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Abstract In this paper we will extend the notion of tangent bundle to a Z2 graded tangent
bundle. This graded bundle has a Lie algebroid structure and we can develop notions semi-
Riemannian metrics, Levi-Civita connection, and curvature, on it. In case of space-times
manifolds, even part of the tangent bundle is related to space and time structures (gravity)
and odd part is related to mass distribution in space-time. In this structure, mass becomes
part of the geometry, and Einstein field equation can be reconstructed in a new simpler form.
The new field equation is purely geometric.
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1 Graded Tangent Bundles

In general relativity, gravity can be formulated by Lorentzian metrics on the ordinary tangent
bundle of a space-time [5]. Since we can extend ordinary tangent bundle of a manifold to a
larger bundle, so we obtain additional degree of freedom to describe more concepts.

Tangent vectors to a manifold M , can be identified by point-derivations of the algebra
C∞(M) [4]. If we replace the algebra C∞(M) by some other related algebra, we may find
some new tangent vectors. We can consider the Z2 graded two dimensional algebra R ⊕ R

which is the Clifford algebra of R furnished with its canonical positive definite inner prod-
uct. The unit of this algebra is (1,1) which is denoted by 1. Even part of the algebra R ⊕ R

is generated by 1. Odd part of this algebra is generated by τ = (1,−1). So, every elements
of R ⊕ R has the form λ1 + μτ , in fact

(a, b) = a + b

2
1 + a − b

2
τ.
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For the sake of simplicity, denote λ1 by λ. Denote the set of all R ⊕ R valued smooth
function on M , by Ĉ∞(M). This set, by pointwise addition and multiplication is a Z2 graded
algebra, and its elements have a form of f + gτ in which f,g ∈ C∞(M). Even subalgebra
of Ĉ∞(M) is C∞(M), and its odd functions have a form of gτ for some g ∈ C∞(M). Even
and odd elements of a Z2 graded algebra are called homogeneous and their parity is defined
as follows

|a| =
{

0 a is even,

1 a is odd.

Derivations of C∞(M) identify ordinary vector fields on M . Now, we are going to find
graded derivations of Ĉ∞(M).

Definition 1.1 A linear map D : Ĉ∞(M) −→ Ĉ∞(M) is called an even derivation iff even
and odd subspaces of Ĉ∞(M) are invariant under D and for f̂ , ĝ ∈ Ĉ∞(M), we have

D(f̂ ĝ) = D(f̂ )ĝ + f̂ D(ĝ).

Definition 1.2 A linear map D : Ĉ∞(M) −→ Ĉ∞(M) is called an odd derivation iff D

changes parity of homogeneous elements and for homogeneous elements f̂ , ĝ ∈ Ĉ∞(M),
we have

D(f̂ ĝ) = D(f̂ )ĝ + (−1)|f̂ |f̂ D(ĝ).

Theorem 1.3 Any vector field X ∈ XM determine an even derivation on Ĉ∞(M) by X(f +
gτ) = X(f ) + X(g)τ and every even derivation on Ĉ∞(M) can be obtained by this way.

Proof Clearly the operation of X on Ĉ∞(M) defined as above, is an even derivation. Con-
versely, let D be an even derivation. Restriction of D to C∞(M) is an ordinary derivation
on C∞(M) and determines some vector field X ∈ XM such that for f ∈ C∞(M) we have
D(f ) = X(f ). We can deduce D(τ) = 0.

0 = D(1) = D(ττ) = 2τD(τ) ⇒ D(τ) = 0.

It is easy to see that D(f + gτ) = X(f ) + X(g)τ . �

Theorem 1.4 Any function h ∈ C∞(M) determine an odd derivation on Ĉ∞(M) by Dh(f +
gτ) = gh and every odd derivation on Ĉ∞(M) can be obtained by this way.

Proof Clearly Dh is an odd derivation. Conversely, suppose that D is an odd derivation.
By commutativity of Ĉ∞(M), we can infer that for any function f ∈ C∞(M) we have
D(f ) = 0.

D(f )τ + f D(τ) = D(f τ) = D(τf ) = D(τ)f − τD(f ) ⇒ 2D(f )τ = 0 ⇒ D(f ) = 0.

D(τ) is an even element of Ĉ∞(M), so for some h ∈ C∞(M) we have D(τ) = h. It is easy
to show that D = Dh. �

These theorems show that the space of graded derivations of the graded algebra Ĉ∞(M)

is X(M) ⊕ C∞(M). By pointwise addition and multiplication, this space is a Z2 graded
module on C∞(M), and we denote it by X̂(M). Even part of X̂(M) is X(M) and its odd part
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is C∞(M). For constant function 1, denote the odd derivation D1 by ξ , so ξ(f + gτ) = g.
Every odd derivation on Ĉ∞(M) is of the form hξ for some h ∈ C∞(M), and we call them
odd vector fields on M . Even vector fields, are ordinary vector fields on M . We can construct
the bundle T̂ M as follows

T̂ M =
⋃
p∈M

TpM ⊕ R.

