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Abstract We apply our previously developed formalism of contexts of histories, suitable
to deal with quantum properties at different times, to the measurement process. We explore
the logical implications which are allowed by the quantum theory, about the realization of
properties of the microscopic measured system, before and after the measurement process
with a given pointer value.

Keywords Quantum measurements · Quantum histories · Quantum interpretations

1 Introduction

Under the influence of the views of Bohr, during much time quantum mechanics was con-
ceived as a theory for the description of the microscopic world, whereas the macroscopic
phenomena were considered the realm of classical theories. This limitation in the application
domain of quantum mechanics was designed to save the theory from the contradictions with
common sense, constructed by the human beings from the experience on the macroscopic
world and organized according to the classical theories. This approach faced the problem
of where to place the boundary between the quantum and the classical worlds. A further
problem derived from that position was to understand why it was not possible to apply quan-
tum mechanics to a macroscopic world constituted by small particles obeying the quantum
laws.

It was recently proved that the properties represented in classical mechanics by domains
of the phase space with regular boundaries and volumes much greater than the Planck con-
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stant can also be represented in the quantum theory by projection operators [1]. Another im-
portant result is that, in most cases, the quantum description of the interaction between the
relevant macroscopic variables and the huge number of microscopic variables of a macro-
scopic physical system leads to the approximated coincidence between the quantum and
the classical statistics for the macroscopic relevant variables [2, 3]. These theoretical results
point toward the understanding of the cinematic, dynamic and logic of the macroscopic
world as a special application of quantum mechanics. From this point of view, the mea-
surement process is an interaction between a microscopic system and a special macroscopic
device, which should be fully described by quantum theory [4–6].

The quantum description of the measurement process should provide the logical relations
between the pointer readings of the measuring instrument when the measurement ends and
certain properties of the microscopic system before the measurement [5, 7, 8]. Therefore,
the conjunction of properties at different times, for instance, the value of an observable
of a microscopic system before the measurement and a pointer position of the measuring
instrument after the measurement, should be part of the universe of the discourse about the
composite system consisting of the microscopic system to be measured and the macroscopic
instrument. For a given state of the composite system, if not the truth value, at least the
probability of these conjunctions of properties at different times should be obtained from
the theory.

Starting from the notion of time translation of quantum properties, we developed a for-
malism that, by extending the usual notion of context in quantum mechanics, is capable of
dealing with descriptions and reasonings involving properties at different times [9, 10]. The
probabilities of the properties involving different times are obtained by the Born rule. The
formalism was developed in reference [10], where it was also compared with the theory of
consistent histories [11–13].

In this work, we will apply our formalism to the quantum measurement process. With
the notion of context of histories, we will study what can be said about the microscopic
system when the measuring instrument shows a given position of its pointer observable. In
Sect. 2 we introduce a brief summary of our formalism of generalized contexts. In Sect. 3
we analyze a non-ideal measurement, and obtain the implications of a given pointer value
on the properties of the microscopic system before the measurement. The conclusions are
summarized in Sect. 4.

2 Contexts of Histories

For the sake of completeness we present in this section a brief summary of our formalism of
generalized contexts [9, 10].

Let us represent a quantum property p at time t by the pair (p; t), or by (Πp; t), where
Πp is the projector representing the property p in the Hilbert space H of the system. The
time translation of the property p at time t to time t ′ is defined by the pair (p′; t ′), or by
(Πp′ ; t ′), where p′ is the quantum property represented by Πp′ ≡ U(t ′, t)Πp U−1(t ′, t). The
unitary operator U(t ′, t) = exp(−iH(t ′ − t)/�) is the time evolution operator generated
by the Hamiltonian operator H of the system. The relation between time translated pairs
is transitive, reflexive and symmetric and, therefore, it is an equivalence relation. We use
[(p; t)] (or [(Πp; t)]) to name the class of pairs equivalent to (p; t) (or to (Πp; t)). It is
interesting to note that the Born rule assigns the same probability to all the pairs of the same
equivalence class in a given state, i.e.

