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Abstract Geometric phase of two-level mixed state is investigated by comparing our ap-
proach with kinematic one. The results show that in the kinematic one, the Berry phases
emerge discontinuous points because of losing a physical contribution from one of two
eigenstates of density matrix. In contrast, our approach is a smooth curve of initial angle,
evolving time and decay rate because of the interference between the two eigenstates with
the probability ensemble.
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1 Introduction

The current quantum computation provides a wide range of challenges to quantum informa-
tion [1–3], particularly for searching a quantum memory device in which allows temporal
storage of quantum message in a long distance quantum information [4–6].

Geometric quantum computation is a potentially intrinsical fault tolerant scheme and
therefore resilient to certain types of the experimental and fluctuation errors [7–10] because
the geometric (Berry) phase is proportional to the area spanned in parameter space. The
closed physical system retains a memory of its evolution in terms of the geometric phase
[11–13], which makes that the geometric phase of pure state has an observable effect. Thus,
it is interesting to investigate the geometric phase of mixed state.

Application of geometric phases in quantum computation has motivated one to include
decoherent effect [14–26]. In a real situation, the physical system is inevitably affected by
uncontrollable degrees of freedom in the environment. Differently from the pure state, the
mixed state of the open system is always written in many different ways as a probabilistic
mixture of distinct but not necessarily orthogonal pure states. Thus, the density matrix was
introduced as an approach to describe the quantum open system and the state of the open
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system is not completely known. Up to now, therefore, the definition of the geometric phase
for the open system is still a controversial issue. There have been many proposals tackling
the problem from different generalizations of the parallel transport condition [12, 22]. In
most of the cases, however, these definitions do not agree on account of different constraints
imposed with different generalizations of the parallel transport condition. Thus, a compari-
son with these different approaches is useful for the study of the geometric phase of mixed
state.

2 Representation of Mixed State

A mixed state density matrix ρ(t) was introduced as a way of describing a quantum open
system. Generally, the state for the open system can always be expressed in many different
expansions as a classical probabilistic mixture of distinct but not necessarily orthogonal
pure states. Such an expansion represents a distinct physical way in which is an ensemble
of kinematically identical systems, characterized as a whole by the density matrix ρ(t) with
the synthesized properties,

ρ+ = ρ, ρ2 < ρ, Trρ = 1. (1)

In terms of a set of the normalized state vectors suitable for the description of pure
states |ψk(t)〉 (k = 1,2, . . . ,N , where N may be of finite or infinite dimensions) in a com-
plex Hilbert subspace H0 = {|ψk(t)〉 ∈ H; 〈ψk(t)|ψk(t)〉 = 1}, the density matrix can be
expressed as

ρ(t) =
N∑

k=1

w2
k (t)

∣∣ψk(t)
〉〈
ψk(t)

∣∣, (2)

where 0 ≤ wk(t) ≤ 1 are a set of classical probability amplitudes with the normalized con-
dition,

N∑

k=1

w2
k (t) = 1. (3)

Given a particular expansion (2) for the density matrix ρ(t), an ensemble of a very large
number of systems is consisted of a fraction w2

k (t) of which form a subensemble in the pure
state ρk(t) = |ψk(t)〉〈ψk(t)|. Thus the density matrix (2) can be rewritten as

ρ(t) =
N∑

k=1

w2
k (t)ρk(t). (4)

The average value of any hermitian operator O is given by

〈O〉 =
N∑

k=1

w2
k〈ψk|O|ψk〉 =

N∑

k=1

w2
k Tr(ρk O) = Tr(ρO), (5)

where only ρ(t) appears, independently of a particular ensemble.
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3 Bloch Sphere Structure

In our two-level system, the density matrix is a 2 × 2 matrix. Thus the unit matrix 12×2

and three Pauli matrices (σx, σy , and σz) construct a complete basis of our density matrix.
Therefore, we can expand the density matrix as

ρ = a + b · −→σ , (6)

which is unique because of the following relations,

a = 1

2
Trρ = 1

2
, (7)

bi = 1

2
Tr(ρσi), i = x, y, z. (8)

By inserting Eqs. (7) and (8) into Eq. (6), one finds

ρ = 1

2
(1 + n · −→σ ), (9)

which defines a corresponding three-dimensional Bloch vector as

n = Tr(ρ−→σ ) = (nx, ny, nz), (10)

where

nx = Tr(ρσx) = ρ12 + ρ21, (11)

which measures an overlap of real part between two-level open system,

ny = Tr(ρσy) = i(ρ12 − ρ21), (12)

which measures an overlap of imaginary part, and

nz = Tr(ρσz) = ρ11 − ρ22, (13)

which describes population inversion.
Inserting Eq. (9) into Eq. (1), one has

n∗ = n, n · n = r2 ≤ 1, (14)

where r is called as a radius of the Bloch sphere with r2(t) = n · n = n2
x + n2

y + n2
z .

