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Abstract A general protocol for constructing a complete efficient encoding and decoding
quantum circuit of the [[8,3,5]] stabilizer code is proposed. The [[8,3,5]] stabilizer code is
an eight-qubit code that protects a three-qubit state with up to one error, which is very im-
portant for quantum information processing. Single-qubit operations, two-qubit controlled
gates and Toffoli gates are required in the proposed circuit. The current protocol can be
generalized to all quantum stabilizer codes satisfying quantum Hamming bound, and imple-
mented in some quantum systems.
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1 Introduction

Quantum computer has attracted much attention since its potential parallel computing power
based on the principle of quantum coherent superposition and quantum entanglement. How-
ever, quantum states are vulnerable to various noise during the process of quantum infor-
mation processing (QIP), i.e., the quantum states will be destroyed (quantum decoherence),
thus any weak noise may lead to final calculation error. To overcome this shortcoming, quan-
tum error prevention and correction becomes more and more important. One method is to
build a decoherence-free subspace for quantum information storage, transmission and com-
puting [1–6], another one is to generate Calderbank-Shor-Steane (CSS) code and quantum
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stabilizer codes, which can construct an important class of quantum error-correction codes.
Due to its less resource-intensive, error correction and good results, quantum error correc-
tion is widely used in quantum secure communication, fault-tolerant quantum computing
and other fields [7].

Since the original quantum error-correction code, [[9,1,3]] code, is proposed by Shor in
1995 [8], and the [[7,1,3]] code is proved and produced by Calderbank et al and Steane,
independently, in 1996 [9, 10], significant progress has been made on the development of
quantum code, especially for quantum stabilizer code. Then, a number of error-correction
schemes and constructing schemes for the quantum stabilizer code are proposed [9, 11–16].
Quantum circuit for encoding and decoding of the stabilizer code is also very important
for applying the quantum error-correction code on fault-tolerant quantum computation. Re-
cently, the quantum circuits for efficient encoding and decoding of the [[5,1,3]] stabilizer
code has been presented, where the controlled phase flip gates are used [16]. The [[5,1,3]]
code, encodes one qubit in five qubits and protects against one-qubit error [17, 18], is only a
simple example of quantum error-correction code. Therefore, how to construct an efficient
quantum circuit that encoding and decoding for any stabilizer code becomes imperative.

In this letter, we investigate an efficient quantum circuit for encoding and decoding of the
[[8,3,5]] stabilizer code, which is a typical example for protecting multi-qubit state with up
to one error. Meanwhile, it is optimal in the sense of quantum Hamming bound [12]. On
the other hand, the [[8,3,5]] stabilizer code is the simplest one with generators including
all the Pauli operators “I”, “X”, “Y ”, “Z”. Thus, it can be generalized to all quantum sta-
bilizer codes satisfying Hamming bound. The single-qubit operations, two-qubit controlled
gates and three-qubit Toffoli gates are required in current protocol. Here, we first introduce
the encoding rule of the [[8,3,5]] stabilizer code based on depolarizing channel and sta-
bilizer codes, and then logically analyze the encoding code and give its detailed quantum
circuit. To generate the [[8,3,5]] stabilizer code words, we choose five generators and three
seed generators. This method is more predominant than Ref. [13], which used a systematic
approach to generate code words by employing Gaussian elimination on bit flip matrix, be-
cause some unsolved difficulties exist in the latter. Then, we describe the decoding circuit of
the [[8,3,5]] stabilizer code that can be used to correct one error from three qubits. Finally,
discussions and conclusion are given.

2 Encoding of the [[8,3,5]] Stabilizer Code

Most quantum error-correction code deal with the depolarizing channel which has four basic
error operators (Pauli operators) on a qubit: I , X, Y and Z, which denotes “no error”, “bit
flip”, “bit and phase flip” and “phase flip” [19]. In the n-qubit depolarizing channel, error
operators can be expressed as Gn = ±{I,X,Y,Z}⊗n, where ⊗n denotes the n-fold tensor
product. To correct one of the above errors, one can first find out a quantum stabilizer code.
Arbitrary stabilizer code [[n, k, d]] is based on a stabilizer group [16]

S =
{

n−k∏
i=1

M
bi

i , bi ∈ {0,1}, i = 1,2, . . . , n − k

}
(1)

where M1,M2, . . . ,Mn−k ∈ Gn are the generators of S. Then, one can select seed gener-
ators N1,N2, . . . ,Nk ∈ Gn that make {M1,M2, . . . ,Mn−k,N1,N2, . . . ,Nk} an independent
commuting set contained in the normalizer of S. The code words of a stabilizer code are
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eigenvectors associated with eigenvalue 1 of the stabilizer code, i.e.,

C(S) = {|ψ〉 : M|ψ〉 = |ψ〉,∀M ∈ S
}

(2)

Thus the encoder of a stabilizer code can generate a code word

|c1 · · · ck〉L = 1√
2n−k

[
n−k∏
i=1

(I + Mi)

]
N

c1
1 · · ·Nck

k |0 · · ·0〉n (3)

Finally, one can efficiently construct quantum circuit of the stabilizer code by means of
Eq. (3).

