation of Γ1

where x2 is the negation of x2. Putting the final state (10) into (8) we obtain

E1

(
σ 1

0 ,
(
σ 2

1 , σ 3
0

)) = 1

2
€

(|λ010|2 + |λ011|2
) + δ€

(|λ100|2 + |λ110|2
)
. (11)

Obviously, we have (1 − δ)€ instead of δ€ in the expected utility E2. Therefore, the payoff
vector (E1,E2) associated with (σ 1

0 , (σ 2
1 , σ 3

0 )) is uf(|λ010|2 + |λ011|2)+uu(|λ100|2 + |λ110|2)
where uf = (€/2,€/2) and uu = (δ€, (1 − δ)€). Payoff vectors (E1,E2) for all possible
profiles (σ 1

κ1
, (σ 2

κ2
, σ 3

κ3
)) are placed in the matrix representation in Fig. 2 (for convenience

we convert binary indices (x1, x2, x3)2 of λx1,x2,x3 to the decimal numeral system).
Let us examine the game in Fig. 2 to answer to what degree passing to the quantum

domain may influence the result of the game. Note first that (6) is indeed the quantum game
in the spirit of the MW approach—the normal representation of Γ1 can be obtained from
Γ MW

1 by putting |λ0|2 = 1 and |λx |2 = 0 for x = 1,2, . . . ,7, i.e., if we put |ψin〉 = |000〉.
More generally: Γ MW

1 coincides to a game isomorphic to the normal representation of Γ1 if
we put as |ψin〉 any state |x1, x2, x3〉 of the basis. Then Γ MW

1 is equal to Γ1 up to the order
of players’ strategies.

As we learned in Sect. 3, the game Γ1 favors player 1. Thus an interesting problem is
to look for another form of the initial state (7) that imply fairer solution unavailable in the
game Γ1. Let us study first

|ψin1〉 = 1

2

(|000〉 + |001〉 + |100〉 + |110〉). (12)

Through the substitution |λ0|2 = |λ1|2 = |λ4|2 = |λ6|2 = 1/4 (the other squares of the mod-
ules equal 0) to entries of the normal representation in Fig. 2 we obtain a game where the
only reasonable equilibrium profile is σ 1

0 ⊗ σ 2
0 ⊗ σ 3

0 with corresponding expected utility
vector (E1,E2) = (uf +uu)/2. The other pure equilibria: σ 1

1 ⊗σ 2
0 ⊗σ 3

1 and σ 1
1 ⊗σ 2

1 ⊗σ 3
1 —

both generating the utility outcome (uf + uu)/4 are obviously worse for both players, thus
they won’t be chosen. Moreover, σ 1

0 ⊗ σ 2
0 ⊗ σ 3

0 imitate a subgame perfect equilibrium—the
strategy of the second player σ 2

0 ⊗ σ 3
0 is the best response to any strategy of the first player.

To sum up, initial state (12) is better for player 2 in comparison with the classical case.
It turns out that the answer to the question: is there a state |ψin〉 allowing to obtain a fair

division of €, is positive as well. Let us consider any state of the form

|ψin2〉 =
√

1

2δ′ |000〉 +
√

1 − 1

2δ′ |001〉, where
1

2
< δ < δ′ < 1. (13)

Once again the profile σ 1
0 ⊗ σ 2

0 ⊗ σ 3
0 constitutes a Nash equilibrium and the strategy of the

second player σ 2
0 ⊗ σ 3

0 weakly dominates her other strategies as a result of putting |λ0|2 =
1/2δ′ and |λ1|2 = 1 − 1/2δ′ in the game in Fig. 2. Since there are no other profiles with that
property, σ 1

0 ⊗σ 2
0 ⊗σ 3

0 is the most reasonable scenario and it implies E1,2(σ
1
0 ⊗σ 2

0 ⊗σ 3
0 ) =

€/2. The essential thing to obtain the fair division result is the state of the third qubit (the
second qubit of player 2). It is not possible to achieve δ€ by player 1 and at the same time
the payoff €/2 becomes the most attractive for her now.
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The conclusions we can draw from the analysis of the MW approach to the ultimatum
game are as follows. First, the game Γ MW

