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Abstract There are some quantum private comparison (QPC) schemes proposed previ-
ously. In this paper we study these QPC protocols in non-ideal scenario and find that they
are not secure there. For resolving the problem, we propose a QPC scheme which could be
performed in practical scenario. By the use of Greenberger-Horne-Zeilinger (GHZ) states
and error-correcting code (ECC), the scheme has the capability of fault-tolerate.

Keywords Quantum private comparison · Fault-tolerate · GHZ state · Error-correcting
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1 Introduction

With the development of quantum mechanics, quantum cryptography attracts more and
more attention, and many secure protocols have been designed for quantum key distribution
(QKD) [1–7], quantum secret sharing (QSS) [8–15], quantum secure direct communication
(QSDC) [16–19], quantum teleportation (QT) [20–24], and so on. Secure multiparty com-
putation (SMPC) [25, 26] is an important and fundamental cryptographic protocol. Unfortu-
nately, it was shown by Mayers [27] and Lo-Chau [28] that deterministic two-party-setting
computation was impossible, even with quantum means. However, if some additional as-
sumptions are introduced, the quantum secure multiparty computation (QSMPC) maybe
have higher security than classical SMPC.
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Recently, the quantum private comparison (QPC) became a novel topic in quantum cryp-
tography. To be specific, QPC allows two distrustful parties, Alice and Bob, to determine
whether their secret inputs are equal or not without disclosing their own secret to each other.
In 2009, QPC was proposed by Yang et al. [29, 30]. After these, some QPC protocols based
on different states are proposed [31–38]. Summarily, the QPC schemes presented previously
have the following principles.

(1) A Third Party (TP) which is at least semi-honest is required to help the two parties
(Alice and Bob) accomplish the comparison. And TP always follows the procedure of
the protocol. He/she will take a record of all intermediate computations, and will not be
corrupted by an outside eavesdropper. However, TP might try to steal the information
from the record.

(2) No matter whether TP will know the positions of different bit value in the compared in-
formation or not, he/she will not be able to know the actual bit value of the information.

(3) All outsiders and the two players should only know the result of the comparison (i.e.,
identical or different), but not the different positions of the information.

These schemes are feasible in the ideal scenario. However, in this paper, we will point
that these schemes would not be secure in practical scenario where fault (including noise
and error) is existent in the quantum channel and measurement. And we design a new
QPC scheme based on Greenberger-Horne-Zeilinger (GHZ) states and error-correcting code
(ECC) against noise.

The rest of this paper is constructed as follows. Section 2 analyzes the previously QPC
schemes’ security in practical scenario. Then a new QPC scheme based on GHZ states and
ECC is proposed in Sect. 3. In Sect. 4, we analyzes the protocol’s security and the capability
of fault-tolerate. Finally, a short conclusion is given in Sect. 5.

2 Analysis of Some QPC Schemes’ Security in Practical Scenario

In all the QPC schemes proposed previously, there are two participants, Alice and Bob,
and a semi-honest third party, Calvin. Alice has a private information X, Bob has a pri-
vate information Y . The binary representations of X and Y in F2n are (x0, x1, . . . , xn−1),
(y0, y1, . . . , yn−1), where xi, yi ∈ {0,1}; X = ∑n−1

i=0 xi · 2i , Y = ∑n−1
i=0 yi · 2i .

These QPC schemes could be divided into two families, one is based on sharing states,
one is based on travelling photons. For simpleness, we give the processes that they com-
pare two bits xi and yi . In the first family, without loss of generality, the main steps which
removes the steps of detecting cheating could be described as

(1) Calvin, Alice and Bob (or only Alice and Bob) share a entangled state.
(2) After measurements, they have three bits, sC , sA and sB respectively (or only Alice and

Bob have two bits, sA and sB respectively), where the value of k = sC ⊕ sA ⊕ sB is
known to Calvin (or the value of k = sA ⊕ sB is known to all of Calvin, Alice and Bob).

(3) Then Alice and Bob announce the values of sA ⊕ xi and sB ⊕ yi publicly (or in private)
to Calvin.

(4) Calvin could judge whether xi = yi or not by comparing sA ⊕ sB and (sA ⊕ xi) ⊕ (sB ⊕
yi).