Next, we will discuss the case of n = 8, k = 3 and d = 5 ([[8,3,5]] stabilizer code). This
stabilizer is optimal in the sense of quantum Hamming. According to Eq. (1), one can select
five generators M1, M2, M3, M4 and M5, i.e.,

M1 = XXXXXXXX, M2 = XZIYIYXZ

M3 = XIXIZYZY, M4 = XIYZXIYZ (4)

M5 = ZZZZZZZZ

where M1, M2, M3, M4 are linearly independent primary generators and M5 is called sec-
ondary generators [12]. The symplectic matrix corresponding to M1, M2, M3, M4 and M5

can be expressed as

H =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎠ (5)

To choose the code words, we augment these generators with a set of three seed genera-
tors, which are chosen so that the seed and primary generators are linearly independent. The
three seed generators can be chosen as

N1 = XXIIZIZI, N2 = XIXZIIZI

N3 = XIIZXZII
(6)

According to Eq. (3), we can obtain a standard formula of the quantum code word of the
[[8,3,5]] stabilizer code (see the Appendix).

According to Eq. (8), we can design the effective circuit for encoding [[8,3,5]] code, as
shown in Fig. 1. It is noted that the states c1, c2 and c3 are all used to control phase flip of
the code words. The main operators are single-qubit rotations, controlled phase gates and
Toffoli gates. Here, c1, c2 and c3 are encoded into eight qubits successfully.

3 Decoding of the [[8,3,5]] Stabilizer Code

As a stabilizer code, the important application for the [[8,3,5]] stabilizer code is to correct
one error from three qubits, thus the design for decoding circuit of the [[8,3,5]] stabilizer
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Fig. 1 Circuit for encoding the [[8,3,5]] code. “H” denotes Hadamard gate, “•” denotes Controlled operator
and “⊕” denotes Not operator

Table 1 Syndromes (S) and
error (E) operators E S E S E S

X1 00001 Y1 11111 Z1 11110

X2 01001 Y2 11001 Z2 10000

X3 00011 Y3 10101 Z3 10110

X4 01011 Y4 10011 Z4 11000

X5 00101 Y5 10111 Z5 10010

X6 01101 Y6 10001 Z6 11100

X7 00111 Y7 11101 Z7 11010

X8 01111 Y8 11011 Z8 10100

code is necessary. Assume that the syndromes of a received state |ψ〉1 is defined as S =
|s1 · · · s5〉 where si ∈ {0,1} (i = 1,2, . . . ,5) and Mi |ψ〉1 = (−1)si |ψ〉1. One can know any
error from above encoded eight qubits as shown in Sect. 2 by means of the syndrome si .
According to the symplectic Matrix H , it can be observed that the Matrix is composed of
the left part and the right part, by which one can obtain syndromes S for different error
operations. The syndromes S and error operators E are listed in Table 1, where E denotes
Xj , Yj or Zj (j = 1,2, . . . ,8).

Then, one can operate controlled X gates and controlled Z gates on |ψ〉1 and |si〉 with
|si〉 being controlled qubits. These operations will lead state |ψ〉1 to a right state |ψ〉2. The
decoding quantum circuit of the [[8,3,5]] stabilizer code is illustrated in Fig. 2. It can be
observed that this decoder is composed of (left) syndrome generation and (right) error cor-
rection parts. The main operations are Hadamard operations, controlled gates and multi-
controlled gates.

4 Discussions and Conclusions

The [[8,3,5]] stabilizer code is another typical example for stabilizer code besides the
[[5,1,3]] code proposed in previous works [16–18]. We proposed another protocol for the
construction and verification of quantum circuit for the [[8,3,5]] stabilizer code comparing
with Ref. [13]. The complete encoding and decoding circuit has been designed where the
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Fig. 2 The effective circuit diagram for decoding the [[8, 3, 5]] stabilizer code

main operators include any single-qubit operations, controlled-phase gates, Toffoli gates,
controlled-controlled-X gates and controlled-controlled-Z gates. The quantum circuit can
successfully correct one error, which is very important for QIP. The current method can be
generalized to implement quantum circuit of any [[n, k, d]] stabilizer code.

The application of quantum error-correction code in several quantum systems is also
worth considering for building quantum computer. Recently, some schemes for quantum
computing have been investigated including single qubit operations, two-qubit controlled
gates [20–31], Toffoli gates [32–38], multi-qubit controlled gates et al [39]. If we can im-
plement any-qubit controlled gates in these systems, the quantum encoding and decoding
circuit of the [[8,3,5]] stabilizer code would be implemented. It is noted that quantum
error-correction code has been used to solve realistic noise in cavity-QED setup [40], where
the three-qubit quantum error-correction code can preserve the prepared atomic state against
the noise due to fluctuating electric fields, which randomly shift the atomic energy levels via
the quadratic stark effect. Besides, the quantum error-correction code can be applied to some
of special dephasing noise due to background charge fluctuations (such as random telegraph
noise) in quantum dot systems. Thus the stabilizer code satisfying quantum Hamming bound
would be applied to some quantum systems as a useful error correction tool.
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Appendix: Construction of the Code Words of the [[8, 3, 5]] Stabilizer Code