1 that begins with |ψin1〉 discloses a game tree dif-
ferent from the one in Fig. 1a). If there is a protocol for quantizing the extensive game Γ1

directly without using its normal representation as in our case, then the output game tree
must be different from the game tree of Γ1 in general. It follows form the fact that the game
tree in Fig. 1a and four utility outcomes assigned to its terminal histories imply the nor-
mal representation specified by only these four payoff outcomes. However, the game Γ MW

1 ,
where the initial state takes the form (12) has five different outcomes. Note that this prop-
erty is not irrelevant bearing in mind the fact that the bimatrix of a strategic game played
classically as well as played by the MW protocol have always the same dimension. We will
deal with the problem of extensive form in Sect. 6.

The case where the game Γ MW
1 begins with the state (13) shows that even a separable

initial state can influence significantly a result of Γ1. It is not a strange property. Any non-
trivial superposition of the basis states causes some limitation on players’ influence on their
qubits as we have seen in the case (12). In particular, if each qubit of the initial state is in the
state |+〉 = (|0〉 + |1〉)/√2, no player can affect amplitudes of her qubit applying only σ0

and σ1 (measurement outcomes 0 and 1 on qubit occur with the same probability regardless
of whether one pick σ0 or σ1). Then the result of the game is determined only by the initial
state |ψin〉 = |+〉|+〉|+〉.
5.2 The EWL Approach

As we have seen, the two-element set of unitary operators used for quantization of a game
is too poor in some cases. The two-parameter subset of unitary operations used in the EWL
protocol [4] allows players to avoid powerlessness when they act on |+〉, and each player
can essentially affect amplitudes of the initial state. Thus, it is interesting to find a result of
the ultimatum game played according to the EWL approach. Let the following six-tuple be
given:

Γ EWL
1 = (

He, {1,2}, |ψ000〉, ξ,
{{

U(θ,β)
}

i

}
, {Ei}

)
, (14)

where

– He is a Hilbert space (C2)⊗3 with the basis {|ψx1,x2,x3〉:xj = 0,1} of entangled states
defined as follows

|ψx1,x2,x3〉 = |x1, x2, x3〉 + i|x1, x2, x3〉√
2

; (15)

– the mapping ξ is the same as in six-tuple (6);
– the subset {U(θ,β): θ ∈ [0,π ], β ∈ [0,π/2]} of the unitary operators, studied, for exam-

ple, in the paper [10], form an alternative to two-parameter unitary operations used in [4].
They are of the form

U(θ,β) =
(

cos(θ/2) ieiβ sin(θ/2)

ie−iβ sin(θ/2) cos(θ/2)

)

; (16)

– Ei for i = 1,2 are the payoff functionals (8) and (9) specified for the basis (15)

E1 = 1

2
€

∑

x3

∣
∣〈ψ00x3 |ψfin〉

∣
∣2 + δ€

∑

x2

∣
∣〈ψ1x20|ψfin〉

∣
∣2; (17)

E2 = 1

2
€

∑

x3

∣
∣〈ψ00x3 |ψfin〉

∣
∣2 + (1 − δ)€

∑

x2

∣
∣〈ψ1x20|ψfin〉

∣
∣2

. (18)
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Each strategy U1 of player 1 is simply U(θ1, β1). The strategies of the second player are cho-
sen in a similar method to the one in Γ MW

1 —they are tensor products U2 ⊗U3 = U(θ2, β2)⊗
U(θ3, β3). The final state |ψfin〉 corresponding to a profile τ = ((θ1, β1), (θ2, β2, θ3, β3)) is
as follows:

|ψfin〉 = U1 ⊗ U2 ⊗ U3|ψ000〉 = 1√
2

∑

x∈{0,1}3

υx |x〉, (19)

where

υx = i
∑

xj e−i
∑

xj βj

∏

j

cos

(
xjπ − θj

2

)