In the second family, without loss of generality, the main steps removes the steps of
detecting cheating could be described as

(1) Calvin prepares a photon S and sends it to Alice.
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(2) Alice performs an unitary operator I or U1 on S when xi = 0 or 1, where 〈s|(U1|s〉) = 0,
U1(U1|s〉) = |s〉 and |s〉 is arbitrary one in all the possible states of photon S. Then she
sends S to Bob.

(3) Bob performs an unitary operator I or U1 on S when yi = 0 or 1. Then he sends S to
Calvin.

(4) Calvin measures S in its initial basis. Then he could judge xi = yi if the state are not
changed, xi �= yi if the state are changed.

Now we analyze them in practical scenario. In the first family, there would be sC ⊕
sA ⊕ sB = k (or sA ⊕ sB = k) in the ideal scenario. However, in practical scenario where
fault (including noise and error) is existent in the quantum channel and measurement, it
will be sC ⊕ sA ⊕ sB = k ⊕ 1 (or sA ⊕ sB = k ⊕ 1) with some probability. For instance, in
Chen et al.’s scheme [31], the sharing entangled state (|000〉 + |111〉)/√2 would evolve to
(|001〉+ |110〉)/√2 in practical noise quantum channel which will change the correlation of
Calvin, Alice and Bob’s measurement outcomes. In the case, Calvin will judge that xi = yi

(or xi �= yi ) but in fact xi �= yi (or xi = yi ).
In the second family, the state of photon S does not change in the transmission, and

measurement mistakes does not happen in the ideal scenario. However, when channel noise
appears and measurement mistakes happens, the state |s〉 sent by one participant will evolve
to |s ⊥〉 with some probability when it arrives another participant, where 〈s|s ⊥〉 = 0. For
instance, in Yang et al.’s scheme [30], the state |0〉 sent by Calvin (denoted as TP in Ref. [30])
would evolve to |1〉 when it arrives Alice (denoted as Bob in Ref. [30]). In the case, Calvin
will judge that xi = yi (or xi �= yi ) but in fact xi �= yi (or xi = yi ).

Consequently, using the above schemes to compare two n bits private information X

and Y , Calvin will output X = Y (or X �= Y ) incorrectly but in fact X �= Y (or X = Y ) with
some probability.

From above, we conclude that QPC schemes are very sensitive of fault, special in the
case of X = Y . There even one error bit appears in the quantum channel and measurement
will lead an absolute incorrect result. In some other quantum protocols, such as QKD and
QSS, some technologies, such as privacy amplification [39] have been added to overcome
limited error. Similarly, some technologies should be added in QPC to overcome noise and
error. Next, we will give an example to solve the problem.

3 QPC Based on Error-Correcting Code

It has been shown that when the rate of error is below a certain threshold, fault tolerant
quantum information manipulation is possible by using some strategies, such as classical
error-correcting code (ECC) [40], quantum error correction [41–43], and quantum error
rejection [44]. Specially, ECC is a special form of QECC, and it is easier to implement
than other QECC.

In this section, we will give a QPC scheme in the first QPC family based on GHZ states
and ECC for fault-tolerate which is not achieved in the previously schemes. The specific
steps of the scheme are described as follows.

1. Alice, Bob and Calvin prepare a [m,n] error-correcting code which uses m bits
codeword to encode n bits word and can correct l error bits in codeword with the
error-correcting function D(xm) according to the fault rate of the noise scenario. We
suppose the error-correcting code’s generator matrix is G, check matrix is H . Then they
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encode X = (x0, x1, . . . , xN−1) and Y = (y0, y1, . . . , yN−1) to X′ = (x ′
0, x

′
1, . . . , x

′
N−1)

and Y ′ = (y ′
0, y

′
1, . . . , y

′
m−1) with the generator matrix G, respectively. There are

X′ = X · G, (1)

Y ′ = Y · G. (2)

2. Calvin prepares m triplet GHZ states all in

|Ψ 〉 = 1√
2

(|000〉 + |111〉)

= 1

2

(|+ + +〉 + |+ − −〉 + |− + −〉 + |− − +〉), (3)

where |0〉 and |1〉 are measured in Z basis, |+〉 and |−〉 are measured in X basis, and
|±〉 = 1√

2
(|0〉 ± |1〉). Then Calvin divides these m GHZ states into three sequences SA,

SB and SC , which includes the first, the second, and the third particles of all GHZ states,
respectively.