X̂(M) is the space of sections of T̂ M , so we call T̂ M as the graded tangent bundle of
M . T̂ M is a Z2 graded bundle and is a natural graded extension of the ordinary tangent
bundle. Henceforth, we use symbols X̂, Ŷ , Ẑ, . . . for arbitrary sections of T̂ M and symbols
X,Y,Z, . . . for ordinary (or even) vector fields on M . Lie bracket of two graded derivation
D and D′, is a graded derivation, defined as follows:

[
D, D′] = D ◦ D′ − (−1)|D||D′ |D′ ◦ D.

This definition implies that Lie bracket of even vector fields is the ordinary Lie bracket of
vector fields, and Lie bracket of even and odd vector fields is as follows:

[X, hξ ] = X(h)ξ,

[f ξ, gξ ] = 0.

This Lie bracket, make Ĉ∞(M) into a super Lie algebra. Since, Lie bracket of odd vector
fields are zero, Ĉ∞(M) is an ordinary Lie algebra too. This Lie algebra structure of Ĉ∞(M)

and the anchor map ρ : T̂ M −→ T M, ρ(X + hξ) = X, convert T̂ M into a Lie algebroid.
So, we can use properties of algebroid structures for T̂ M . In [3] we have used a similar
structure for unification of electromagnetism and gravity, but T̂ M play a different role here.

2 Graded Connections on Graded Tangent Bundles

Due to the theory of connections on Lie algebroids, a connection on T̂ M is a bilinear oper-
ator ∇̂ : X̂(M) × X̂(M) −→ X̂(M) that satisfies the following relations.

For X̂, Ŷ ∈ X̂(M) and f ∈ C∞(M):

∇̂f X̂Ŷ = f ∇̂X̂Ŷ ,

∇̂X̂f Ŷ = ρ(X̂)(f )Ŷ + f ∇̂X̂Ŷ .

Note that here, we have ρ(X̂)(f ) = X̂(f ), and we can rewrite the second equation in a more
simple and natural form. If a connection ∇̂ on T̂ M , respects parity of vector fields such that
for homogeneous vector fields X̂, Ŷ , ∇̂X̂Ŷ be homogeneous and |∇̂X̂Ŷ | = |X̂| + |Ŷ |, then
we call it a graded connection.

Theorem 2.1 For any graded connection ∇̂ on T̂ M , there exist a unique connection ∇
on M and two 1-form α,α′ and a vector field X0 on M such that for X,Y ∈ X(M) and
h, k ∈ C∞(M):

∇̂XY = ∇XY, (1)

∇̂hξX = hα(X)ξ, (2)

∇̂Xhξ = hα′(X)ξ + X(h)ξ, (3)
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∇̂hξ kξ = hkX0. (4)

Proof Restriction of ∇̂ to even vector fields is an ordinary connection ∇ on M . ∇̂ξX and
∇̂Xξ are odd vector fields, so we can define α and α′ by α(X)ξ = ∇̂ξX, α′(X)ξ = ∇̂Xξ .
Properties of connections and odd vector fields imply that α and α′ are 1-forms. Set X0 =
∇̂ξ ξ . Straight computations yield Eqs. (1)–(4). �

Conversely, any graded connection on T̂ M is obtained by Eqs. (1)–(4) for some connec-
tion ∇ and 1-forms α and α′ and some vector field X0 on M . Torsion of ∇̂ is defined as
follows.

T̂ (X̂, Ŷ ) = ∇̂X̂Ŷ − ∇̂Ŷ X̂ − [X̂, Ŷ ].
∇̂ is torsion free iff ∇ is torsion free and α = α′. So, torsion free graded connections on T̂ M

are obtained by triplet (∇, α,X0) in which ∇ is a torsion free connection and α is a 1-form
and X0 is a vector field on M .

3 Semi-Riemannian Metrics on Graded Tangent Bundles

Definition 3.1 Any semi-Riemannian metric on the vector bundle T̂ M is called a graded
metric on T̂ M iff even vectors are orthogonal to odd vectors.

Any semi-Riemannian metrics on T̂ M determines a compatible and torsion free con-
nection ∇̂ on T̂ M by Koszul formula [2], and is called the Levi-Civita connection of the
metric.

2〈∇̂X̂Ŷ , Ẑ〉 = X̂〈Ŷ , Ẑ〉 + Ŷ 〈Ẑ, X̂〉 − Ẑ〈X̂, Ŷ 〉〈[X̂, Ŷ ], Ẑ〉 − 〈[Ŷ , Ẑ], X̂〉 + 〈[Ẑ, X̂], Ŷ 〉
.

Theorem 3.2 Levi-Civita connection of a graded metric on T̂ M is a graded connection.

