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Abstract In this paper we construct charged thin-shell wormholes in (2 + 1)-dimensions
applying the cut-and-paste technique implemented by Visser, from a BTZ black hole which
was discovered by Bañados, Teitelboim and Zanelli (Phys. Rev. Lett. 69:1849, 1992), and
the surface stress are determined using the Darmois-Israel formalism at the wormhole throat.
We analyzed the stability of the shell considering phantom-energy or generalised Chaplygin
gas equation of state for the exotic matter at the throat. We also discussed the linearized
stability of charged thin-shell wormholes around the static solution.
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1 Introduction

Last two decades traversable wormholes and thin-shell wormholes are very interesting topic
to the scientist, though it is a hypothetical concept in space-time. At first Morris and Thorns
[3] proposed the structure of traversable wormhole which is the solution of Einstein’s field
equations having two asymptotically flat regions connected by a minimal surface area, called
throat, satisfying flare-out condition [4]. However, one has to tolerate the violation of energy
condition which is treated as exotic matter. Visser, Kar and Dadhich [5] have shown how one
can construct a traversable wormhole with small violation of energy condition. Different
types of wormholes have been discussed in [6–9].

Though, it is very difficult to deal with the exotic matter (violation of energy condition),
Visser [10], adapted a way to minimize the usage of exotic matter applying the cut-and-
paste technique on a black hole to construct a new class of spherically symmetric wormhole,
known as thin-shell wormhole where the exotic matter is concentrated at the throat of the
wormhole. The surface stress-energy tensor components, at the throat, are determined using
the Darmois-Israel formalism [11, 12].
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It is needed to define an equation of state for the exotic matter, located at the throat,
though several models have been proposed, one of them is the “Phantom-like” equation of
state defined as: p=wρ, w < −1, for more specifically when w < −1/3, then the equation
of state is dark energy type and when w > −1/3, then equation of state is quintessence
type. Another important equation of state is the “generalised Chaplygin gas”, defined as:
p=−A/ρα , where A is a positive constant and 0 < α ≤ 1. A well study for both equation of
state on wormholes have been discussed in [13–22].

For the local stability of the shell around the static solution under small perturbation,
Visser and Poisson [23] proposed the linearized stability analysis for thin-shell wormhole
by joining two Sehwarzschild geometries. Lobo and Crawford [24], extended the idea of
linearized stability analysis with the cosmological constant. Stability analysis of charged
thin-shell wormholes have been studied in [25–28]. Recently several works have been done
in (2 + 1) dimensions in [29–36].

Charged black holes and wormholes are very interesting topic in recent days. “Charge
without charge” effects of Misner-Wheeler [37] is one of the most interesting fact produced
by wormholes. Morris and Thorns wormhole takes a new level after the addition of an elec-
tric charged proposed by Kim and Lee [38, 39].

In the year 1992, Bañados, Teitelboim and Zanelli (BTZ) [1] discovered a black hole in
(2 + 1) dimensions with a negative cosmological constant, which is very similar to (3 + 1)

dimensional black hole. Babichev, Dokuchaev and Eroshenko [40] have shown that with
accretion of phantom-energy, black hole mass decreases and for the decreasing mass, the
existence of horizon is not crucial. Applying this concept on BTZ black hole, Jamil and
Akbar [41] have shown that mass evolution is dependent on the pressure and density of the
phantom energy rather than the mass of the black hole.

In this work, we present a thin-shell wormhole from charged BTZ black holes by the cut-
and-paste technique in (2 + 1)-dimensions. Here we survey, whether the charged thin-shell
is stable or not when we consider the equation of state is “Phantom-like” or “generalised
Chaplygin” gas. Linearized stability has also discussed around the static solution. Various
aspects of the thin-shell wormholes are also analyzed.