3. Calvin prepares some decoy photons prepared in states {|0〉, |1〉, |+〉, |−〉} in random. He
inserts these decoy photons in SA and SB at random positions to form sequences S∗

A and
S∗

B respectively. Then Calvin retains the quantum sequence SC and sends the sequence
S∗

A to Alice, S∗
B to Bob.

4. When Alice and Bob arrive S∗
A and S∗

B , Calvin announces the decoy photons’ positions
and measurement base. Then Alice and Bob measure them in the base and announce
their outcome. If the error rate exceeds a rational threshold, Calvin aborts the protocol
and restarts from Step 1. Otherwise, there is no eavesdropper, and the protocol continues
to the next step.

5. Alice and Bob recover SA and SB respectively by discarding the decoy photons. Then
Alice, Bob and Calvin measure SA , SB and SC in X basis, respectively. If the measure-
ment result is |+〉 (|−〉), then they encode it as the classical bit 0 (1). Thus, each of Alice,
Bob and Calvin will obtain m bits from SA, SB and SC , respectively. We denote each of
them as kA

i , kB
i and kC

i (i = 0,1, . . . ,m − 1).
6. Alice and Bob calculate x ′

i = kA
i ⊕ xi and y ′

i = kB
i ⊕ yi respectively. They announce

X′ = (x ′
0, x

′
1, . . . , x

′
m−1) and Y ′ = (y ′

0, y
′
1, . . . , y

′
m−1) to Calvin.

7. Calvin calculates c′
i = kC

i ⊕ x ′
i ⊕ y ′

i to form m bits sequence C ′ = (c′
0, c

′
1, . . . , c

′
m−1).

8. Then Calvin uses the check matrix H to check whether the number of error bits exceeds
the threshold l. If it does, Calvin aborts the protocol and restarts from Step 1. Otherwise,
he arrives n bits sequence C by decoding C ′ with error-correcting function D(C ′). If
there is at least one bit 0 in C, Calvin announces X �= Y . Otherwise, he announces
X = Y .

4 Analysis

4.1 Correctness

In the scheme, the GHZ state |Ψ 〉 will collapse to one of the states {|+ + +〉, |+ − −〉,
|− + −〉, |− − +〉}, therefore, there always have kA

i ⊕ kB
i ⊕ kC

i = 0. According to x ′
i =

kA
i ⊕ xi , y ′

i = kB
i ⊕ yi and c′

i = kC
i ⊕ x ′

i ⊕ y ′
i , we know that c′

i = x ′
i ⊕ y ′

i .
Based on Eqs. (1) and (2), there should be that

C ′ = C · G, (4)
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where C ′ = (x0 ⊕ y0, x1 ⊕ y1, . . . , xn−1 ⊕ yn−1). Namely, C ′ is the codeword of C =
(x0 ⊕ y0, x1 ⊕ y1, . . . , xn−1 ⊕ yn−1) decoded with the [m,n] error-correcting code. There-
fore, C ′ could be checked by the check matrix H , and C could be recoded with the error-
correcting function D(C ′).

If there is at least one bit 1 in C ′, it indicates that at least one set of (xi, yi) are different,
i.e., X �= Y . Otherwise, if all the bits are 0 in C ′, it indicates that all the sets of (xi, yi) are
same, i.e., X = Y . So the presented scheme is correctness.

4.2 Security

In this sub-section, we will analyze the outsider attack and participant attack respectively.

4.2.1 Outsider Attack

After Alice and Bob received the quantum sequences S∗
A and S∗

B respectively, they and
Calvin will start their public discussion to check for the existence of an eavesdropper. Calvin
announces the positions and the measurement bases of all decoy photons. Later, both of
Alice and Bob publish the measurement results. They can discuss the public results to de-
termine whether an eavesdropper exists or not. Since the eavesdropper (say Eve) does not
know the positions, and the measuring bases of all decoy photons before Calvin announces
them, some well known attacks such as intercept-resend attack, measurement-resend attack,
and entanglement-measure attack can be detected via the checking mechanism [29, 30]. For
example, if Eve measures a X-basis decoy photon with Z basis, she will have a probability
of 1

2 to be detected. Obviously, Eve has a probability of 1
2 to choose the wrong basis for

measurement. Therefore, the detection rate for each decoy photon is 1
2 × 1

2 = 1
4 . For t decoy

photons, the detection rate is 1 − ( 3
4 )t , which is close to 1 if t is large enough. Furthermore,

since no round-trip transmission strategy is used in the protocol, the Trojan horse attack
can be automatically prevented. Therefore, the proposed protocol can resist all well known
outsider attacks.

