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Abstract We proposed a quantum secret comparison protocol for two parties with the ran-
dom rotation angle, which is under the help of a semi-honest third party. The random rotation
angle made it possible for the protocol to be safer and the two parties cannot deduce each
other’s information by means of their own possessions. The participants’ secrets are divided
into groups and the third party announced the results by group, which made the protocol
more safely and sometimes it can save lots of resources. Moreover, during our protocol pro-
cess any information of the two parties will not be leaked, even the third party cannot get
any participants’ secrets.

Keywords Quantum cryptography · Quantum private comparison · Random rotation

1 Introduction

Various quantum cryptography protocols have been flourished by utilizing quantum me-
chanics principles, since Bennett and Brassard proposed the first quantum key distribution
protocol in 1984 [3], which ensured two remote users can share a common random key
securely. Over recent years many classical cryptographic impossibilities and interesting ap-
plications can be solved in quantum ways, such as quantum secret sharing (QSS) [10, 14,
16, 17, 19, 27], quantum key distribution (QKD) [2, 13, 15, 22, 28, 30, 34], quantum tele-
portation [4, 7, 8, 33], etc.

As a fundamental primitive in modern cryptography, secure multiparty computation
(SMC) is to enable distrustful parties to jointly compute a function over their inputs, without
leaking their respective secrets under the only assumption that some of them will follow the
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protocol honestly. Recently research on SMC arouses tremendous interests owing to its ex-
tensive applications and prospects, including secure multi-party quantum summation [11],
secret ballot elections [1], and anonymous voting [6] and so on. Large numbers of natu-
ral protocols can be reworded to special cases of multiparty computation problems, so it is
significant to design and analyze the special multiparty computation protocols. In the usual
secure two-party computation scenario, Alice and Bob have their inputs x and y individu-
ally, and both of them wish to compute f (x, y) which is well known to themselves.

Quantum private comparison (QPC) is an important branch of secure multiparty comput-
ing, which allows two participants to determine whether their secrets happened to be equal,
at the same time their inputs can be kept in secret. The first QPC protocol was proposed by
Yang et al. [31, 32], the secrets of two parties can be compared based on the decoy photon
and EPR pairs, and its security was guaranteed by one-way hash function, which utilized to
encrypt their own secrets by both of the players. In addition to avoid some special attacks
in their round trip transmissions, a number of special optical filters are inserted in every
round, which decreases the qubit efficiency apparently. Soon after that, Chen et al.proposed
a more efficient QPC protocol [9], which utilized the triplet entangled states and the simple
single-particle measurement.

By reason that it is proved to be insecure, to construct a secure equality function in a
two-party scheme [25], almost all previous QPC protocols have drawn support from a semi-
honest third party (Trent). Trent might try to steal the players’ private inputs, but he cannot
be corrupted by the adversary. Following some ideas of the quantum computation protocols
[18, 21, 23, 24, 29], enlightened by Kye et al.’s quantum key distribution protocol [20],
we proposed a QPC protocol with random rotation angle, and it is also under the help of
Trent. There are several features in our protocol. Firstly, participants share a sequence of
secret classical keys in advance, which can prevent Trent and outsiders to steal or analyze
their inputs. Secondly, the selected polarization angles θ and θ + π are not necessary for
participants to discuss with each other, as Bob and Alice do not need to know the other’s
polarization basis. Thirdly, no round-trip transmission exists in the protocol, so that many
kinds of attacks are invalid to this protocol.

The structure of this paper is as follows. In Sect. 2, we propose a private comparison
protocol with the random rotation. Then, we analyze the security of this protocol in Sect. 3.
Finally, a brief discussion and summary are given in Sect. 4.

2 Quantum Private Comparison Protocol with the Random Rotation

The case with two distrustful players who want to compare whether their secrets are equal
with Trent’s help is taken into consideration. Supposed that the two players, Alice and Bob
have secrets a and b, respectively.

Let A = {an−1, an−2, . . . , a0} and B = {bn−1, bn−2, . . . , b0} be the binary representa-
tions of a and b in F2n , where a = ∑n−1

i=0 ai2i , b = ∑n−1
i=0 bi2i , with ai, bi ∈ (0,1), 2n−1 ≤

max{a, b} ≤ 2n.
Then Alice divides her classic secrets into � n

m
� (m ≥ 2) groups, which are

A0 = {a0, a1, . . . , am−1}
A1 = {am, am+1, . . . , a2m−1}

. . .

A� n
m �−1 = {a(� n

m �)∗m,a(� n
m �)∗m+1, . . . , an−1}.
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Bob does the same operation as Alice and gets

B0 = {b0, b1, . . . , bm−1}
B1 = {bm, bm+1, . . . , b2m−1}

. . .