Pr(p; t) = Tr(ρtΠp) = Tr(ρt ′Πp′) = Pr
(
p′; t ′) = Pr

[
(p; t)].
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By definition, the equivalence class [(Π(1); t1)] implies the equivalence class [(Π(2); t2)]
if the representative elements of the classes at a common time t0 verify the implication of
the usual formalism of quantum mechanics, i.e.

Π(1,0)H ⊂ Π(2,0)H,

where

Π(1,0) ≡ U(t0, t1)Π
(1)U−1(t0, t1),

Π(2,0) ≡ U(t0, t2)Π
(2)U−1(t0, t2).

(1)

The two properties represented by projectors Π(1) and Π(2) at the times t1 and t2 trans-
form into two new properties represented by the projectors Π(1,0) and Π(2,0) at a common
time t0. The meaning of the previous equations is that the property represented by Π(1,0)

imply the property represented by Π(2,0) in the usual sense of the inclusion of the corre-
sponding Hilbert subspaces.

The conjunction (disjunction) of two classes [(Π; t)] and [(Π ′; t ′)] can be obtained as
the greatest lower (least upper) bound, i.e.

[
(Π; t)] ∧ [(

Π ′; t ′)] = Inf
{[

(Π; t)], [(Π ′; t ′)]}
[
(Π; t)] ∨ [(

Π ′; t ′)] = Sup
{[

(Π; t)], [(Π ′; t ′)]}.
(2)

The negation of an equivalence class [(Π; t)] is defined by

[
(Π; t)] = [

(Π; t)] = [(
(I − Π); t)].

With the implication, disjunction, conjunction and negation previously obtained, the set
of equivalence classes has the structure of an orthocomplemented nondistributive lat-
tice.

The usual concept of context is a subset of all possible simultaneous properties which can
be organized as a meaningful description of a quantum system at a given time, and can be
endowed with a boolean logic with well-defined probabilities. Our formalism supplies a pre-
scription to obtain, from the nondistributive lattice of equivalence classes of pairs, the valid
descriptions involving properties at different times, which we called generalized contexts or
contexts of histories.

Let us consider a context of properties at time t1, generated by atomic properties p
(1)
j

represented by projectors Π
(1)
j verifying

Π
(1)
i Π

(1)
j = δijΠ

(1)
i ,

∑

j∈σ (1)

Π
(1)
j = I, i, j ∈ σ (1).

Let us also consider a context of properties at time t2, generated by atomic properties p(2)
μ

represented by projectors Π(2)
μ verifying

Π(2)
μ Π(2)

ν = δμν Π(2)
μ ,

∑

μ∈σ (2)

Π(2)
μ = I, μ, ν ∈ σ (2).

We wish to represent with our formalism a universe of discourse able to incorporate ex-
pressions like “the property p

(1)
j at time t1 and the property p(2)

μ at time t2”. The conjunc-
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tion of the classes with representative elements Π
(1)
i at t1 and Π(2)

μ at t2 is also the con-

junction of the classes with representative elements Π
(1,0)
i ≡ U(t0, t1)Π

(1)
i U−1(t0, t1) and

Π(2,0)
μ ≡ U(t0, t2)Π

(2)
μ U−1(t0, t2) at the common time t0.

In usual quantum theory the conjunction of simultaneous properties represented by non-
commuting operators has no meaning. So, it seems natural to consider quantum descriptions
of a system, involving the properties generated by the projectors Π

(1)
i at time t1 and Π(2)

μ at

time t2, only for the cases in which the projectors Π
(1)
i and Π(2)

μ commute when translated
to a common time t0, i.e.

Π
(1,0)
i Π(2,0)

μ − Π(2,0)
μ Π

(1,0)
i = 0.