2 Construction of Charged Thin-Shell Wormhole

The charged BTZ black hole with a negative cosmological constant Λ = −1/L2 is a solution
of (2 + 1)-dimensional gravity. The metric is given by [2]

ds2 = −f (r)dt2 + dr2

f (r)
+ r2dφ2, (1)

f (r) = r2

L2
−

[
M + Q2

2
ln

(
r

L

)]
. (2)

Where f (r) is known as lapse function. M and Q are mass and electric charge of the BTZ
black hole. Here we take two identical copies from BTZ black hole with r ≥ a:

M± = (x | r ≥ a)

and stick them together at the junction surface

Σ = Σ± = (x | r = a)
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to get a new geodesically complete manifold M = M+ + M−. The minimal surface area
at Σ , referred as a throat of wormhole where we take a > rh to avoid the event horizon.

The junction surface (where the wormhole throat is located) is one dimensional ring of
matter where the stress energy components are non zero can be evaluated using the second
fundamental forms [33–36] defined by

Ki±
j = 1

2
gik ∂gkj

∂η

∣∣∣∣
η=±0

= 1

2

∂r

∂η

∣∣∣∣
r=a

gik ∂gkj

∂r

∣∣∣∣
r=a

. (3)

Here, η is the Riemann normal coordinates, positive and negative in two side of the bound-
aries with xμ = (τ,φ, η), where τ represents the proper time on the shell.

Since, Kij is not continuous for the shell around Σ , so the second fundamental forms
with discontinuity are given by

Kij = K+
ij − K−

ij . (4)

Now, one can define the surface stress energy tensor Si
j , at the junction. Using Lanczos

equation follow from the Einstein equations lead to

Si
j = − 1

8π

(
Ki

j − δi
jK

k
k

)
. (5)

Considering circular symmetry, Ki
j becomes

Ki
j =

(
Kτ

τ 0
0 K

φ

φ

)
, (6)

then the surface stress-energy tensor become

Si
j =

(−σ 0
0 −v

)
, (7)

where σ is surface energy density and v is surface pressure, then Lanczos equation becomes

σ = − 1

8π
κ

φ

φ , (8)

v = − 1

8π
κτ

τ . (9)

Now, using Eqs. (3)–(9) for the metric given in Eq. (1), we get the above expression as

σ = − 1

4πa

√
a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
+ ȧ2, (10)

p = −v = 1

4π

[
a

r0
2 − Q2

4a
+ ä√

a2

L2 − [M + Q2

2 ln( a
L
)] + ȧ2

]
. (11)

Here, overdot denotes the derivatives with respect to τ , assuming the throat radius is a
function of proper time i.e. a = a(τ).
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Fig. 1 Variations of the
expressions of energy conditions
shown against a

For the static configuration of radius a, we have (i.e. ȧ = 0 and ä = 0) from Eqs. (10)
and (11)

σ = − 1

4πa

√
a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
, (12)

p = −v = 1

4π

[
a

L2 − Q2

4a√
a2

L2 − [M + Q2

2 ln( a
L
)]

]
. (13)

The energy condition demands, if σ ≥ 0 and σ + p ≥ 0 are satisfied, then the weak
energy condition (WEC) holds and by continuity, if σ + p ≥ 0 is satisfied, then the null
energy condition (NEC) holds. Moreover, the strong energy (SEC) holds, if σ + p ≥ 0 and
σ + 2p ≥ 0 are satisfied. We get from Eqs. (12) and (13), that σ < 0 but σ + p ≥ 0 and
σ + 2p ≥ 0, for all values of q , M and a, which show that the shell contains matter, violates
the weak energy condition and obeys the null and strong energy conditions which is shown
in Fig. 1.

Using different values of mass (M) and charge (Q), we plot σ and p as a function of
the a, shown in Figs. 2, 3, 4 and 5.

3 The Gravitational Field

In this section we analyze the attractive and repulsive nature of the wormhole, constructed
from charged BTZ black hole and calculate the observer’s three-acceleration aμ = uμ

ν uν ,
where uν = dxν/dτ = (1/

√
f (r),0,0). Only non-zero component for the line element in

Eq. (1), is given by

ar = Γ r
tt

(
dt

dτ

)2

= r

L2
− Q2

4r
. (14)
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Fig. 2 Plot for σ versus a:
Different values of charge (Q)

when mass (M = 1) is fixed

Fig. 3 Plot for σ versus a:
Different values of mass (M)

when charge (Q = 0.5) is fixed

A test particle when radially moving and initially at rest, obeys the equation of motion

d2r

dτ 2
= −Γ r

tt

(
dt

dτ

)2

= −ar, (15)

which gives the geodesic equation if ar = 0. Also, we observe that the wormhole is attractive
when ar > 0 and repulsive when ar < 0, which is shown in Fig. 6