Proof If sum of the parity of homogeneous vector fields X̂, Ŷ , Ẑ be odd, then Koszul
formula shows that ∇̂X̂Ŷ is orthogonal to Ẑ. So, we can deduce ∇̂X̂Ŷ is homogeneous and
its parity is sum of the parity of X̂ and Ŷ . �

Let ĝ be a graded metric on T̂ M , then its restriction to T M is a semi-Riemannian met-
ric on M and h = ĝ(ξ, ξ) is a smooth nonzero function on M . Conversely, every semi-
Riemannian metric g on M and smooth nonzero function h on M , determine a graded metric
on T̂ M as follows:

〈X + f ξ, Y + kξ 〉 = g(X,Y ) + f kh.

Without lose of generality, we consider the case ĝ(ξ, ξ) is positive and is of the form
ĝ(ξ, ξ) = e2θ . So, graded metrics on M are determined by pairs (g, θ) in which g is a semi-
Riemannian metric on M and θ ∈ C∞(M) such that 〈X,Y 〉 = g(X,Y ) and 〈ξ, ξ 〉 = e2θ .

The gradient of a smooth function f on a semi-Riemannian manifold (M,g) is denoted
by �∇f and defined by g( �∇f,X) = df (X) = X(f ). As we have already shown, any torsion
free graded connection ∇̂ on T̂ M is determined by a triplet (∇, α,X0), in which ∇ is a
torsion free connection and α is a 1-form and X0 is a vector field on M .
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Theorem 3.3 If ĝ = (g, θ) is a graded semi-Riemannian metric on T̂ M , then its Levi-
Civita connection is determined by the triplet (∇, dθ,−e2θ �∇θ) in which ∇ is the Levi-Civita
connection of g.

Proof Let Levi-Civita connection of ĝ be determined by (∇, α,X0). Applying Koszul for-
mula to even vector fields implies that ∇ is the Levi-Civita connection of g. Now,

X(e2θ ) = X〈ξ, ξ 〉 = 2〈∇̂Xξ, ξ 〉 = 2
〈
α(X)ξ, ξ

〉
= 2α(X)〈ξ, ξ 〉 = 2α(X)e2θ .

But X(e2θ ) = 2e2θX(θ), so α(X) = X(θ). Consequently, α = dθ . Following computations
show that X0 = −e2θ �∇θ .

0 = ξ 〈Y, ξ 〉 = 〈∇̂ξY, ξ 〉 + 〈Y, ∇̂ξ ξ 〉
= 〈

α(Y )ξ, ξ
〉 + 〈Y,X0〉 = α(Y )〈ξ, ξ 〉 + 〈Y,X0〉

= e2θ dθ(Y ) + 〈Y,X0〉
⇒ 〈X0, Y 〉 = 〈−e2θ �∇θ,Y

〉 ⇒ X0 = −e2θ �∇θ. �

Explicitly, ∇̂ is determined as follows.

∇̂XY = ∇XY, (5)

∇̂ξX = ∇̂Xξ = dθ(X)ξ, (6)

∇̂ξ ξ = −e2θ �∇θ. (7)

4 Curvature Tensors of Graded Metrics

In this section ĝ = (g, θ) is a graded metric on T̂ M and ∇̂ = (∇, α,X0) is its Levi-Civita
connection. Curvature tensors of ∇̂ as a connection in algebroid structures are defined. Cur-
vature and Ricci curvature tensors of ĝ and g are denoted respectively by R̂, R̂ic,R,Ric.

Theorem 4.1 Curvature tensor R̂ respect parity of homogeneous vector fields and satisfies
the following relations.

R̂(X,Y )(Z) = R(X,Y )(Z), (8)

R̂(X,Y )(ξ) = 0, (9)

R̂(X, ξ)(Y ) = (∇Xα)(Y )ξ + α(X)α(Y )ξ, (10)

R̂(X, ξ)(ξ) = ∇XX0 − α(X)X0. (11)

Proof Formula of the curvature computation shows that the curvature tensor respect parity
of vector fields. By straight forward computations we find Eqs. (8)–(11) hold. For example
to prove (9), assume [X,Y ] = 0, so

R̂(X,Y )(ξ) = ∇̂X∇̂Y ξ − ∇̂Y ∇̂Xξ = ∇̂Xα(Y )ξ − ∇̂Y α(X)ξ
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= X
(
α(Y )

)
ξ + α(Y )∇̂Xξ − Y

(
α(X)

)
ξ − α(X)∇̂Y ξ

= dα(X,Y )ξ + α(Y )α(X)ξ − α(X)α(Y )ξ = 0.

Note that dα = 0 because α = dθ . �

Scalar part of the R̂(X, ξ)(Y ) is a tensor with respect to X and Y and it is convenient to
have some name for it. Set

T̃ (X,Y ) = (∇Xα)(Y ) + α(X)α(Y ).

Since α is closed and ∇ is torsion free, they imply that (∇Xα)(Y ) is symmetric with respect
to X and Y .