+ (−i)
∑

xj ei
∑

xj βj

∏

j

cos

(
xjπ − θj

2

)

, (20)

j = 1,2,3, xj = 0,1, and xj is the negation of xj . Putting (19) together with (20) into
formulae (17) and (18) we obtain the expected payoff vector (E1(τ ),E2(τ )) equal to

uf

[

cos2 θ1

2
cos2 θ2

2

(

cos2 θ3

2
+ sin2 θ3

2
cos2 β3

)

+ sin2 θ1

2
sin2 θ2

2

(

sin2 θ3

2
sin2(β1 + β2 + β3) + cos2 θ3

2
sin2(β1 + β2)

)]

+ uu

[

sin2 θ1

2
cos2 θ3

2

(

cos2 θ2

2
cos2 β1 + sin2 θ2

2
cos2(β1 + β2)

)

+ cos2 θ1

2
sin2 θ3

2

(

sin2 θ2

2
sin2(β2 + β3) + cos2 θ2

2
sin2 β3

)]

. (21)

Let us first check that Γ EWL
1 generalizes the classical ultimatum game Γ1. Classical pure

strategies of the first player are represented by U(0,0) and U(π,0). Similarly, pure strate-
gies of player 2 in Γ1 are represented by the set {U(θ2,0) ⊗ U(θ3,0): θ2, θ3 ∈ {0,π}}. It
follows from the fact that the set of profiles

{(
(θ1,0), (θ2,0, θ3,0)

)
: θ1, θ2, θ3 ∈ {0,π}} (22)

in (14) and the set of profiles
{
(ck1 , dk2ek3):k1, k2, k3 ∈ {0,1}} (23)

in (2) generate the same payoffs. Equivalents of behavioral strategies of Γ1 (i.e., independent
probability distributions (p,1−p), (q,1−q) and (r,1−r) over the actions (c0, c1), (d0, d1)

and (e0, e1), respectively, specified by players at their own information sets) can be found
among unitary strategies as well. If we restrict unitary actions to U(θ,0), i.e., to profiles of
the form ((θ1,0), (θ2,0, θ3,0)), θj ∈ [0,π ], the right-hand side of (21) takes the form

uf cos2 θ1

2
cos2 θ2

2
+ uu sin2 θ1

2
cos2 θ3

2
. (24)

By substituting p for cos2(θ1/2), q for cos2(θ2/2), and r for cos2(θ3/2) we obtain the ex-
pected payoffs corresponding to any behavioral strategy profile ((p,1 − p),

((q,1 − q), (r,1 − r))) in Γ1.
Let us examine the impact of the unitary strategies on a result of the EWL approach

to Γ1. In particular, we ask the question which is more probable the unfair division uu

or the fair division uf in Γ EWL
1 . Note, that strategy profile ((θ1, β1), (θ2, β2, θ3, β3)) =

((π,0), (0,0,0,0)) that corresponds to subgame perfect equilibrium (c1, d0e0) in Γ1, is
not a Nash equilibrium in Γ EWL

1 . The second player can gain by choosing, for example,
(θ2, β2, θ3, β3) = (π,π/2,π,0) instead of (0,0,0,0). Then she obtains the fair division
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payoff. Moreover, for any other strategy of the first player (θ1, β1), player 2 can select,
for instance, (0,0,0,0) to obtain a payoff being a mixture of uf and uu. This proves that the
unfair division uu cannot be an equilibrium result of (14). The fair division uf, in turn, can
be achieved through continuum of Nash equilibria. Denote by NE(Γ EWL

1 ) the set of all Nash
equilibria of Γ EWL

1 . An examination of (21) shows that
{

(
(π,β1), (π,β2,π,β3)

)
:β2 + β3 ≤ π

4
,

3∑

j=1

βj = π

2

}

⊂ NE
(
Γ EWL

1

)
(25)

as well as
{
(
(0, β1), (0, β2,π,0)

)
:β1, β2 ∈

[

0,
π

2

]}

⊂ NE
(
Γ EWL

1

)
. (26)

