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Abstract A simpler approach to the characterization of vanishing conditional mutual infor-
mation is presented. Some remarks are given as well. More specifically, relating the condi-
tional mutual information to a commutator is a very promising approach towards the approx-
imate version of SSA. That is, it is conjectured that small conditional mutual information
implies small perturbation of quantum Markov chain.

Keywords Conditional mutual information · Commutator · Von Neumann entropy · Strong
subadditivity (SSA)

1 Introduction

To begin with, we fix some notations that will be used in this context. Let H be a finite
dimensional complex Hilbert space. A quantum state ρ on H is a positive semi-definite
operator of trace one, in particular, for each unit vector |ψ〉 ∈ H, the operator ρ = |ψ〉〈ψ |
is said to be a pure state. The set of all quantum states on H is denoted by D(H). For each
quantum state ρ ∈ D(H), its von Neumann entropy is defined by

S(ρ)
def= −Tr(ρ logρ).

The relative entropy of two mixed states ρ and σ is defined by

S(ρ||σ)
def=

{
Tr(ρ(logρ − logσ)), if supp(ρ) ⊆ supp(σ ),

+∞, otherwise.

A quantum channel Φ on H is a trace-preserving completely positive linear map defined
over the set D(H). It follows that there exists linear operators {Kμ}μ on H such that
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∑
μ K†

μKμ = 1 and Φ = ∑
μ AdKμ , that is, for each quantum state ρ, we have the Kraus

representation

Φ(ρ) =
∑

μ

KμρK†
μ.

The celebrated strong subadditivity (SSA) inequality of quantum entropy, proved by Lie
and Ruskai in [1],

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC), (1.1)

is a very powerful tool in quantum information theory. Recently, the operator extension of
SSA is obtained by Kim in [2]. Following the line of Kim, Ruskai gives a family of new
operator inequalities in [3].

Conditional mutual information, measuring the correlations of two quantum systems rel-
ative to a third, is defined as follows: Given a tripartite state ρABC , it is defined as

I (A : C|B)ρ
def= S(ρAB) + S(ρBC) − S(ρABC) − S(ρB). (1.2)

Clearly conditional mutual information is nonnegative by SSA.
Ruskai is the first one to discuss the equality condition of SSA. By analyzing the equality

condition of Golden–Thompson inequality, she obtained the following characterization [4]:

I (A : C|B)ρ = 0 ⇐⇒ logρABC + logρB = logρAB + logρBC. (1.3)

Later on, using the relative modular approach established by Araki, Petz gave another
characterization of the equality condition of SSA [5]:

I (A : C|B)ρ = 0 ⇐⇒ ρ it
ABCρ−it

BC = ρ it
ABρ−it

B (∀t ∈ R), (1.4)

where i = √−1 is the imaginary unit.
Hayden et al. in [6] showed that I (A : C|B)ρ = 0 if and only if the following conditions

hold:

(i) HB = ⊕
k HbL

k
⊗ HbR

k
,

(ii) ρABC = ⊕
k pkρAbL

k
⊗ ρbR

k
C , where ρAbL

k
∈ D(HA ⊗ HbL

k
), ρbR

k
C ∈ D(HbR

k
⊗ HC) for

each index k; and {pk} is a probability distribution.

In [7], Brandão et al. first obtained the following lower bound for I (A : C|B)ρ :

I (A : C|B)ρ ≥ 1

8 ln 2
min

σAC∈SEP
‖ρAC − σAC‖2

1−LOCC, (1.5)

where

‖ρAC − σAC‖2
1−LOCC

def= sup
M∈1−LOCC

∥∥M(ρAC) − M(σAC)
∥∥

1
.

Based on this result, he cracked a long-standing open problem in quantum information the-
ory. That is, the squashed entanglement is faithful. Later, Li in [8] gave another approach to
study the same problem and improved the lower bound for I (A : C|B)ρ :

I (A : C|B)ρ ≥ 1

2 ln 2
min

σAC∈SEP
‖ρAC − σAC‖2

1−LOCC. (1.6)
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Along with the above line, Ibinson et al. in [9] studied the robustness of quantum Markov
chains, i.e. the perturbation of states of vanishing conditional mutual information. In order
to study it further, We need to employ the following famous characterization of saturation
of monotonicity inequality of relative entropy.

Theorem 1.1 (Petz [10, 11]) Let ρ,σ ∈ D(H), Φ be a quantum channel defined over H. If
supp(ρ) ⊆ supp(σ ), then

S(ρ||σ) = S
(
Φ(ρ)

∣∣∣∣Φ(σ)
)

if and only if Φ†
σ ◦ Φ(ρ) = ρ, (1.7)

where Φ†
σ = Adσ 1/2 ◦Φ† ◦ AdΦ(σ)−1/2 .

Noting the equivalence between monotonicity of relative entropy and SSA, the above
theorem, in fact, gives another characterization of vanishing conditional mutual information
of quantum states.

2 Main Result

In this section, we give another characterization of saturation of SSA from the perspective
of commutativity.

Theorem 2.1 Let ρABC ∈ D(HA ⊗ HB ⊗ HC). Denote

M
def= (

ρ
1/2
AB ⊗ 1C

)(
1A ⊗ ρ

−1/2
B ⊗ 1C

)(
1A ⊗ ρ

1/2
BC

)
≡ ρ

1/2
AB ρ

−1/2
B ρ

1/2
BC .