B� n
m �−1 = {b(� n

m �)∗m,b(� n
m �)∗m+1, . . . , bn−1}.

Step 1 Alice and Bob share a sequence of secret classical keys Θ = {θ0, θ1, . . . , θn−1}
in advance, in which n is the length of secrets and θi ∈ { π

4 , π
2 }(i = 0,1, . . . , n − 1). Trent

prepares m EPR pairs to form initial sequence ST , every pair is randomly chosen from
{|φ+〉 = 1√

2
(|00〉 + |11〉), |ψ−〉 = 1√

2
(|01〉 − |10〉)}, and records the initial states, after that

divides these EPR pairs into two sequences, namely SA,SB . The first particles of all EPR
pairs are formed to the sequence SA, and the rest are formed to the sequence SB .

Step 2 Trent prepares two sequences of decoy states S ′
A and S ′

B , randomly in photon states:
|0〉, |1〉, |+〉, |−〉. Then he randomly inserts S ′

A in SA and S ′
B in SB to form new sequences

S ′′
A and S ′′

B . After that Trent sends the sequences S ′′
A to Alice, S ′′

B to Bob respectively.

Step 3 Alice and Bob inform Trent once they have received the quantum sequences S ′′
A and

S ′′
B . Then Trent announces to Alice and Bob respectively the positions and measuring bases

({|0〉, |1〉} or {|+〉, |−〉}) of the decoy states S ′
A and S ′

B for the eavesdropping check. Alice
and Bob extract the checking states from S ′′

A and S ′′
B , and perform the corresponding basis

measurements to obtain two sequences of measuring results rA and rB . Thereafter, they re-
port the results S ′

A and S ′
B to Trent respectively. If the error rate is limited in a predetermined

threshold, Trent announces there is no eavesdropper and the protocol continues, otherwise
Trent aborts the protocol and restarts.

I =
[

1 0
0 1

]

, σy = i

[
0 −1
1 0

]

Step 4 Alice and Bob recover the initial sequences SA and SB through discarding the decoy
states, individually. Afterwards, they perform the operators Uy(θa + θi) and Uy(θb − θi) on
the ith particle respectively according to their secrets, where Uy(θ) = cos(θ)I − i sin(θ)σy

is the unitary operator which rotates the arbitrary angle along the y axis, and I and σy are
defined as above. If ai(bi) = 0, Alice (Bob) chooses θa(θb) randomly from {0,π}, otherwise
Alice (Bob) chooses θa(θb) randomly from { π

2 , 3π
2 }.

Step 5 After they perform the operators according to selected initial state, the EPR pairs
turn to

Uy(θa + θi) ⊗ Uy(θb − θi)|φ+〉

= 1√
2
[cos(θa − θb + 2θi)(|00〉 + |11〉) − sin(θa − θb + 2θi)(|01〉 − |10〉)]

or
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Uy(θa + θi) ⊗ Uy(θb − θi)|ψ−〉

= 1√
2
[sin(θa − θb + 2θi)(|00〉 + |11〉) + cos(θa − θb + 2θi)(|01〉 − |10〉)]

Thereafter, Alice and Bob use Z basis ({|0〉, |1〉}) to measure the particles, and obtain
a sequence of results RAi

= {raim, raim+1, . . . , ra(i+1)m−1} and RBi
= {rbim, rbim+1, . . . ,

rb(i+1)m−1}. If the measuring result is |0〉, then raj (rbj ) = 0; if the measuring result is |1〉,
then raj (rbj ) = 1, where im ≤ j ≤ (i + 1)m − 1.

Before they simultaneously transfer the results to Trent, the results should be re-
vised and formed to another sequences CAi

= {caim, caim+1, . . . , ca(i+1)m−1} and CBi
=

{cbim, cbim+1, . . . , cb(i+1)m−1}, where cbim = rbim, cbim+1 = rbim+1, . . . , cb(i+1)m−1 =
rb(i+1)m−1. If θj = π

4 , caj = raj ⊕ 1, otherwise caj = raj , where im ≤ j ≤ (i + 1)m − 1.

Step 6 Trent calculates the exclusive-OR results ri = cai ⊕cbi . If the initial state is |φ+〉 =
1√
2
(|00〉 + |11〉), Trent does nothing to the results, and otherwise he/she adds 1 to every

exclusive-OR results, then the results change to ti . Now once there exists any j (im ≤ j ≤
(i+1)m−1), tj = 1 in ith group, Trent interrupts the protocol and announces “1” to indicate
Alice’s and Bob’s secrets are not equal, the (i +1)th, (i +2)th, . . . and (� n

m
�)th group secrets

have no need to be compared. Otherwise Trent repeats the protocol until all the information
has been compared, if T = {t0, t1, . . . , t� n

m �−1} = 0, he announces “0” to indicate Alice’s and
Bob’s secrets are identical.