(∇Xα)(Y ) = (∇Xα)(Y ) − (∇Y α)(X) + (∇Y α)(X)

= dα(X,Y ) + (∇Y α)(X) = (∇Y α)(X).

Consequently, T̃ is a symmetric tensor. For a smooth function f on a semi-Riemannian
manifold (M,g), its Hessian is a 2-covariant symmetric tensor denoted by Hes(f ) and is
defied as follows.

Hes(f )(X,Y ) = (∇Xdf )(Y ).

So, the symmetric tensor T̃ can be written as follows.

T̃ = Hes(θ) + dθ ⊗ dθ. (12)

Laplacian of a smooth function f is also a smooth function denoted by �(f ) and is defined
by �(f ) = div(df ) = tr(Hes(f )).

Since, tr(dθ ⊗ dθ) = g( �∇θ, �∇θ) = | �∇θ |2, we find

tr(T̃ ) = �(θ) + | �∇θ |2.

Theorem 4.2 Ricci curvature of ĝ satisfies the following relations.

R̂ic(X,Y ) = Ric(X,Y ) − T̃ (X,Y ), (13)

R̂ic(X, ξ) = 0, (14)

R̂ic(ξ, ξ) = −e2θ tr(T̃ ). (15)

Proof Let {E1, . . . ,En} be an orthonormal local base of (M,g) and î = 〈Ei,Ei〉 = ±1.
Therefore, {E1, . . . ,En, e

−θ ξ} is an orthonormal local base for T̂ M . Following computa-
tions show that (13) hold.

R̂ic(X,Y ) =
n∑

i=1

î
〈
R̂(X,Ei)(Ei), Y

〉 + 〈
R̂(X, e−θ ξ)(e−θ ξ), Y

〉

=
n∑

i=1

î
〈
R(X,Ei)(Ei), Y

〉 + e−2θ
〈
R̂(X, ξ)(ξ), Y

〉

= Ric(X,Y ) − e−2θ
〈
R̂(X, ξ)(Y ), ξ)

〉
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= Ric(X,Y ) − e−2θ
〈
T̃ (X,Y )ξ, ξ

〉 = Ric(X,Y ) − e−2θ T̃ (X,Y )〈ξ, ξ 〉
= Ric(X,Y ) − T̃ (X,Y ).

Proof of (14):

R̂ic(X, ξ) =
n∑

i=1

î
〈
R̂(X,Ei)(Ei), ξ

〉 + 〈
R̂

(
X,e−θ ξ

)(
e−θ ξ

)
, ξ

〉 = 0.

Proof of (15):

R̂ic(ξ, ξ) =
n∑

i=1

î
〈
R̂(ξ,Ei)(Ei), ξ

〉 + 〈
R̂

(
ξ, e−θ ξ

)(
e−θ ξ

)
, ξ

〉

= −
n∑

i=1

î
〈
R̂(Ei, ξ)(Ei), ξ

〉 = −
n∑

i=1

î
〈
T̃ (Ei,Ei)ξ, ξ

〉

= −
n∑

i=1

îT̃ (Ei,Ei)〈ξ, ξ 〉 = −e2θ tr(T̃ ).
�

Theorem 4.3 If scalar curvature of ĝ and g are denoted by R̂ and R respectively, then

R̂ = R − 2tr(T̃ ). (16)

Proof

R̂ =
n∑

i=1

îR̂ic(Ei,Ei) + R̂ic
(
e−θ ξ, e−θ ξ

)

=
n∑

i=1

î
(
Ric(Ei,Ei) − T̃ (Ei,Ei)

) + e−2θ R̂ic(ξ, ξ)

= R − tr(T̃ ) − tr(T̃ ) = R − 2tr(T̃ ). �

5 Application to General Relativity

In this section we consider M as a space-time manifold whose dimension is n and 2 ≤ n.
Assume ĝ = (g, θ) is a graded metric on T̂ M . g is an arbitrary semi-Riemannian metric in
M and play the role of potential for gravity. We will find a field equation in which θ play
the role of potential for mass distribution in space-time. In this structure, even part of T̂ M

is related to the structure of space and time (gravity) and its odd part relate to the structure
of mass distribution. To find a proper field equation, we use Hilbert action in the context of
graded metrics on T̂ M . Denote canonical volume form of a metric g on oriented manifold
M by Ωg . Hilbert action L on graded metrics is defined as follows.

L(ĝ) = L(g, θ) =
∫

M

R̂Ωg.
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To be more precise, we must assume M is compact or we must integrate on open subset U

of M such that U is compact [1]. To find a critical metric ĝ for Hilbert action we must do
some lengthy and tedious computations.