Moreover, all strategy profiles generate the payoff vector uf for any division factor 1/2 <

δ < 1. To prove inclusion (25) let us consider any strategy (θ ′
1, β

′
1) of player 1 given that

player 2’s strategy from (25) is fixed. Then for β2 + β3 ≤ π/4 we have

E1
((

θ ′
1, β

′
1

)
, (π,β2,π,β3)

)

=
[

1

2
€ sin2 θ ′

1

2
sin2

(
β ′

1 + β2 + β3

) + δ€ cos2 θ ′
1

2
sin2(β2 + β3)

]

. (27)

Since β2 + β3 ≤ π/4, the maximum value of (27) is achieved if the second element of the
sum is 0. It implies that the best response of player 1 is θ ′

1 = π and β ′
1 = π/2 −β2 −β3. The

second player cannot gain by deviating as well because she cannot obtain more than €/2
in Γ EWL

1 . Therefore, each profile of set (25) indeed constitutes Nash equilibrium. Inclusion
(26) can be proved in similar way. Observe that there are also Nash equilibria different from
(25) and (26) that generate the payoff outcome €/2 for both players, for example, a strategy
profile ((π,π/4), (π,π/4,π/2,0)).

Intuitively, the huge number of fair solutions to Γ EWL
1 being NE together with the lack of

equilibrium outcome uu favor the second player in comparison with the classical game Γ1.
However, it does not assure the second player the fair payoff €/2 yet. Since the players
choose their strategies simultaneously, they cannot coordinate them. If the first player uni-
laterally deviates from an equilibrium strategy dictated by (26) and she plays a strategy being
a part of (25) then both players receive nothing as we have E1,2((π,β1), (0, β2,π,0)) = 0
for all β1, β2 ∈ [0,π/2]. On the other hand, it turns out that the statement that each of
these equilibria is equally likely to occur is not true. Let us investigate which equilib-
ria in Γ1 are preserved in Γ EWL

1 bearing in mind that the unitary strategies U(θ,0) are
quantum counterparts to classical moves in Γ1. As we have seen there is no equilibrium
profile in Γ EWL

1 that allows the first player to gain δ€. Therefore, in particular, the un-
fair division equilibrium (c1, d0e0) of Γ1 cannot be generated by any unitary operations
U(θ,0). However, each fair division equilibrium (pure or mixed) of (2) can be recon-
structed in (14). The profile ((0,0), (0,0,π,0)) corresponding to the equilibrium (c0, d0e1)

in Γ1 is a Nash equilibrium of Γ EWL
1 since it is an element of the set (26). Next, the

mixed equilibria mentioned in Sect. 3 can be implemented in Γ EWL
1 as follows: they are

the profiles where the first player chooses U(0,0) and the second player chooses either
U(0,0) ⊗ U(0,0) with probability p ∈ [0,1/2δ] and U(0,0) ⊗ U(π,0) with probabil-
ity 1 − p, or in the language of behavioral strategies she just takes an operator from the
set {U(0,0) ⊗ U(θ,0): θ ∈ [2 arccos(1/

√
2δ),π/2]}. According to the concept of Schelling

Point [11] players tend to select a solution that is the most natural as well as the most dis-
tinctive among all possible choices. Therefore, if we assume that the players prefer the fair
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division, they choose a profile that is an equilibrium of both Γ1 and Γ EWL
1 among all fair

equilibria of Γ EWL
1 , i.e., ((0,0), (0,0,π,0)). This pure equilibrium is the most natural and

it ought to be chosen as the Schelling Point.