Table 1 shows two cases of comparison and the other cases can be proved in the same
way.

3 Security Analyses

In general, our protocol process is secure, and any information of the two parties will not be
leaked. To see that, we will analyze the security of protocol from two main parts (outsider
attack and insider attack).

3.1 Outsider Attack

Apart from the process of EPR pairs distribution, the rest information is transferred through
a classical channel, in which the information is allowed eavesdropping but modifying. Be-
cause the information in the classical channel has no relationship with the participants’ se-
crets owing to the shared secret classical keys Θ , the eavesdroppers have no possibility
to get the secrets. As a result, the only chance of outsider eavesdropper’s attack in this
protocol is to attack the quantum channel in the Step 2. However, Trent inserts the de-
coy states S ′

A and S ′
B separately into SA and SB , and before Alice and Bob continue the

next step, they will check the existence of eavesdropper. Trent announces respectively the
positions and measuring bases ({|0〉, |1〉} or {|+〉, |−〉}) of the decoy states S ′

A and S ′
B . Par-

ticipants should measure the decoy states according to the measurements, which informed
by Trent, then they and Trent publish the measuring results and initial decoy states. By
discussion they can confirm whether there is an eavesdropper existing in the quantum chan-
nel.

Some well known attacks such as intercept-resend attack, measurement-resend attack,
entanglement-measure attack and denial-of-service (DOS) attack can be detected with
nonzero probability during the decoy checking process. What’s more, the Trojan horse at-
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Table 1 Two cases of comparison