A variation for a metric ĝ is obtained by a pair (s, h) in which s is a symmetric 2-
covariant tensor on M and h ∈ C∞(M). Set g̃(t) = g + ts and θ̃ (t) = θ + th. For small t ,
ĝ(t) = (g̃(t), θ̃ (t)) is a graded metric and is a variation of ĝ. ĝ is a critical metric for Hilbert
action iff for every pair (s, h):

d

dt

∣∣∣∣
t=0

L
(
g̃(t), θ̃ (t)

) = d

dt

∣∣∣∣
t=0

∫
M

R̂(t)Ωg+ts = 0. (17)

R̂(t) is the scalar curvature of ĝ(t) and

R̂(t) = R̃(t) − 2
(�t

(
θ̃ (t)

) + ∣∣ �∇ t θ̃ (t)
∣∣2)

.

R̃(t) is the scalar curvature of g̃(t). Note that in above, all Levi-Civita connection, gradient,
divergence, Laplacian, and volume form, depend on t . To find derivation in (17), we must
compute derivations of R̃(t), Ωg+ts , �t (θ̃ (t)), | �∇ t θ̃ (t)|2 at t = 0.

Note that an inner product in a vector space, extend to an inner product in tensor spaces.
For example, if T and S are two 2-covariant tensors on an inner product space V , and gij

are components of the inner product in some bases of V , then

〈T ,K〉 = gimgjnTijKmn = T mnKmn.

In particular, 〈T ,g〉 = gijTij = tr(T ). Fix some chart (x,U) on M . For the sake of sim-
plicity, denote ∂

∂xi by ∂i . Local components of the meter g̃(t) are denoted by g̃ij (t), so
g̃ij (t) = gij + tsij and g̃′

ij (0) = sij . By g̃ik(t)g̃kj (t) = δi
j and derivation with respect to t , it

is deduced that (g̃ij )′(0) = −sij .
Components of Levi-Civita connection of g̃(t) are denoted by Γ̃ k

ij (t). It is well known
that

Γ̃ k
ij (t) = 1

2
g̃kl(t)

(
∂g̃il(t)

∂xj
+ ∂g̃jl(t)

∂xi
− ∂g̃ij (t)

∂xl

)
.

Derivation with respect to t , implies

(
Γ̃ k

ij

)′
(0) = −1

2
skl(t)

(
∂gil

∂xj
+ ∂gjl

∂xi
− ∂gij

∂xl

)
+ 1

2
gkl

(
∂sil

∂xj
+ ∂sjl

∂xi
− ∂sij

∂xl

)
.

(Γ̃ k
ij )

′(0) is a tensor of type (1,2), and we denote it by A, so Ak
ij = (Γ̃ k

ij )
′(0). Tensor A

is related to the 3-covariant tensor ∇s whose components are sij,k = (∇∂k
s)(∂i, ∂j ). Direct

computations show that

Ak
ij = 1

2
gkl(slj,i + sli,j − sij,l). (18)

Denote components of the curvature tensor of g̃(t) by (R̃l
ijk)(t). Due to the formula of com-

putation of these components with respect to Γ̃ k
ij (t) and derivation with respect to t , we find

that [1] (
R̃l

ijk

)′
(0) = Al

jk,i − Al
ik,j . (19)



2440 Int J Theor Phys (2013) 52:2432–2445

Denote Ricci curvature of g̃(t) by R̃ic(t). Derivation of R̃ic(t) for t = 0 is as follows.

R̃ic
′
jk(0) = (

R̃l
ljk

)′
(0) = Al

jk,l − Al
lk,j . (20)

Now we can find derivation of R̃(t) at t = 0.

R̃′(0) = (
g̃ij (t)R̃icij (t)

)′
(0) = (

g̃ij
)′
(0)Ricij + gij R̃ic

′
ij (0)

= −sij Ricij + gij R̃ic
′
ij (0) = −〈s,Ric〉 + gij

(
Al

ij,l − Al
lj,i

)
.

Define the vector field W by components Wl = gijAl
ij − gilA

j

ij , so div(W) =
gij (Al

ij,l − Al
lj,i ) [1]. Therefore,

R̃′(0) = −〈s,Ric〉 + div(W) (21)

It is shown that the derivation of Ωg+ts at t = 0 is as follows [1].

Ω ′
g+ts (0) = 1

2
〈g, s〉Ωg. (22)

By local computations, we find derivation of �t (θ̃ (t)) at t = 0. Local computation of Lapla-
cian of a smooth function f is as follows.

�(f ) = gij Hes(f )ij = gij

(
∂2f

∂xi∂xj
− Γ k

ij

∂f

∂xk

)
. (23)

So,

�t
(
θ̃ (t)

)′
(0) = �t (θ + th)′(0) =

(
g̃ij (t)

(
∂2(θ + th)

∂xi∂xj
− Γ̃ k

ij (t)
∂(θ + th)

∂xk

))′
(0)

= −sij

(
∂2θ

∂xi∂xj
− Γ k

ij

∂θ

∂xk

)
+ gij

(
∂2h

∂xi∂xj
− Ak

ij

∂θ

∂xk
− Γ k

ij

∂h

∂xk

)

= −〈
s,Hes(θ)

〉 + �(h) − gijAk
ij

∂θ

∂xk
. (24)

Define the vector field Y by components Y k = gijAk
ij . So,

Y k = gijAk
ij = 1

2
gijgkl(slj,i + sli,j − sij,l) = 1

2
gkl

(
gij slj,i + gij sli,j − gij sij,l

)

= 1

2
gkl

(
div(s)l + div(s)l − tr(s),l

) = div(s)k − 1

2

( �∇tr(s)
)k

.