If this is the case, for the equivalence class of composite properties representing “the prop-
erty p

(1)
j at time t1 and the property p(2)

μ at time t2” we obtain

hiμ = [(
Π

(1)
i ; t1

)] ∧ [(
Π(2)

μ ; t2
)] =

[(
lim

n→∞
(
Π

(1,0)
i Π(2,0)

μ

)n; t0
)]

= [(
Π

(1,0)
i Π(2,0)

μ ; t0
)]

. (3)

As we can see, the conjunction of properties at different times t1 and t2 is equivalent to a
single property, represented by the projector Π

(0)
iμ ≡ Π

(1,0)
i Π(2,0)

μ at a single time t0.

If the different contexts at times t1 and t2 produce commuting projectors Π
(1,0)
i and Π(2,0)

μ

at the common time t0, it is easy to prove that

Π
(0)
iμ Π

(0)
jν = δij δμνΠ

(0)
iμ ,

∑

iμ

Π
(0)
iμ = I.

Therefore, we realize that the composite properties hiμ, represented at time t0 by the com-
plete and exclusive set of projectors Π

(0)
iμ , can be interpreted as the atomic properties gen-

erating a usual context in the sense described above. More general properties are obtained
from the atomic ones by means of the disjunction operation. For instance, we can represent
the property “p(1)

j at time t1 and p(2)
μ at time t2, with j and μ having any value in the subsets

�(1) ⊂ σ (1) and �(2) ⊂ σ (2)”, as

h�(1),�(2) =
[( ∑

i∈�(1)

∑

μ∈�(2)

Π
(0)
iμ ; t0

)]
.

The set of properties obtained in this way is an orthocomplemented and distributive lattice.
If the state of the system at time t0 is represented by ρt0 , the Born rule gives the following

expression for the probability of the class of properties h�(1),�(2) ,

Pr(h�(1),�(2) ) =
∑

i∈�(1)

∑

μ∈�(2)

Tr
(
ρt0Π

(0)
iμ

)
.

As a natural extension of the notion of context, we postulate that a description of a
physical system involving properties at two different times t1 and t2 is valid if these prop-
erties are represented by commuting projectors when they are translated to a single time t0.
We will call each one of those valid descriptions context of histories. On each context
of histories, the probabilities given by the Born rule are well-defined (i.e. they are posi-
tive, normalized and additive) and, therefore, they may be meaningful in terms of frequen-
cies.
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In summary, our formalism is based on the notion of time-translation, allowing to trans-
form the properties at a sequence of different times into properties at a single common time.
A usual context of properties is first considered for each time of the sequence. If the projec-
tors representing the atomic properties of each context commute when they are translated
to a common time, the contexts at different times can be organized in a context of histories.
A context of histories is a distributive and orthocomplemented lattice, a boolean logic with
well-defined implication, negation, conjunction and disjunction. This logic can be used to
speak and make inferences about the selected properties of the system at different times.
Well-defined probabilities on the elements of the lattice of properties are obtained by means
of the well-known Born rule.

In the usual formalism of quantum mechanics, the order relation p1 ≤ p2 on two quan-
tum properties is represented by the inclusion of the corresponding Hilbert subspaces
(Hp1 ⊂ Hp2 , Hp1 = Πp1 H, Hp2 = Πp2 H). If the two properties belong to the same context,
and they are considered at the same time t , the implication corresponds to the conditional
probability

Pr(p2 | p1) = Pr(p2 ∧ p1)

Pr(p1)
= Tr(ρtΠp2Πp1)

Tr(ρtΠp1)
= Tr(ρtΠp1)

Tr(ρtΠp1)
= 1,

where ρt is the state of the system at time t . We can give a physical interpretation to the last
equation by saying that if property p1 is realized at time t , then property p2 is also realized
at the same time.

Quantum histories give a meaning to the implication between properties at different
times. If [(Π(1); t1)] ≤ [(Π(2); t2)], and both classes belong to the same context of histo-
ries, we have

Pr
([(

Π(2); t2
)] ∣∣ [(Π(1); t1

)]) ≡ Pr([(Π(2); t2)] ∧ [(Π(1); t1)])
Pr([(Π(1); t1)])

= Pr([(Π(2,0); t0)] ∧ [(Π(1,0); t0)])
Pr([(Π(1,0); t0)])

= Pr([(Π(2,0)Π(1,0); t0)])
Pr([(Π(1,0); t0)]) = Pr([(Π(1,0); t0)])

Pr([(Π(1,0); t0)]) = 1,

where Π(1,0) and Π(2,0) have been defined in (1). The physical interpretation is that if the
property represented by Π(1) is realized at the time t1, then the property represented by Π(2)

is realized at the time t2.