From Eq. (14), we see that n, its three components, and r are real. Therefore the Bloch
vector along the tree pseudospin directions can be parameterized by two azimuthal angles,
such as α and β . Next the two azimuthal angles are introduce as

α = cos−1 nz

r
, β = tan−1 = ny

nx

, (15)

to parameterize the three-dimensional Bloch vector as

n = (r sinα cosβ, r sinα sinβ, r cosα). (16)

The set

S =
{

n̂ = n
r

∈ R3
∣∣∣n̂ · n̂ = 1, n̂∗ = n̂

}
, (17)
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leads to a unit Poincaré sphere construction. n̂ = n/r corresponds to a diametrical point on
the sphere surface S 2, while n < n̂ is the interior diametrical point on the corresponding
Bloch sphere.

Using the two azimuthal angles α and β defined in Eq. (15), the eigenvectors and eigen-
values of n̂ · −→σ = n · −→σ /r can be expressed as

∣∣χ1(t)
〉 = eiα1(t)

(
cos α(t)

2
eiβ(t) sin α(t)

2

)
, χ1 = 1, (18)

∣∣χ2(t)
〉 = eiα2(t)

(
sin α(t)

2−eiβ(t) cos α(t)

2

)
, χ2 = −1, (19)

where α1(t) and α2(t) are the overall phase factors. It is interesting in noting that in the
structure of Bloch sphere, the state vectors |χ1(t)〉 and |χ2(t)〉 are two orthogonal antipodal
points in which lie on the azimuthal angles α(t) and β(t).

According to these eigenvectors and eigenvalues in Eqs. (18) and (19), the density matrix
of two-level open system is given by

ρ = 1

2

(
1 + r(t)

)∣∣χ1(t)
〉〈
χ1(t)

∣∣ + 1

2

(
1 − r(t)

)∣∣χ2(t)
〉〈
χ2(t)

∣∣, (20)

which is independent of the overall phase factors α1(t) and α2(t). From Eq. (20), the classi-
cal probabilities of the two-state mixture are given by

w2
1(t) = (

1 + r(t)
)
/2, w2

2(t) = (
1 − r(t)

)
/2, (21)

with the normalized condition w2
1(t) + w2

2(t) = 1. We see that the classical probabilities are
only a function of the Bloch radius r(t), where w2

1(t) and w2
2(t) are just two eigenvalues

of density matrix. Therefore, the Bloch radius geometrically describes the mixed degree
of a quantum open two-level system. According to the probabilities w2

1(t) and w2
2(t), the

surface points on the unit Poincaré sphere with r(t) = 1 identify with the pure states because
of w2

1 = 1 and w2
2 = 0 so that the density matrix (20) becomes ρ = |χ1(t)〉〈χ1(t)|, while

the interior points in this sphere with r(t) < 1 are corresponding to the mixed states with
w2

1 �= 0 and w2
2 �= 0 in which represent a classical mixture of two quantum states as shown in

Eq. (20). The maximum mixed state is described by r(t) = 0 with w2
1 = 1/2 and w2

2 = 1/2.

4 Geometric Phase of Mixed State

From above analysis, we know that the pure and mixed states can be described by the struc-
ture of Bloch sphere in a unifying way, where the Bloch radius quantifies mixed degree of
open system. Therefore, the geometric phase for the open system expressed in terms of ge-
ometric structures of Bloch sphere can avoid to find a proper generality of parallel transport
condition.

According to a spinorial representation of mixed state in connecting the density matrix
with mixed state vector as proposed by one of the authors [27], the Pancharatnam phase of
mixed state is rewritten as

γ P
g = 1

N
arg

N∑

k=1

√(
1 + br(t0)χk

)(
1 + br(t)χk

)〈
χk(t0)

∣∣χk(t)
〉

− 1

N
	

N∑

k=1

∫ t

t0

(
1 + br(t)χk

)〈
χk(t)

∣∣d
∣∣χk(t)

〉
, (22)
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where |χi(t)〉 are parameterized by the Bloch azimuthal angles. Thus the geometric phase
is fully expressed in terms of the geometric structure of the generalized Bloch sphere. In
Eq. (22), the first term is a total phase and the second term is a dynamic phase. γ P

g is a
sum of contributions from all the eigenstates of density matrix in terms of the corresponding
eigenvalues as the probabilities. Obviously, γ P

g is a local
⊗N

k=1 U(1) gauge invariant.
In the case of the two-level mixed state, χi(t) and |χi(t)〉 are given by Eqs. (18) and (19).