Consequently,

gijAk
ij

∂θ

∂xk
= div(s)k ∂θ

∂xk
− 1

2

( �∇tr(s)
)k ∂θ

∂xk
= div(s)( �∇θ) − 1

2

〈 �∇tr(s), �∇θ
〉
.

In the following, whenever it is convenient, we consider s as a (1, 1) symmetric tensor. For
arbitrary vector field Z we have

div(s)(Z) = gij
〈
(∇∂i

s)(Z), ∂j

〉 = gij
〈∇∂i

s(Z) − s(∇∂i
Z), ∂j

〉
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= gij
〈∇∂i

s(Z), ∂j

〉 − gij
〈
s(∇∂i

Z), ∂j

〉
= div

(
s(Z)

) − gij
〈
s(∂j ),∇∂i

Z
〉 = div

(
s(Z)

) − 〈s,∇Z〉.
For Z = �∇θ , the (1,1) tensor ∇ �∇θ as a 2-covariant tensor is ∇dθ and is equal to Hes(θ).
So,

gijAk
ij

∂θ

∂xk
= div

(
s( �∇θ)

) − 〈
s,Hes(θ)

〉 − 1

2

〈 �∇tr(s), �∇θ
〉
.

Now, we go back to computations in (24). By above computations, we have

�t
(
θ̃ (t)

)′
(0) = −〈

s,Hes(θ)
〉 + �(h) − gijAk

ij

∂θ

∂xk

= −〈
s,Hes(θ)

〉 + �(h)

−
(

div
(
s( �∇θ)

) − 〈
s,Hes(θ)

〉 − 1

2

〈 �∇tr(s), �∇θ
〉)

= �(h) − div
(
s( �∇θ)

) + 1

2

〈 �∇tr(s), �∇θ
〉
. (25)

Now, we compute derivation of | �∇ t (θ̃ (t))|2 at t = 0.

d

dt

∣∣∣∣
t=0

∣∣ �∇ t
(
θ̃ (t)

)∣∣2 =
(

g̃ij (t)
∂θ̃(t)

∂xi

∂θ̃(t)

∂xj

)′
(0) = −sij ∂θ

∂xi

∂θ

∂xj
+ 2gij ∂h

∂xi

∂θ

∂xj

= −〈s, dθ ⊗ dθ〉 + 2〈 �∇h, �∇θ〉. (26)

Remind that the integral of divergence of every vector fields on M is zero, consequently in-
tegral of Laplacian of any smooth function on M is zero. Also, for any two smooth function
f and h we have ∫

M

〈 �∇h, �∇f 〉Ωg = −
∫

M

h�(f )Ωg.

Now, we are ready to find critical metric ĝ for Hilbert action.

L
(
g̃(t), θ̃ (t)

)′
(0) =

(∫
M

R̂(t)Ωg+ts

)′
(0)

=
∫

M

(
R̃(t) − 2

(�t
(
θ̃ (t)

) + ∣∣ �∇ t θ̃ (t)
∣∣2)

Ωg+th

)′
(0)

=
∫

M

(
R − 2�(θ) − 2| �∇θ |2)Ω ′

g+ts (0)

+ (
R̃′(0) − 2�t

(
θ̃ (t)

)′
(0) − 2

(∣∣ �∇ t
(
θ̃ (t)

)∣∣2)′
(0)

)
Ωg

=
∫

M

(
R − 2�(θ) − 2| �∇θ |2) × 1

2
〈s, g〉Ωg +

(
−〈s,Ric〉 + div(W)

− 2
(�(h) − div

(
s( �∇θ)

) + 1

2

〈 �∇tr(s), �∇θ
〉)

− 2
(−〈s, dθ ⊗ dθ〉 + 2〈 �∇h, �∇θ〉)

)
Ωg
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=
∫

M

(〈
s,

(
1

2
R − �θ − | �∇θ |2

)
g

〉
− 〈s,Ric〉

+ tr(s)�(θ) + 2〈s, dθ ⊗ dθ〉 + 4h�(θ)

)
Ωg

=
∫

M

(〈
s,−Ric +

(
1

2
R − | �∇θ |2

)
g + 2dθ ⊗ dθ

〉
+ 4h�(θ)

)
Ωg.