3 Context of Histories for a Measurement Process

In this section we will consider a measurement process where a microscopic system S inter-
acts with a measuring instrument M . The possible states of the composite system S +M are
represented in a Hilbert space H = HS ⊗ HM . We assume that the interaction between the
systems S and M begins at time t1 and ends at time t2. We also assume that the microscopic
system S has an observable Q represented by the self-adjoint operator Q, with eigenvalues
qj (j ∈ σ (S)), and that the measuring instrument has a macroscopic observable represented
by an operator A with eigenvalues ai (i ∈ σ (A), σ (S) ⊂ σ (A)).

Any vector of the space H = HS ⊗ HM can be written as a linear combination of the
orthonormal vectors |qj ;ai, r〉 = |qj 〉 ⊗ |ai, r〉, where the indexes r in the vector |ai, r〉 ∈
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HM correspond to the huge number of microscopic variables of the measuring instrument,
different from the pointer observable ai .

We consider the case of a non-ideal (or type II) measurement of the Q observable, where
the system-apparatus interaction is represented by a unitary transformation U(t2, t1) satisfy-
ing

|qj 〉|a0, r〉 → U(t2, t1)|qj 〉|a0, r〉 =
∑

j ′r ′
Crr ′ jj ′ |qj ′ 〉|aj , r

′〉, (4)

where a0 represents the reference value of the pointer observable before the measurement
process [15]. This last equation expresses the requirements that must satisfy the evolution
operator U(t2, t1) for the calibration of measurement [14]. There is a correlation between
value qj of the microscopic observable Q at the time t1 and the value aj of the pointer
observable at a later time t2. The sums over j ′ and r ′ indicate that the observable Q and the
variable r do not have well-defined values after the measurement process starting from the
pure state |qj ;a0, r〉.

In the general case, the state |ϕ〉 of the microscopic system S previous to the measurement
is not an eigenstate of the observable Q, and we have

|ϕ〉|a0, r〉 =
∑

j

cj |qj 〉|a0, r〉 → U(t2, t1)
∑

j

cj |qj 〉|a0, r〉 =
∑

j

cj

∑

j ′r ′
Crr ′ jj ′ |qj ′ 〉|aj , r

′〉.
(5)

In what follows we are going to define a possible universe of discourse, i.e. a context
of histories involving relevant properties before and after the measurement process. As we
showed in Sect. 2, a context of histories can be obtained from two ordinary contexts at the
times t1 and t2, provided the atomic properties of this two context are compatible, i.e. they
are represented by commuting projectors when translated to a common time.

A relevant context at the time t1 should include the possible values qj of the microscopic
observable. We are going to choose an ordinary context at t1 generated by the atomic prop-
erties qj , represented by the following projectors on the total Hilbert space H = HS ⊗ HM

Πqj
≡ |qj 〉〈qj | ⊗

∑

jr

|aj , r〉〈aj , r|, j ∈ σ (S). (6)

These properties are exclusive (Πqj
Πqi

= 0 if qj �= qi ) and exhaustive (
∑

qj
Πqj

=
IS ⊗ IM ). They are atomic properties (i.e. directly connected with the zero element in the
Hasse diagram). The set of all possible disjunctions obtained from these atomic properties
is a distributive lattice of properties, a context for the time t1. We will say that the atomic
properties generate the context.