4 The Total Amount of Exotic Matter

To construct such a thin-shell wormhole, we need exotic matter. Though, using BTZ in
the thin-shell wormhole construction is that, it is not asymptotically flat and therefore the
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Fig. 4 Plot for p versus a:
Different values of charge (Q)

when mass (M = 1) is fixed

Fig. 5 Plot for p versus a:
Different values of mass (M)

when charge (Q = 0.5) is fixed

wormholes are not asymptotically flat. Recently Mazharimousavi, Halilsoy and Amirabi
[42] shown that a non-asymptotically flat black hole solution provides Stable thin-shell
wormholes which are entirely supported by exotic matter.

In this section, we evaluate the total amount of exotic matter for the shell which can be
quantified by the integral [43–47]

Ωσ =
∫

[ρ + pr ]√−gd2x, (16)

where g represents the determinant of the metric tensor. Now, by using the radial coordinate
R = r − a, we have

Ωσ =
∫ 2π

0

∫ ∞

−∞
[ρ + pr ]√−gdRdφ. (17)
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Fig. 6 The wormhole is
attractive when ar > 0 and
repulsive when ar < 0

Fig. 7 Variation of the total
amount of exotic matter on the
shell with respect to the mass and
the charge

For the infinitely thin shell it does not exert any radial pressure i.e. pr = 0 and using ρ =
δ(R)σ(a) for above integral we have

Ωσ =
∫ 2π

0
[ρ√−g]|r=adφ = 2πaσ(a) = −1

2

√
a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
. (18)

With the help of graphical representation (Fig. 7), we are trying to describe the variation of
the total amount of exotic matter on the shell with respect to the mass and the charge.

5 Stability

Stability is one of the important issue for the wormhole. Here we analyze the stability of the
shell from various angle.Our approaches are (i) phantom-like equation of state (ii) general-
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ized chaplygin gas equation of state and (iii) linearized radial perturbation, around the static
solution.

5.1 Phantom-Like Equation of State

Here, we are trying to describe the stability of the shell considering the equation of state
when the surface energy density and the surface pressure are taken into account. We set
an equation w = p/σ i.e. p = wσ known as Phantom-like equation of state when w < 0.
Since, it is easy to check that the surface pressure and energy density obey the conservation
equation

d(aσ)

dτ
+ p

d

dτ
(a) = 0, (19)

after differentiating w.r.t τ , one can get

σ̇

ȧ
+ 1

a
(σ + p) = 0, (20)

and using p=wσ , we get

dσ

da
+ 1

a
σ(1 + w) = 0. (21)

Now, consider the static solution with radius a = a0, we have

σ(a) = σ(a0)

(
a0

a

)(1+w)

, (22)

rearranging Eq. (10) we can write

ȧ2 + V (a) = 0. (23)

Which is the equation of motion of the shell, where the potential V (a) is defined as

V (a) = f (a) − 16π2a2σ 2(a). (24)

Substitute the value of σ(a) from Eq. (22), one can get

V (a) = a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
− 16π2a2σ 2

0

(
a0

a

)2(1+w)

, (25)

where σ0 = σ(a0), and rewriting the above equation we have

V (a) = a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
− 16π2a−2w A. (26)

With A = σ 2
0 a

2(1+w)

0 . Expanding V (a) around the static solution i.e. at a = a0, we have

V (a) = V (a0) + V ′(a0)(a − a0) + 1

2
V ′′(a0)(a − a0)

2 + O
[
(a − a0)

3
]
, (27)
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Fig. 8 Stable wormhole when
w > −1/3 i.e. when equation of
quintessence state