The above expression is zero for all pair (s, h) iff

Ric − 1

2
Rg = 2dθ ⊗ dθ − | �∇θ |2g, (27)

�(θ) = 0. (28)

These are field equations for ĝ = (g, θ) and determine critical metrics for Hilbert action.
Equation (28) express that div( �∇θ) = 0, so �∇θ can be interpreted as current of mass that
satisfies conservation law. Absolute value of 2| �∇θ |2 shows density of matter. Right hand
side of Eq. (27) can be interpreted as energy-momentum tensor of matter and the following
theorem shows that it satisfies conservation law.

Theorem 5.1 If θ be a smooth function on a semi-Riemannian manifold (M,g) such that
�(θ) = 0, then the divergence of symmetric tensor 2dθ ⊗ dθ − | �∇θ |2g is zero.

Proof Let {E1, . . . ,En} be an orthonormal local base on M and î = 〈Ei,Ei〉 = ±1. So,

div(dθ ⊗ dθ)(X) =
n∑

i=1

î(∇Ei
dθ ⊗ dθ)(Ei,X)

=
n∑

i=1

î
(
(∇Ei

dθ) ⊗ dθ + dθ ⊗ (∇Ei
dθ)

)
(Ei,X)

=
n∑

i=1

î
(
(∇Ei

dθ)(Ei)dθ(X) + dθ(Ei)(∇Ei
dθ)(X)

)

= �(θ)dθ(X) +
n∑

i=1

îdθ(Ei)Hes(θ)(Ei,X) = Hes(θ)( �∇θ,X).

Remind that for any smooth function h on M : div(hg) = dh. So,

div
(| �∇θ |2g)

(X) = d
(| �∇θ |2)(X) = X〈 �∇θ, �∇θ〉 = 2

〈∇X( �∇θ), �∇θ
〉

= 2(∇Xdθ)( �∇θ) = 2Hes( �∇θ,X).

The above computations show that div(2dθ ⊗ dθ − | �∇θ |2g) = 0. �

In case 3 ≤ dim(M), Eq. (27) can be written in a simple form.

Theorem 5.2 Suppose 3 ≤ n = dim(M). The metric ĝ = (g, θ) on T̂ M , is a critical metric
for Hilbert action iff

Ric = 2dθ ⊗ dθ, (29)
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�(θ) = 0. (30)

Proof Equation (30) is the same as (28). First suppose Eq. (27) holds. Compute traces of
tow sides of Eq. (27).

R − n

2
R = 2| �∇θ |2 − n| �∇θ |2 ⇒ 2 − n

2
R = (2 − n)| �∇θ |2 ⇒ R = 2| �∇θ |2.

By substitution into (27) we obtain (29). Now, assume (29) holds. By computation traces of
tow sides of Eq. (29), we find R = 2| �∇θ |2, so by addition suitable expression to each side
of Eq. (29) we obtain (27). �

Example Suppose (N, ḡ) be a Riemannian manifold of dimension n ≥ 2. Set M = N ×
(0,∞). Tangent vectors to M at (p, t) is of the form (v,λ) in which v ∈ TpN and λ ∈ R.
Denote the vector field (0,1) on M by ∂t . As a derivation, for a smooth function f (p, t)

on M we have ∂t (f ) = ∂f

∂t
. Denote vector fields on N by X,Y,Z, . . . and consider them as

special vector fields on M . Denote second projection map (p, t) �→ t on M by t . We can
interpret t as time. For the 1-form dt we have dt (v,λ) = λ, so dt (∂t ) = 1. For some smooth
function a : (0,∞) −→ R define a metric g on M as follows.

g = e2a(t)ḡ − dt ⊗ dt.

So, inner product of special vector fields on M and ∂t are as follows.

〈X,Y 〉 = e2aḡ(X,Y ), 〈X,∂t 〉 = 0, 〈∂t , ∂t 〉 = −1.

Consider θ : N × (0,∞) −→ R such that its level sets be N × {t}. Therefore, θ(p, t) must
depend only on t , and we denote it by θ(t). Consequently, dθ = θ ′(t)dt and �∇θ = −θ ′(t)∂t

and | �∇θ |2 = 〈 �∇θ, �∇θ〉 = −|θ ′(t)|2.
Denote the Levi-Civita connection of N and M by ∇̄, ∇ respectively. Straightforward

computations show that:

∇XY = ∇̄XY + a′〈X,Y 〉∂t , (31)

∇∂t Y = a′Y, (32)

∇∂t ∂t = 0. (33)

Suppose {E1, . . . ,En} is an orthonormal local base on N , then, {e−aE1, . . . , e
−aEn, ∂t } is an

orthonormal local base on M . Laplacian of θ can be computed as follows.