ai bi θa θb θi STi
rai rbi cai cbi ri ti

0 0 0 0 π /4 |φ+〉 1(0) 0(1) 0(1) 0(1) 0 0

0 π π /4 |φ+〉 1(0) 0(1) 0(1) 0(1) 0 0

π 0 π /4 |φ+〉 1(0) 0(1) 0(1) 0(1) 0 0

π π π /4 |φ+〉 1(0) 0(1) 0(1) 0(1) 0 0

0 0 π /2 |φ+〉 0(1) 0(1) 0(1) 0(1) 0 0

0 π π /2 |φ+〉 0(1) 0(1) 0(1) 0(1) 0 0

π 0 π /2 |φ+〉 0(1) 0(1) 0(1) 0(1) 0 0

π π π /2 |φ+〉 0(1) 0(1) 0(1) 0(1) 0 0

0 0 π /4 |ψ−〉 1(0) 1(0) 0(1) 1(0) 1 0

0 π π /4 |ψ−〉 1(0) 1(0) 0(1) 1(0) 1 0

π 0 π /4 |ψ−〉 1(0) 1(0) 0(1) 1(0) 1 0

π π π /4 |ψ−〉 1(0) 1(0) 0(1) 1(0) 1 0

0 0 π /2 |ψ−〉 1(0) 0(1) 0(1) 1(0) 1 0

0 π π /2 |ψ−〉 0(1) 1(0) 0(1) 1(0) 1 0

π 0 π /2 |ψ−〉 0(1) 1(0) 0(1) 1(0) 1 0

π π π /2 |ψ−〉 0(1) 1(0) 0(1) 1(0) 1 0

0 1 0 π /2 π /4 |φ+〉 0(1) 0(1) 1(0) 0(1) 1 1

0 3π /2 π /4 |φ+〉 0(1) 0(1) 1(0) 0(1) 1 1

π π /2 π /4 |φ+〉 0(1) 0(1) 1(0) 0(1) 1 1

π 3π /2 π /4 |φ+〉 0(1) 0(1) 1(0) 0(1) 1 1

0 π /2 π /2 |φ+〉 0(1) 1(0) 0(1) 1(0) 1 1

0 3π /2 π /2 |φ+〉 0(1) 1(0) 0(1) 1(0) 1 1

π π /2 π /2 |φ+〉 0(1) 1(0) 0(1) 1(0) 1 1

π 3π /2 π /2 |φ+〉 0(1) 1(0) 0(1) 1(0) 1 1

0 π /2 π /4 |ψ−〉 0(1) 1(0) 1(0) 1(0) 0 1

0 3π /2 π /4 |ψ−〉 0(1) 1(0) 1(0) 1(0) 0 1

π π /2 π /4 |ψ−〉 0(1) 1(0) 1(0) 1(0) 0 1

π 3π /2 π /4 |ψ−〉 0(1) 1(0) 1(0) 1(0) 0 1

0 π /2 π /2 |ψ−〉 0(1) 0(1) 0(1) 0(1) 0 1

0 3π /2 π /2 |ψ−〉 0(1) 0(1) 0(1) 0(1) 0 1

π π /2 π /2 |ψ−〉 0(1) 0(1) 0(1) 0(1) 0 1

π 3π /2 π /2 |ψ−〉 0(1) 0(1) 0(1) 0(1) 0 1

Alice and Bob have secrets ai and bi , respectively, they have shared a sequence of secret classical keys θi , the
selected rotation angles of Alice and Bob are θa and θb . We denote Alice’s and Bob’s measurement results
as rai and rbi , the information that transferred to Trent is respectively cai and cbi . After the exclusive-OR
operation, Trent obtains the results ri , at last Trent gets the final results ti after the comparison with the initial
state. If ri= 0, the secret ai is equal to bi . Otherwise, the value of ri is 1

tack can be automatically prevented, since there is no round-trip transmission in the protocol.
Thus the outsider attack is invalid to our protocol.

When a qubit of entangled states travels in a noise quantum channel, parts of the initial
entanglement might be lost. Fortunately, it has been proven that over any long distance,
the reliably shared entanglement can be obtained by using the quantum-repeater technique,
containing the entanglement purification [12, 26] and teleportation [7].
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3.2 Insider Attack

In general, the participants have more advantages to attack the protocol than the outsider
eavesdropper, because they can utilize their partial information without being detected
legally. Although Alice’s role has superiority over Bob’s, the limited advantage does not
threaten the security of our protocol. So we will consider two following possible cases.

3.2.1 Third Party Attack

As for Trent, what he does is to generate the initial states and calculate the final results. Due
to the dishonesty of Trent, he might try to steal the participants’ secrets from the protocol.

In the generating process (S1), Trent could replace the initial states with other states,
which can get through the decoy detection. However, by reason that the information Alice
and Bob give Trent has irrelevance with the secrets they own, the substitution does not have
any benefit for all of them in addition to the error. That is also the reason that Trent cannot
obtain any information of Alice and Bob except the comparing results in the calculating
process (S6). In the other steps, even though Trent is involved in the protocol process, its
role has no more privileges than the outsiders. As a result Trent cannot get any secrets.

3.2.2 Participants’ Attack

Suppose Bob is a dishonest participant, who attempts to steal Alice’s information a. For that
purpose Bob must get Alice’s initial states and the compared results by whatever means,
actually it is not likely to succeed. Let alone the transportation in the classical channel cannot
be modified in the quantum world, owing to the decoy states of the initial sequences, the
probability is less than 50 %. Also, Bob can insert a filter in front of his devices to filter out
the photon signal with an illegitimate wavelength, and obtain information by performing IPE
Trojan horse attack strategies. However, there is no round-trip transmission in the protocol,
so this method cannot make it.

Despite S5, what the two participants do is exactly same. Though it is Alice, who revises
the results cai based on their sharing classical secret keys, Bob also knows that which qubit
should be revised.

Now we will discuss what will happen due to Alice’s superiority. However, the superior-
ity is helpless. If she disobeys the protocol, send cai = rai(θi = π

4 ), or cai = rai ⊕1(θi = π
2 )

according to her needs, the possibility is no higher than it of coin-flipping. Besides, Trent
announces the comparing result by group, Alice has no idea whether the disobedience lead
to the result. For instance, we suppose that m = 5, the initial states is |ψ−〉, Alice’s secret
ai is 01010, Bob’s bi is 10010, the comparing result is 1, but if Alice disobeys the rules on
the first qubit, the result is 1. Therefore Alice cannot obtain any useful information. What’s
worse, it leads to an inaccuracy that even Alice does not want to face up with this circum-
stance. In other words, Alice will introduce errors invariably if she wants to steal valuable
information. So it suffices to conclude that our scheme is secure for Alice’s eavesdropping
under an ideal environment. Moreover, if the quantum channels are noisy, the security of our
scheme can be guaranteed by performing quantum error correction and privacy amplification
[5, 7].

For these reasons, neither Alice nor Bob can get the other’s information via their own
photons.
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4 Conclusions

By and large, in this paper a private comparison protocol has been proposed, which utilized
random rotation angle and EPR entangled states. The same as the previous protocols [9,
18, 21, 23, 29], our protocol is also under the help of a semi-honest third party and ensures
fairness, security and efficiency. First and foremost, the selected polarization angles can
efficiently prevent eavesdropping from the Trent and outsiders. At the same time because
both of participants do not know each other’s selection, the secrets will not be analyzed
and disclosed. What’s more, participants’ secret messages are divided into many groups, the
comparison of following data do not need to continue as long as Trent announces the result
“1” in a certain round, Alice and Bob both know the final result. Hence, it saves plenty of
quantum recourses and time.
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