Fig. 9 Stable wormhole when
w < −1/3 i.e. when equation of
dark energy state

where the primes denote the derivative with respect to a. The wormhole is stable if and
only if V (a0) has local minimum at a0 and V ′′(a0) > 0. Therefore, using the conditions
V (a0) = 0 and V ′(a0) = 0, with V ′′(a0) is given by

V ′′(a0) = 2

L2
+ Q2

2a2
0

− 32π2σ 2
0 w(2w + 1). (28)

We have verified that the inequality V ′′(a0) > 0, holds for suitable choice of Q, M and L

when w takes the different values. We are trying to describe the stability of the configura-
tion with help of graphical representation. In Figs. 8, 9 and 10, we plot the graphs to find
the possible range of a0 where V (a0) possess a local minimum. Thus, fixing the values of
Q = 0.5, M = 1 and L = 10, we plot three different graphs (Figs. 8–10), corresponding to
Eq. (28) for different values of w = −0.1,−0.4,−2.5 respectively, which represents differ-
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Fig. 10 Stable wormhole when
w < −1 i.e. when equation of
phantom energy state

ent equation of state. In other words, we get stable thin-shell wormholes from charged BTZ
black hole for different values of w.

5.2 Generalized Chaplygin Gas Equation of State

Here we are trying to check the stability of the shell considering Chaplygin gas equation of
state, at the throat, which is a hypothetical substance satisfying an equation of state:

p = − A

σα
, (29)

where σ is surface energy density and p is surface pressure with A positive constants and
0 < α ≤ 1.

substitute the values of σ and p (i.e. Eqs. (10) and (11)) in Eq. (29), we get

(−1)α[ a

L2 − Q2

4a
+ ä]

(4π)α+1aα

[
a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
+ ȧ2

] α−1
2 + A = 0. (30)

For the case of static solution, the surface energy density and surface pressure are given
by Eqs. (12) and (13), and relate to Eq. (29), one can get the solution as

(−1)α

(4π)α+1aα

[
a

L2
− Q2

4a

][
a2

L2
−

[
M + Q2

2
ln

(
a

L

)]] α−1
2 + A = 0. (31)

By assuming L.H.S of Eq. (31) as G(a) = 0, we get the throat radius of the shell at some
a = a0. In Fig. 11, we show that G(a) cuts the a-axis at a0 = 2.8 for the value of α = 0.2,
which represents the radius of the throat of shell.

Now, we return to the conservation Eq. (20) and using Eq. (29), we have

σ̇ + ȧ

a

(
σα+1 − A

σα

)
= 0, (32)
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Fig. 11 radius of the throat
when G(a) = 0 cuts the axis a at
some a = a0

after solving the above equation, one can get

σ =
[
A + (

σα+1
0 − A

)(a0

a

)α+1] 1
α+1

. (33)

where σ0=σ(a0). Therefore potential V (a), as defined in Eq. (24) takes of the form

V (a) = f (a) − 16π2a2

[
A + (

σα+1
0 − A

)(a0

a

)α+1] 2
α+1

. (34)

Where

f (a) = a2

L2
−

[
M + Q2

2
ln

(
a

L

)]
. (35)

The above solution gives a stable configuration if the second order derivative of the potential
is positive for the static solution and V (a0) posses a local minimum at a0. To find the range of
a0 for which V ′′(a0) > 0 we use graphical representation due to complexity of the expression
V ′′(a0) for the set of parameters in Eq. (34). Therefore, corresponding to the radius of the
throat at a0 = 2.8 (Fig. 11), we are trying to find the possible range of a0 for which V (a0)

posses a local minima. In Fig. 12 we show the range of a0 for the value of α = 0.2 and
other corresponding parameters (values are given in the caption of Fig. 12), for the stable
configuration. Thus, we can get stable thin-shell wormholes supported by exotic matter filled
with Chaplygin gas equation of state.