�θ =
n∑

i=1

e−2a〈∇Ei
�∇θ,Ei〉 − 〈∇∂t

�∇θ, ∂t 〉

=
n∑

i=1

e−2a
〈∇Ei

(−θ ′(t)∂t

)
,Ei

〉 − 〈∇∂t

(−θ ′(t)∂t

)
, ∂t

〉

=
n∑

i=1

−θ ′(t)e−2a
〈
a′Ei,Ei

〉 − θ ′′(t)

=
(

n∑
i=1

−a′θ ′(t)

)
− θ ′′(t) = −na′θ ′(t) − θ ′′(t).
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Equation �θ = 0, implies that for some constant c we have |θ ′(t)| = ce−na(t).
Denote curvature tensors and Ricci curvature tensors of N and M respectively by

R̄, R, Ric, Ric. Straight forward computations show that:

R(X,Y )(Z) = R̄(X,Y )(Z) + a′2(〈Y,Z〉X − 〈X,Z〉Y )
, (34)

R(X,Y )(∂t ) = 0, (35)

R(∂t , Y )(Z) = (
a′′ + a′2)〈Y,Z〉∂t , (36)

R(∂t , Y )(∂t ) = (
a′′ + a′2)Y, (37)

Ric(X,Y ) = Ric(X,Y ) + (
a′′ + na′2)〈X,Y 〉, (38)

Ric(X, ∂t ) = 0, (39)

Ric(∂t , ∂t ) = −n
(
a′′ + a′2). (40)

In this example, Eq. (29) becomes Ric = 2dθ ⊗ θ = 2|θ ′(t)|2dt ⊗ dt , and it holds iff

Ric(X,Y ) = −(
a′′ + na′2)〈X,Y 〉, (41)

−n
(
a′′ + a′2) = 2

∣∣θ ′(t)
∣∣2 = 2c2e−2na(t). (42)

Left side of (41) dose not depend on t , so a′′ + na′2 must be constant and N is an Einstein
manifold. In the case a′′ + na′2 = 0 we find solution a(t) = 1

n
ln(t) and for this solution,

Eq. (42) also holds for c =
√

n−1
2n

.

So, for an n dimensional Ricci flat manifold (N, ḡ) the meter g = t
2
n ḡ − dt ⊗ dt on M

and the function θ(t) =
√

n−1
2n

ln(t) satisfies field equations (29) and (30). In this model, as t

approaches zero, universe become smaller and density of matter increases to infinity. Time
t = 0 is not in M and this time is the instant of Big-Bang. This example is an Einstein-de
Sitter model in general relativity [6].

6 Field Equation on the Graded Tangent Bundle

We have found two Eqs. (29) and (30) as field equations on M . But, we can join these
equations and make one equation on T̂ M .

Exterior derivation in algebroid structures is defined. Specially, for a smooth function
f , its exterior derivation, denoted by d̂f , is a 1-form on T̂ M defined by d̂f (X̂) = X̂(f ).
Restriction of d̂f to T M is df , and its restriction to odd vectors is zero. Hessian of f which
is denoted by Ĥes(f ), is a 2-covariant symmetric tensor on T̂ M and defined as follows.

Ĥes(f )(X̂, Ŷ ) = (∇̂X̂d̂f )(Ŷ ) X̂, Ŷ ∈ X̂(M).

Straight computations show that Ĥes(f ) satisfies the following relations.

Ĥes(f )(X,Y ) = Hes(f )(X,Y ),

Ĥes(f )(ξ,X) = 0,

Ĥes(f )(ξ, ξ) = e2θ 〈 �∇f, �∇θ〉.
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Consequently, tr(Ĥes(f )) = �(f ) + 〈 �∇f, �∇θ〉. In particular,

tr
(
Ĥes(θ)

) = �(θ) + | �∇θ |2 = tr(T̃ ). (43)

Theorem 6.1 Let M be a manifold, then a pair (g, θ) satisfies in field Eqs. (29) and (30) iff
for the metric ĝ = (g, θ):

R̂ic = d̂θ ⊗ d̂θ − Ĥes(θ). (44)

R̂ic is the Ricci curvature of the metric ĝ.

Proof First, suppose (44) holds. So,

R̂ic(ξ, ξ) = (
d̂θ ⊗ d̂θ − Ĥes(θ)

)
(ξ, ξ) = −Ĥes(θ)(ξ, ξ)

⇒ −e2θ tr(T̃ ) = −e2θ | �∇θ |2 ⇒ tr(T̃ ) = | �∇θ |2
⇒ �(θ) + | �∇θ |2 = | �∇θ |2 ⇒ �(θ) = 0.

Therefore, (30) holds. Moreover,

R̂ic(X,Y ) = (
d̂θ ⊗ d̂θ − Ĥes(θ)

)
(X,Y )

⇒ (Ric − T̃ )(X,Y ) = (
dθ ⊗ dθ − Hes(θ)

)
(X,Y )

⇒ Ric − Hes(θ) − dθ ⊗ dθ = dθ ⊗ dθ − Hes(θ)

⇒ Ric = 2dθ ⊗ dθ.

Therefore, (29) holds. Conversely, suppose (29) and (30) hold. All above computations are
reversible, and show that each side of (44) are equal on even and odd vectors. Also, we can
see directly, that each side of (44) on an even and an odd vectors are zero. So, (44) holds. �
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