6 Extensive Form of the Quantum Ultimatum Game

In Sect. 5.1 we made observation that an extensive game and its quantum realization differ
not only in utilities but also in game trees. Now, we are going to give the answer to the
question how a game tree of such quantum realization would look like? Let us reconsider an
extensive game given by the game tree in Fig. 1a, where the components H , P and Ii are
derived from Γ1, and the outcomes O00, O01, O10 and O11, are assigned to the terminal his-
tories (c0, d0), (c0, d1), (c1, e0) and (c1, e1), respectively, instead of particular payoff values.
Let us denote this problem as follows:

Γ2 = ({1,2},H,P, Ii ,O
)
. (28)

Then the tuple Γ MW
2 associated with Γ2 is derived from Γ MW

1 and only the payoff functionals
Ei undergo appropriate modifications. Let us write Γ MW

2 in the language of density matrices,
for convenience. That is

Γ MW
2 = (

Hc, {1,2}, ρin, ξ, {σ0, σ1}i ,X
)
, (29)

where

– ρin is a density matrix of the initial state (7);
– the outcome operator X is a sum of X0 + X1 defined by the following operators:

X0 = O00|00〉〈00| ⊗ 1 + O01|01〉〈01| ⊗ 1; (30)

X1 = O10|1
〉〈1| ⊗ 1 ⊗ |0〉〈0| + O11|1〉〈1| ⊗ 1 ⊗ |1〉〈1|. (31)

In this case, the density matrix ρfin of the final state |ψfin〉 takes a form

ρfin = σ 1
κ1

⊗ σ 2
κ2

⊗ σ 3
κ3

ρinσ
1
κ1

⊗ σ 2
κ2

⊗ σ 3
κ3

. (32)

The outcome functionals (5) are then equivalent to the following one:

E
(
σ 1

κ1
,
(
σ 2

κ2
, σ 3

κ3

)) = tr(Xρfin). (33)

In order to give extensive form to determine the final state ρfin in Γ MW
2 let us modify the way

(32) of calculating the final state ρfin. To begin with, player 1 acts on the first qubit. Next,
player 2 carries out a measurement on that qubit in the computational basis to find out what
is a current state of the game. Then she performs an operation on either the second or the
third qubit of the post-measurement state depending on whether the measurement outcome
0 or 1 has occurred. The operation of the second player ultimately defines the final state that
is inserted to the formula (33). This sequential procedure can be formalized as follows:
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Sequential procedure

1. σ 1
κ1

ρinσ
1
κ1

= ρκ1 player 1 performs an operation σ 1
κ1

on her qubit
of the initial state ρin

2.
Mιρκ1Mι

tr(Mιρκ1)
= ρκ1,ι,

pκ1,ι = tr(Mιρκ1,ι)

player 2 prepares the measurement {M0,M1} de-
fined by Mι = |ι〉〈ι| ⊗ 1 ⊗ 1, ι = 0,1 on the first
qubit of the state σκ1ρinσκ1 (the probability of ob-
taining result ι is denoted by pκ1,ι)

3.
∑

ι pκ1,ισ
2+ι
κ2+ι

ρκ1,ισ
2+ι
κ2+ι

= ρ ′
fin if a measurement outcome ι occurs, player 2 per-

forms an operaton σκι+2 on ι+2 qubit of the post-
measurement state

It turns out that for any strategy profile (σ 1
κ1

, (σ 2
κ2

, σ 3
κ3

)) the final state ρfin defined both by
the formula (32) and by the sequential procedure determine the same outcome of the game
Γ MW

2 .

Proof Let density operator ρin of a state (7) be given. Then the state ρ ′
fin after the third step

of the sequential procedure can be expressed as

ρ ′
fin = σ 2

κ2
M0ρκ1M0σ

2
κ2

+ σ 3
κ3

M1ρκ1M1σ
3
κ3

= M0σ
2
κ2

ρκ1σ
2
κ2

M0 + M1σ
3
κ3

ρκ1σ
3
κ3

M1. (34)

where the second term of (34) follows from the fact that

σ 2
κ2

Mι = Mισ
2
κ2

= |ι〉〈ι| ⊗ σ 2
κ2

⊗ 1; (35)

σ 3
κ3

Mι = Mισ
3
κ3

= |ι〉〈ι| ⊗ 1 ⊗ σ 3
κ3

. (36)

Since XκMι = δκιX
κ , where δκι is the Kronecker’s delta, we obtain

tr
(
Xρ ′

fin

) = tr
(
X0σ 2

κ2
ρκ1σ

2
κ2

+ X1σ 3
κ3

ρκ1σ
3
κ3

)
. (37)