4.2.2 Participant Attack

In QPC, every participant has more resources than outsider. With these resources, a dishonest
participant has more strategies to cheat besides the strategies which outsider can perform.
So the term participant attack, which emphasizes that the attacks from dishonest users are
generally more powerful and should be paid more attention to, is first proposed by Gao et al.
in Ref. [45] and has attracted much attention in the cryptanalysis of quantum cryptography
[46–52]. From the conclusions of QSMPC, we know that it should be insecure when less
than a half of participants are honest [53–58]. Since QPC is a instance of QSMPC, it can
only guarantee the secure when there is only one dishonest participant. So we will only
analyze the attacks performed by Alice, Bob, and Calvin respectively, but not two colluded
participants.

The first case discusses the possibility that a participant obtains the other participant’s
information. The second case discusses the possibility that the TP Calvin obtains Alice or
Bob’s private information.

Case 1 Alice and Bob want to learn the other’s information.
Suppose Bob is a dishonest participant who attempts to obtain the other participant’s (Al-
ice’s) information. One possible way for Bob is to use the photons (i.e., the second article
of all GHZ states in SB ) sent to him.
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When Alice and Calvin have not measured their photons, the reduced density operator of
Bob’s photon is

ρB = trAC

( |000〉 + |111〉√
2

〈000| + 〈111|√
2

)

= 1

2
|0〉〈0| + 1

2
|1〉〈1| =

[ 1
2 0
0 1

2

]

. (5)

After Alice and Calvin’s measurements in basis X , Bob’s photons will collapse to |+〉 and
|−〉 with probability 50 % respectively. If it collapses to |+〉, Alice and Calvin’s measure-
ment outcomes should be one of {|++〉, |+−〉, |−+〉, |−−〉} with probability 1/4. Namely,
Alice’s outcome should be |+〉 and |−〉 with equal probability. Consequently, Bob cannot
obtain the information of kA

i . In fact, he only can obtain the information of kA
i ⊕ kC

i by
measuring his ith photon. Since kC

i is hold by Calvin and cannot be known by Bob, Bob
could know nothing about kA

i . Therefore, he could not obtain xi even he can decode the
value of xi ⊕ kA

i . Namely, he cannot get any information about Alice’s private information.
Case 2 Calvin wants to learn the private information X, Y .

In the scheme, Calvin is a semi-honest TP. He always follows the processes of the scheme.
Such as, he will prepare GHZ states as an honest party. He will take a record of all inter-
mediate computations, and will not be corrupted by an outside eavesdropper. So he only
can use his measurement outcome and the announcements of Alice and Bob to cheat.
Same to a dishonest Bob, Calvin only can obtain the information of kA

i ⊕ kB
i when he

measures his ith photon. He only could obtain xi ⊕ yi (but not xi or yi ) even he can decode
the value of kA

i ⊕ xi and kB
i ⊕ yi . Namely, he cannot get any information about Alice and

Bob’s private information.

4.3 The Capability of Fault-Tolerate

In the presented scheme, error-correcting code is used for correcting the fault appears both
in practical quantum channel and measurement. Since error-correcting code’s capability of
error-correcting is limited, the protocol’s capability of error-correcting is limited too. In the
protocol, the total fault rate must be less than l/m, otherwise, it would lead to restart the
scheme. Then Alice, Bob and Calvin must prepare another error-correcting code which has
higher error-correcting capability to utilize in the scheme.

We must point out that there are some computer power needed for utilizing error-
correcting code. In the scheme, the participants might have not enough computer power
to utilize the [m,n] error-correcting code when n is very large. For solving the problem,
they can select a suitable value of n′ to split the n private information to [N/L] groups
where [N/L] is the maximal integer which is less than N/L, then fill up the last group with
some 0. After this, they can arrive the comparison result by comparing every groups using
the presented scheme until Calvin announce X �= Y at one group or announce X = Y all the
time.

5 Conclusion

In this paper, we point out that the previously QPC schemes are not secure in practical
scenario where fault (including noise and error) is existent in the quantum channel and
measurement. Then we propose a QPC scheme using GHZ states and error-correcting code.
The analysis indicates that the scheme is secure and has the capability of fault-tolerate. In
future, with the error-correcting code, we also can design other QPC schemes using other
quantum resources in practical scenario.
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