It is interesting to define a quasicyclitity T of mixed state in terms of φ(T )−φ(t0 = 0) = 2π .
In this situation, the total phases from the first and second terms in Eq. (22) are constants 2π

in which are not important and can be dropped off in quantum calculation. Thus the Berry
phase of mixed state is given by

γ B
g = −1

2

∮ T

0

(
1 + r(t)

)
sin2 α(t)

2
dβ(t)

− 1

2

∮ T

0

(
1 − r(t)

)
cos2 α(t)

2
dβ(t), (23)

which is a symplectic area spanned by the evolving path in Bloch sphere with the time-
dependent classical probabilities w2

1(t) = (1 + r(t))/2 and w2
2(t) = (1 − r(t))/2 from the

two eigenvalues of the given density matrix, respectively.
In the kinematic approach to the Berry phase [28], the open system is purified as a pure

state by combining the physical system with a ancilla. Thus the eigenfunctions of density
matrix are directly taken as the state vectors of open system.

γ K
g = arg

(∑

k

√
λk(0)λk(T )

〈
λk(0)

∣∣λk(T )
〉
exp

(∫ T

0
dt

〈
λk(t)

∣∣ d

dt

∣∣λk(t)
〉))

, (24)

where λk(t) and |λk(t)〉 are eigenvalues and eigenfunctions of the reduced density matrix
(2), respectively. In is noted that differently from our approach given by Eqs. (22) and (23),
the probability ensemble wk = √

λk(0)λk(T ) are a product of the initial and final state eigen-
values so as not to depend on evolving time in the kinematic approach.

In terms of the representation (9) of Bloch sphere for the density matrix, the eigenvalues
of density matrix may be expressed as

λ1(t) = 1

2

(
1 − r(t)

)
, (25)

λ2(t) = 1

2

(
1 + r(t)

)
, (26)

and the corresponding eigenvectors are given by

∣∣λ2(t)
〉 =

(
nz(t) + r(t)

nx(t) + iny(t)

)
, (27)

∣∣λ1(t)
〉 =

(
nz(t) − r(t)

nx(t) + iny(t)

)
. (28)

Inserting Eq. (16) into Eqs. (27) and (28), we find that the normalized eigenstates are
exactly the same as Eqs. (18) and (19) besides an overall phase factor, i.e.,

∣∣λR
i (t)

〉 = |λi(t)〉
〈λi(t)|λi(t)〉 = ∣∣χi(t)

〉
, i = 1,2. (29)

In the kinematic approach [28] to Berry phase of mixed state, however, an orthogonal
pure initial state with the Bloch radius r(0) = 1 was used so that λ1(0) = 0. Thus the Berry
phase from the kinematic approach should be simplified as
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γ K
g = −	

∫ T

0
dt

〈
λR

1 (t)
∣∣ d

dt

∣∣λR
1 (t)

〉

= −1

2

∫ T

0

(
1 − cosα(t)

)
dβ(t), (30)

which includes only the contribution of eigenvector |λR
1 (t)〉. Especially, the ensemble prob-

abilities disappear in the kinematic approach to the Berry phase.

5 Mixed Sate in Fluctuating Magnetic Field

As an example, let us consider a two-level atom in the presence of an external magnetic field
with a fluctuating component [29, 30]. The Hamiltonian of the system is

H(t) = H0 + B(t)M, (31)

where H0 = 1
2 �Ωσz with the atomic resonance frequency Ω , B(t) is random field and

M = 1
2 �σx is independent of time.