Note that operation σ1 on the second (third) qubit of any state (7) does not influence the
measurement of outcomes O10 and O11 (O00 and O01) because of the form of X1 (X0),
which means that

tr
(
Xισ 2+ι

κ2+ι
ρκ1σ

2+ι
κ2+ι

) = tr
(
Xισ 2

κ2
⊗ σ 3

κ3
ρκ1σ

2
κ2

⊗ σ 3
κ3

)
for ι = 0,1. (38)

Inserting (38) into formula (37) we obtain

tr
(
Xρ ′

fin

) = tr

(
(
X0 + X1

)
(

3⊗

j=1

σ j
κj

ρin

3⊗

j=1

σ j
κj

))

. (39)

The right-hand side of (39) is equal to the expected outcome given by formula (33). Thus,
the two ways of determining the final state are outcome-equivalent. �

We claim that performing quantum measurement is a more natural manner to play quan-
tum games than observation of player’s actions taken previously—the way suggested by
games played classically. Since a payoff outcome of a quantum game is determined by the
measurement outcome of the final state instead of actions taken by players, each stage of the
quantum game also ought to be set via a quantum measurement of a current state. Moreover,
if we assumed the second player’s move dependence on actions of the first player in Γ2,
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Fig. 3 The extensive game
associated with the quantum
realization Γ MW

2

then it would imply the same game tree as in Fig. 1a. This way, however, stands in contra-
diction to the results obtained in Sect. 5.1 that tell us that the game trees must be different.
Of course, if the initial state is |000〉〈000| (i.e., when game given by (29) boils down to a
game (28)), classical observation of actions at the course of the game and the observation
by means of quantum measurement coincide.

Let us study what a game tree corresponding to the game Γ MW
2 is yielded by the above-

mentioned procedure. According to the first step, the initial history ∅ is followed by two
actions of the first player. Next, the measurement on the first qubit is made. The two possible
measurement outcomes ι = 0,1 can be identified with two actions (following each player 1’s
move) of a chance mover that are taken with probability pκ1,ι. Finally player 2 acts on ι + 2
qubit of the state ρι after each history associated with the outcome ι. Therefore, all histories
followed by given outcome ι constitutes an information set of player 2. Such description
in the form of game tree is illustrated in Fig. 3. The outcomes O ′

0.κ1,κ2
and O ′

1.κ1,κ3
are

determined by the following equations:

O ′
0.κ1,κ2

= tr(Xσκ2ρκ1,0σκ2), O ′
1.κ1,κ3

= tr(Xσκ3ρκ1,1σκ3). (40)

We have proved that the two approaches to calculate the final state (32) and the sequen-
tial one given by the sequential procedure are outcome-equivalent. Therefore, it should be
expected that extensive forms of Γ2 and Γ MW

2 coincide when the initial state is a basis
state. Indeed, given ρin = |000〉〈000|, the probabilities pκ1,ι are expressed by the formula
pκ1,ι = δκ1,ι, where κ1, ι ∈ {0,1}. Then, the available outcomes given by (40) are as fol-
lows: O ′

0.00 = O00, O ′
0.01 = O01, O ′

1.10 = O10 and O ′
1.11 = O11. By identifying σ 1

κ1
:= cκ1 ,

σ 2
κ2

:= dκ2 , σ 3
κ3

:= eκ3 the extensive game in Fig. 3 represents game Γ2.

7 Conclusion

We have shown that our proposal extends the ultimatum game to the quantum area. Although
the proposed scheme is suitable only for the normal representation of the ultimatum game
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in which some features of corresponding game in extensive form are lost, it yields valuable
information about how passing to the quantum domain influences a course of extensive
games. The dominant position of player 1, when the ultimatum game is played classically,
can be weakened in the case of playing the game via both the MW approach and the EWL
approach. Another thing worth noting is that the quantization significantly extends the game
tree in comparison with the classical case. Therefore, the normal representation is better to
analyze the quantum game than its extensive form.
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