For the time t2 our interest is about the possible final values ai of the pointer observ-
able A. Therefore, we are going to consider an ordinary context generated by all the possible
values of the pointer positions, represented by the projectors

Πai
≡ IS ⊗

∑

r

|ai, r〉〈ai, r|, i ∈ σ (A). (7)

The measurement process is always started with the pointer indicating the reference
value a0. Therefore, to apply our formalism of section II, we only need to verify that the
generators of the two ordinary contexts commute when they are time translated to the com-
mon time t1, and acting on vectors of the form |ϕ〉|a0, r〉.
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Using (4), (6) and (7), it is easy to prove that

Πqj

(
U−1Πai

U
)|ϕ〉|a0, r〉 = (

U−1Πai
U

)
Πqj

|ϕ〉|a0, r〉 = δijΠqj
|ϕ〉|a0, r〉, U ≡ U(t2, t1).

(8)

The projectors (U−1Πai
U), representing the translation to time t1 of the relevant properties

at time t2, commute with the projectors Πqj
, representing the relevant properties at time t1.

Therefore, as we showed in (3), it is possible to have a context of histories generated by
the atomic properties qj at time t1, together with ai at the time t2. These properties will
be denoted by [(qj ; t1)] ∧ [(ai; t2)], and they are represented by the following equivalence
classes of pairs projector-time,

hqj ;ai
≡ [

(Πqj
; t1)

] ∧ [
(Πai

; t2)
] = [(

Πqj
U−1Πai

U ; t1
)]

, j ∈ σ (S), i ∈ σ (A).

By disjunction of these atomic histories, we obtain a distributive lattice of properties
involving both times t1 and t2. This two-times context of histories is a possible universe of
discourse about the measurement process. Now we have a logical structure for the properties
we can legitimately talk about, according with quantum mechanics.

If we sum over the index j in (8) we obtain (U−1Πai
U)|ϕ〉|a0, r〉 = Πqi

|ϕ〉|a0, r〉, and

[
(ai, t2)

] = [
(qi, t1)

]
. (9)

Therefore

Pr
{[

(ai, t2)
]} = Pr

{[
(qi, t1)

]}
. (10)

This equation gives us information about the values of the observable Q before the mea-
surement process in terms of the readings of the pointer observable A. By repeating the
measurement procedure several times, always with the same preparation of the microscopic
system S, and always with the pointer indicating a0 at the beginning of the measurement
process, it is possible to obtain the relative frequency of the value ai of the pointer observ-
able at time t2. If this relative frequency is identified with the probability Pr{[(ai, t2)]} on
the left hand side of (10), the right hand side Pr{[(qi, t1)]} of this equation turns out to be
the relative frequency for the value qi of the observable Q in the microscopic system S, at
the time t1. Let us emphasize that this microscopic relative frequency is indirectly obtained
through (10) from the empirical information about the macroscopic frequency of the pointer
value ai .

From (9) we obtain the following conditional probability

Pr
{[

(ai, t2)
] ∣∣ [

(qi, t1)
]} = Pr{[(ai, t2)] ∧ [(qi, t1)]}

Pr{[(qi, t1)]} = Pr{[(qi, t1)]}
Pr{[(qi, t1)]} = 1. (11)

As we discussed at the end of the previous section, we can give a direct physical inter-
pretation to this result: if the value qi can be assigned to the observable Q of the micro-
scopic system S at the time t1, then the value ai can be assigned to the pointer observable
of the measurement instrument at the later time t2. Equation (11) allows the prediction of
the pointer position after the measurement process, and it gives validity to the calibration
process as described in [14]. Although it is not a new result, it is now recovered within the
logical framework of a context of histories, involving properties at different times which are
relevant to the measurement process.
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We stress that the conjunction ∧ in (11) would not be correct if the properties (ai, t2) and
(qi, t1) do not belong to the same context of histories.

From (9) we also obtain

Pr
{[

(qj , t1)
] ∣∣ [

(aj ; t2)
]} ≡ Pr{[(qj , t1)] ∧ [(aj ; t2)]}

Pr{[(aj ; t2)]} = Pr{[(aj ; t2)]}
Pr{[(aj ; t2)]} = 1. (12)

This equation provides the possibility of retrodiction of previous values of properties of
the microscopic system from the later measurement results. The physical interpretation of
(12) is that if the value aj can be assigned to the pointer observable at the time t2, then the
value qj can be assigned to the observable Q of the microscopic system at the time t1 before
the measurement process started.