It is noted that the random field is a decoherence source in our system. After averaging
on different trajectories induced by the noise, actually, the system at the end of the evolution
is in a mixed state. Thus the Bloch vector does not return to its initial position since the
Hamiltonian does not. To calculate the correct Bloch vector, we have to average the final
positions [29, 30]. Thus, the master equation of reduced density matrix may be written as

d

dt
ρ(t) = −i

[
H0, ρ(t)

] − κ

2

[
M(t),

[
M(t), ρ(t)

]]
. (32)

The solution of Eq. (32) is direct. Under the initial condition |Ψ (0)〉 = cos θ
2 |0〉+sin θ

2 |1〉,
the elements of the density matrix can be expressed by [29, 30]

ρ11 = 1

2

(
1 + cos θe−2κt

)
, (33)

ρ22 = 1

2

(
1 − cos θe−2κt

)
, (34)

ρ12 = 1

4
sin θ

[
−i

κ

Ωr

+
(

1 + Ω

Ωr

)]
e−κt−iΩr t + 1

4
sin θ

[
i

κ

Ωr

+
(

1 − Ω

Ωr

)]
e−κt+iΩr t ,

(35)

ρ21 = 1

4
sin θ

[
−i

κ

Ωr

+
(

1 − Ω

Ωr

)]
e−κt−iΩr t + 1

4
sin θ

[
i

κ

Ωr

+
(

1 + Ω

Ωr

)]
e−κt+iΩr t ,

(36)

where Ωr = √
Ω2 − κ2.

Inserting Eqs. (33)–(37) into Eqs. (14) and (15), the corresponding Bloch parameters are
obtained by

r2(t) = sin2 θ

((
cosΩrt − κ

Ωr

sinΩrt

)2

+ Ω2

Ω2
r

sin2 Ωrt

)
e−2κt + cos2 θe−4κt , (37)

cosα = cos θ

r
e−2κt , (38)

tanβ = Ω sinΩrt

Ωr(cosΩrt − κ
Ωr

sinΩrt)
. (39)
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Fig. 1 The kinematic approach
to the Berry phase of mixed state
as functions of the fluctuating
rate κ/Ω and initial angle θ

Fig. 2 Berry phase of mixed
state as functions of the
fluctuating rate κ/Ω and initial
angle θ

From Eqs. (37)–(39), we see that the Bloch parameters, such as r , α and β , depend
on the fluctuating rate and oscillate with the evolving time. Especially, β doesn’t depend
on the exponential decay. Thus, both the complex oscillations and exponential decay with
the evolving time will be included in the nondiagonal elements of density matrix. Under
the situation of the fluctuating parameter κ = 0, the oscillations become simple with the
frequency Ω relating only to the magnetic field.

6 Discussions and Conclusions

The Berry phases of mixed state are shown in Fig. 1 for the kinematic approach and Fig. 2
for our approach. The results show that the Berry phases decrease with increasing of the
fluctuating rate κ/Ω just like the radius r(t) of Bloch sphere shown in Figs. 3 and 4.

It is noted that the behaviors of Berry phase as a function of initial angle are very different
for our approach (see Fig. 2) and the kinematic approach (see Fig. 1). In our approach, the
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Fig. 3 The radius of Bloch
sphere as functions of the
evolving time t and the
fluctuating rate κ/Ω in the case
θ = π/4

Fig. 4 The radius of Bloch
sphere as functions of the initial
angle θ and the fluctuating rate
κ/Ω in the case t = π [s]

Berry phase decreases smoothly in the region θ ∈ [0,π] and then increases in the region θ ∈
[π,2π], which is similar to the behavior of the radius r(t) of Bloch sphere (see Fig. 4). In the
kinematic approach, however, the discontinuous point of Berry phase is emerged at θ = π .
From Figs. 3 and 4, we see that the radius r(t) of Bloch sphere is smooth and continuous
functions of evolving time, initial angle and fluctuating rate. Therefore, the discontinuous
property is difficult to be explained by a physical reason.

By comparing Eq. (30) from our approach with Eq. (23) from the kinematic approach,
we find that the kinematic approach includes only the contribution of one eigenstate of den-
sity matrix similarly to the pure state, which may lose the physical content from another
eigenstate. In our approach, the contributions of two eigenstates are exactly includes in the
Berry phase of mixed state in terms of the ensemble probabilities. Because of the interfer-
ence between the two eigenstates, the discontinuous point disappears in our approach to the
Berry phase of mixed state.
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Such a geometric phase factor can in principle be measured by interfering the atomic
system which has undergone the above evolution with a coherent atomic system that did
not evolve. An possible way to determine the correctness of definition for the geometric
phase of mixed state can be provided by an analogous of the well-known single-photon
Mach-Zehnder interferometer, which have already been reported in many Refs. [31, 32].

In summary, the geometric phase of mixed state is investigated in terms of Bloch sphere
structure. We find that the kinematic approach does not include the contribution from one
of two eigenstate of density matrix with the eigenvalue (1 − r(t))/2. The results lead to the
discontinuous geometric phase. In our approach, the geometric phase of mixed state is a
smooth function of the initial angle.
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