5.3 Linearized Stability Analysis

Now we are trying to find the stability of the configuration around the static solution at
a = a0 under radial perturbation. Applying the Taylor series expansion for the potential
V (a) around a0, we get

V (a) = V (a0) + V ′(a0)(a − a0) + 1

2
V ′′(a0)(a − a0)

2 + O
[
(a − a0)

3
]
, (36)
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Fig. 12 The stable wormhole for
0 < α ≤ 1 when V (a) varies
w.r.t.a.

where the prime denotes d/da. After differentiating Eq. (24), we obtain

V ′(a) = 2a

L2
− Q2

2a
− 32π2aσ

(
σ + aσ ′). (37)

Now from Eq. (20), we can write σ ′=− 1
a
(σ + p) where σ ′=σ̇ /ȧ and using Eq. (37) we

get

V ′(a) = 2a

L2
− Q2

2a
+ 32π2apσ. (38)

Again differentiating w.r.t a and using the parameter β2(σ ) = ∂p

∂σ
|σ , one can get

V ′′(a) = 2

L2
+ Q2

2a2
− 32π2p2 − 32π2β2

(
pσ + σ 2

)
. (39)

Since we are linearizing around a = a0, we require that V (a0) = 0 and V ′(a0) = 0. Now
using the values of σ and p from Eqs. (12) and (13), we get the solution of V ′′(a0) given by

V ′′(a0) = 2

L2
+ Q2

2a2
0

− 2β2

a2
0

[
Q2

4
− H

]
− 2

[ a0
L2 − Q2

4a0
]2

a2
0

L2 − H

, (40)

where H = M + Q2

2 ln(
a0
L

).
The configuration is in stable equilibrium if and only if V ′′(a0) > 0. So starting with

V ′′(a0) = 0 and solve for β2 we get

β0
2 = X0(a0) ≡ 1 + 8a2

0Q
2 − (L2Q4 + 16H 2L2)

4a2
0Q

2 − 4H(4a2
0 + L2Q2) + 16H 2L2

. (41)

Here we observe that

(i) β0
2 < X0(a0), if 4a2

0Q
2 > L2(Q4 + 16H 2),

(ii) β0
2 > X0(a0), if 4a2

0Q
2 < L2(Q4 + 16H 2).
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Fig. 13 The region of stability is
below the curve

Fig. 14 The region of stability is
above the curve on the left and
below the curve on the right

The value of β0
2 which represent the velocity of sound for ordinary matter, does not exceed

the speed of light and lies in the region of 0 ≤ β0
2 < 1. In Fig. 13, the region of stability

depicted below the solid line, corresponding to the values of M = 1, Q = 0.5, and L2 =
0.01, where in Figs. 14 and 15, the region of stability depicted above the left and below
the right of the solid line, corresponding to the value of M = 1, L2 = 10 and increasing the
value of charge Q, respectively. In all cases the stability region of β0

2 is grater than one. As
we are dealing with exotic matter, we relaxed the range of β0

2 for ordinary matter in our
stability analysis for the thin-shell wormholes.

6 Conclusions

In this work we construct charged thin-shell wormhole from BTZ black hole using the
cut-paste technique. Though, a disadvantage with using BTZ in the thin-shell wormholes
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Fig. 15 The region of stability is
above the curve on the left and
below the curve on the right

construction is that it is not asymptotically flat and therefore the wormholes are not asymp-
totically flat. Therefore, there is some ‘matter’ at infinity. There is also ‘matter due to the
charge’. Vacuum solutions, or, at least asymptotically flat ones, are better because of the
‘good’ behaviour at infinity.

We obtain the surface stress energy tensor at the junction by Lanczos equation where we
observe that the energy density σ is negative but pressure p is positive. Also we get σ + p

and σ + 2p positive which shows matter contained by the shell violates the WEC but satisfy
the NEC and SEC.

We draw our main attention on the stability of the shell considering different equation of
state for the exotic matter at the throat. Firstly we consider dark, quintessence and phantom-
like equation of state changing the value of w, where we found stable wormholes in all
cases. Secondly we consider generalized Chaplygin gas equation of state and found stable
wormhole for suitable choice of α with the help of graphical representation. Finally we
studied the linearized stability analysis around the static solution i.e. at a = a0 and we found
stable wormholes in suitable range of β2

0 with charged and mass though the behavior of β0

is not clear to us for exotic matter.

Acknowledgements AB is thankful to Dr. Farook Rahaman for this concept and helpful discussion.
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