Then the following conditions are equivalent:

(i) The conditional mutual information is vanished, i.e. I (A : C|B)ρ = 0;
(ii) ρABC = MM† = ρ

1/2
AB ρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB ;

(iii) ρABC = M†M = ρ
1/2
BCρ

−1/2
B ρABρ

−1/2
B ρ

1/2
BC ;

Proof Clearly, the conditional mutual information is vanished, i.e. I (A : C|B)ρ = 0, if and
only if

S(ρABC) + S(ρB) = S(ρAB) + S(ρBC). (2.1)

Hence we have that

S(ρAB ||ρA ⊗ ρB) = S(ρABC ||ρA ⊗ ρBC), (2.2)

S(ρBC ||ρB ⊗ ρC) = S(ρABC ||ρAB ⊗ ρC). (2.3)

Now let Φ = TrC and Ψ = TrA, it follows that

S(ρABC ||ρA ⊗ ρBC) = S
(
Φ(ρABC)

∣∣∣∣Φ(ρA ⊗ ρBC)
)
, (2.4)

S(ρABC ||ρAB ⊗ ρC) = S
(
Ψ (ρABC)

∣∣∣∣Ψ (ρAB ⊗ ρC)
)
. (2.5)

By Theorem 1.1, we see that both Eqs. (2.4) and (2.5) hold if and only if

ρABC = Φ†
ρA⊗ρBC

◦ Φ(ρABC) and ρABC = Ψ †
ρAB⊗ρC

◦ Ψ (ρABC), (2.6)
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i.e.

ρABC = ρ
1/2
AB ρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB = ρ

1/2
BCρ

−1/2
B ρABρ

−1/2
B ρ

1/2
BC . (2.7)

This amounts to say that I (A : C|B)ρ = 0 if and only if ρABC = MM† = M†M . �

Remark 2.2 In [12], Leifer and Poulin gave a condition which is equivalent to our result.
There they mainly focus on the characterization of conditional independence in terms of
noncommutative probabilistic language by analogy with classical conditional independence.
By combining the Lie–Trotter product formula:

exp(A + B) = lim
n→∞

[
exp(A/n) exp(B/n)

]n

= lim
n→∞

[
exp(A/2n) exp(B/n) exp(A/2n)

]n
, (2.8)

where both A and B are square matrices of the same order, a characterization of vanishing
conditional mutual information was obtained. Clearly, the Lie-Trotter product formula is not
easy to deal with. In fact, our proof is more natural and much simpler than that of theirs.

In the following, we denote by [X,X†] the self-commutator of an operator or a matrix X.

Corollary 2.3 With the notation mentioned above in Theorem 2.1, the following statement
is true: I (A : C|B)ρ = 0 implies [M,M†] = 0. In other words, [M,M†] �= 0 implies I (A :
C|B)ρ �= 0.

Proof We assume that I (A : C|B)ρ = 0. From Theorem 2.1, we know that ρABC = MM† =
M†M , implying [M,M†] = 0. �

A natural question arises: Can we derive I (A : C|B)ρ = 0 from [M,M†] = 0? If so, then
we can have

I (A : C|B)ρ = 0 ⇐⇒ [
M,M†

] = 0.

Moreover, if it is true, we can chose some kind of norms of this commutator to quantify or
bound the conditional mutual information from below. For related topics, please refer to [13,
14].

Remark 2.4 The result obtained in Corollary 2.3 can be employed to discuss a small condi-
tional mutual information. I. Kim [15] tries to gives a proof of the following inequality:

I (A : C|B)ρ ≥ 1

2 ln 2

∥∥ρABC − MM†
∥∥2

1
.

As a matter of fact, if the above inequality holds, then a similar inequality holds:

I (A : C|B)ρ ≥ 1

2 ln 2

∥∥ρABC − M†M
∥∥2

1
.

The validity or non-validity of both inequalities can be guaranteed by Theorem 2.1. Accord-
ing to the numerical computation by Kim, up to now, there are no states that violate these
inequalities. Therefore we have the following conjecture:

I (A : C|B)ρ ≥ 1

2 ln 2
max

{∥∥ρABC − MM†
∥∥2

1
,
∥∥ρABC − M†M

∥∥2

1

}
. (2.9)
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We can connect the total amount of conditional mutual information contained in the tri-
partite state ρABC with the trace-norm of the commutator [M,M†] as follows: if the above
conjecture holds, then we have

I (A : C|B)ρ ≥ 1

8 ln 2

∥∥[
M,M†

]∥∥2

1
, (2.10)

but not vice versa. Even though the above conjecture is false, it is still possible that this
inequality is true.

Remark 2.5 In [16], the authors proposed the following question: For a given quantum
channel Φ ∈ T(HA, HB) and states ρ,σ ∈ D(HA), does there exist a quantum channel
Ψ ∈ T(HB, HA) with Ψ ◦ Φ(σ) = σ and

S(ρ||σ) ≥ S
(
Φ(ρ)

∣∣∣∣Φ(σ)
) + S(ρ||Ψ ◦ Φ(ρ))? (2.11)

The authors affirmatively answer this question in the classical case. The quantum case is
still open. Although the authors proved that the following inequality is not valid in general:

S(ρ||σ) � S
(
Φ(ρ)

∣∣∣∣Φ(σ)
) + S(ρ||Φ†

σ ◦ Φ(ρ))

However, the following inequality may still be correct:

S(ρ||σ) ≥ S
(
Φ(ρ)

∣∣∣∣Φ(σ)
) + 1

2 ln 2

∥∥ρ − Φ†
σ ◦ Φ(ρ)

∥∥2

1
.

In fact, if this modified inequality holds, then Eq. (2.9) will hold.
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