The interpretation given to the conditional probabilities of (11) and (12) must be analyzed
carefully because it call attention to the conceptual difficulties that are characteristic of quan-
tum mechanics. The problem that arises here is how to consider the assignment of a value for
the observable Q at the time t1 previous to the measurement, if at this time the system was
in the state |ϕ〉|a0, r〉 = ∑

j cj |qj 〉|a0, r〉, a superposition of eigenstates of Q. Moreover, the
interpretation of (11) and (12) involve the assignment of a value for the pointer observable at
the time t2, but the unitary time evolution gives at t2 a state with a superposition of different
pointer values, as shown in (5).

To circumvent this problem we must accept that the attribution of value of the variable
Q can not be understood as an attribution completely objective, but as an “effective” assign-
ment that is not independent of the given experimental conditions.

This is just a manifestation of the entanglement between system and measuring instru-
ment. In the context of histories formalism, which led us to (12), the experimental setup is
implicit in the fact that the conditional is defined under the particular time evolution deter-
mined by the measurement. The properties qj at t1 and aj at t2 are not independent. They
are linked to each other by the measurement.

Through the formalism of contextual histories, and as a result of the entanglement be-
tween system and the instrument, we conclude that the assignment of the value qj at the
time t1 is valid provided it is performed by recording the value of aj in the pointer at the
later time t2. That is, the assignment of value of variable Q makes sense only through the
result obtained in the measurement of the variable Q.

The relations we have obtained are understood in terms of properties, which can be trans-
lated into propositions only through some certainties obtained from probability calculations,
as in (11) and (12). In this sense, the context of histories formalism fits naturally into the set
of modal interpretations [16, 17], because it gives properties as potentialities, independently
of their realization.

When the histories are constructed with properties of the system and the instrument,
before and after the measurement, the context of histories formalism allows to establish a
link between the possible and actual: possible values in the microscopic system with actu-
alized values in the instrument. As the context of histories formalism is faithful to quantum
mechanics, this link is established through probability calculations.

4 Conclusions

While ideal measurements are widely used to discuss quantum measurements, it is rarely
the case in a real situation. In most of the cases the measured state is modified by the mea-
surement. for a non ideal measurement, the correlation is stablished between a property of
the system before the measurement process and the pointer position after the measurement.
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Choosing properties of the system before measurement, and properties of the instru-
ment after the measurement, the contexts of histories formalism has allowed us to es-
tablish the logical structure of properties behind the measurement process, which defines
a logical structure for the possibilities, independent of the realizations. This approach
places the contexts of histories according to a modal interpretation of the quantum me-
chanic.

Using the certainties obtained from the calculation of some conditional probabilities, the
possible becomes related with the actual. As contextual histories enables us to deal with
properties at different times, this link is possible even when the process corresponds to a
non-ideal measurement, i.e. when no information is preserved on the state of the system.
Since the formalism includes properties at different times, it is not necessary to maintain
information until a later time by an ideal measurement.

The obtained results are based on the biconditional [(aj , t2)] ⇔ [(qj , t1)]. If we decom-
pose the biconditional, we have the relationship given by [(qj , t1)] ⇒ [(aj , t2)]. This rela-
tionship allows the prediction, and it is the more immediate because it defines the calibra-
tion of the measurement process. The reciprocal relation [(aj , t2)] ⇒ [(qj , t1)] which allows
retrodiction is more delicate: it assigns a value for the measured variable even when the
system is in a superposition of states with different values of the variable. We understand
that it is an effective assignment, because it makes sense only if it is realized through of
the corresponding pointer value after measurement. It is an expression of the entanglement
determined by the measurement process: the relations between [(aj , t2)] and [(qj , t1)], are
determined by the same temporal evolution of the measurement process defining these prop-
erties.
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