According to Eq. (3), M5 has no effect on the generation of the quantum code word of
[[8,3,5]] stabilizer code, thus the term (1 + M5) can be eliminated, the code word of the
[[8,3,5]] stabilizer code can be reduced as

|c1c2c3〉L = 1

4
N

c1
1 N

c2
2 N

c3
3 (I + M1)(I + M2)(I + M3)(I + M4)|00000000〉 (7)
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Then, we combine Eqs. (6) with (3), the detailed code words of the [[8,3,5]] can be
listed as following

|000〉L = 1

4

[|00000000〉 + |11111111〉 + |10100101〉 + |10101010〉 + |10010110〉
+ |01011010〉 + |01010101〉 + |01101001〉 + |00001111〉 + |00110011〉
+ |00111100〉 + |11110000〉 + |11001100〉 + |11000011〉 + |10011001〉
+ |01100110〉]

|001〉L = 1

4

[|11000000〉 + |00111111〉 + |01100101〉 + |01101010〉 − |01010110〉
+ |10011010〉 + |10010101〉 − |10101001〉 + |11001111〉 − |11110011〉
− |11111100〉 + |00110000〉 − |00001100〉 − |00000011〉 − |01011001〉
− |10100110〉]

|010〉L = 1

4

[|10100000〉 + |01011111〉 + |00000101〉 − |00001010〉 + |00110110〉
+ |11111010〉 − |11110101〉 + |11001001〉 − |10101111〉 + |10010011〉
− |10011100〉 − |01010000〉 + |01101100〉 − |01100011〉 − |00111001〉
− |11000110〉]

|011〉L = 1

4

[|01100000〉 + |10011111〉 + |11000101〉 − |11001010〉 − |11110110〉
+ |00111010〉 − |00110101〉 − |00001001〉 − |01101111〉 − |01010011〉
+ |01011100〉 − |10010000〉 − |10101100〉 + |10100011〉 + |11111001〉
+ |00000110〉]

|100〉L = 1

4

[|10001000〉 + |01110111〉 − |00101101〉 + |00100010〉 + |00011110〉
− |11010010〉 + |11011101〉 + |11100001〉 − |10000111〉 − |10111011〉
+ |10110100〉 − |01111000〉 − |01000100〉 + |01001011〉 − |00010001〉
− |11101110〉]

|101〉L = 1

4

[|01001000〉 + |10110111〉 − |11101101〉 + |11100010〉 − |11011110〉
− |00010010〉 + |00011101〉 − |00100001〉 − |01000111〉 + |01111011〉
− |01110100〉 − |10111000〉 + |10000100〉 − |10001011〉 + |11010001〉
+ |00101110〉]
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|110〉L = 1

4

[|00101000〉 + |11010111〉 − |10001101〉 − |10000010〉 + |10111110〉
− |01110010〉 − |01111101〉 + |01000001〉 + |00100111〉 − |00011011〉
− |00010100〉 + |11011000〉 − |11100100〉 − |11101011〉 + |10110001〉
+ |01001110〉]

|111〉L = 1

4

[|11101000〉 + |10010111〉 − |01001101〉 − |01000010〉 − |01111110〉
− |10110010〉 − |10111101〉 − |10000001〉 + |11100111〉 + |11011011〉
+ |11010100〉 + |00011000〉 + |00100100〉 + |00101011〉 − |01110001〉
− |10001110〉]

According to the above equations, the encoding rule of the [[8,3,5]] stabilizer code can
be reduced to

|c1c2c3〉L = 1

4

[
(−1)c1·m · (−1)c2·m|c1c2c3mc1000〉 + (−1)c1·n · (−1)c2·n|c1c2c3nc1000〉

+ (−1)c1·n · (−1)c2·n|c1c2c3mc1111〉 + (−1)c1·m · (−1)c2·m|c1c2c3nc1111〉
+ a · (−1)c1·n · (−1)c2·n|c1c2c3mc1010〉 + a · (−1)c1·m · (−1)c2·m|c1c2c3nc1010〉
+ a · (−1)c1·m · (−1)c2·m|c1c2c3mc1101〉 + a · (−1)c1·n · (−1)c2·n|c1c2c3nc1101〉
+ a · (−1)c1·m · (−1)c2·m|c1c2c3nc1001〉 + b · (−1)c1·n · (−1)c2·n|c1c2c3mc1001〉
+ b · (−1)c1·n · (−1)c2·n|c1c2c3nc1110〉 + a · (−1)c1·m · (−1)c2·m|c1c2c3mc1110〉
+ (−1)c1·m · (−1)c2·m|c1c2c3nc1100〉 − (−1)c1·n · (−1)c2·n|c1c2c3mc1100〉
− (−1)c1·n · (−1)c2·n|c1c2c3nc1011〉 + (−1)c1·m · (−1)c2·m|c1c2c3mc1011〉]

(8)

where m = c2 ⊕ c3, m = n = c2 ⊕ c3, a = (−1)c1 and b = (−1)c1 .
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