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Abstract We present some new types of non-singular model for anisotropic stars with con-
stant Λ and variable Λ based on the Krori and Barua (KB) metric in (2 + 1) dimensions.
The solutions obtained here satisfy all the regularity conditions and its simple analytical
form helps us to study the various physical properties of the configuration.

Keywords Singularity free stars · (2 + 1) dimensions · Cosmological constant

1 Introduction

The study of (2 + 1) dimensional gravity has become a subject of considerable interest.
Newtonian theory can not be obtained as a limit of Einstein’s theory in (2 + 1) dimensional
spacetime. In this case gravity is localized that means there is no propagation of gravity
outside the sources. Also, it is argued that (2 + 1) dimensional gravity provides some new
features towards a better understanding of the physically relevant (3 + 1) dimensional grav-
ity [1–8]. Most of the studies on this respect are black hole spacetimes, star or cosmological

F. Rahaman (�) · A. Banerjee
Department of Mathematics, Jadavpur University, Kolkata 700032, India
e-mail: rahaman@iucaa.ernet.in

A. Banerjee
e-mail: ayan_7575@yahoo.co.in

I. Radinschi
Department of Physics, “Gh. Asachi” Technical University, Iasi 700050, Romania
e-mail: radinschi@yahoo.com

S. Banerjee
Department of Mathematics, Adamas Institute of Technology, Barasat, North 24 Parganas 700126, India
e-mail: banerjee.sumita.jumath@gmail.com

S. Ruz
Department of Physics, Satitara High School, Kandi, Murshidabad 742170, India
e-mail: ruzfromju@gmail.com

mailto:rahaman@iucaa.ernet.in
mailto:ayan_7575@yahoo.co.in
mailto:radinschi@yahoo.com
mailto:banerjee.sumita.jumath@gmail.com
mailto:ruzfromju@gmail.com


Int J Theor Phys (2013) 52:932–945 933

models [9, 10]. However, in recent years various studies have been done. Rahaman et al. [11]
have proposed a new model of a gravastar in (2 + 1) anti-de Sitter space-time. They have
also generalized their earlier work on gravastar in (2 + 1) dimensional anti-de Sitter space-
time to (2 + 1) dimensional solution of charged gravastar [12]. Some authors [13–17] have
also discussed wormhole solutions in (2 + 1) dimensional spacetime.

In recent past, Krori and Barua (KB) [18] constructed static, spherically symmetric so-
lutions based on a particular choice of the metric components g00 and g11 in curvature co-
ordinates. Recently, KB’s approach was adopted by various authors for constructing star
models [19–24]. These studies are confined within (3 + 1) dimensional spacetimes. There-
fore, it will be interesting to search whether nonsingular solutions of KB type will be existed
in (2 + 1) dimensional fluid sphere. We are looking forward to get some extra features as
our (2 + 1) dimensional models include an additional parameter, cosmological constant.
In 1999, Lubo et al. [2–4] has discussed regular (2 + 1) spherically symmetric solutions,
however, there approach were different. Anisotropy was used in the compact star configu-
ration to allow some interesting studies and we mention some papers that yield meaningful
results [25–28].

In this investigation, we explore the possibility of applying the Krori-Barua [18] metric
to describe the interior spacetime of a star in (2 + 1) dimension. Nowadays, it is known that
the dark energy represents 73 % of the whole mass-energy of our Universe. This conclusion
is given by the Wilkinson Microwave Anisotropy Probe (WMAP) that also indicates that the
dark-energy is causing a speeding of the expansion of the rate of the universe. The subject
of compact stars is of actuality and under study in the last decades. One of the possibility
for the formation of compact anisotropic stars is to use the cosmological constant. For this
reason, we have considered cosmological constant in our model. We have discussed two
models, one with constant Λ and the other with variable Λ.

The structure of our work is as follows: In Sect. 2, the non-singular model for anisotropic
stars with constant Λ based on the Krori and Barua (KB) metric in (2 + 1) dimensions is
developed. In Sect. 3, we have discussed some physical features of the model. In Sect. 4,
we have presented the model with variable Λ. In Sect. 5, we have analyzed some physical
properties of the model given in Sect. 4. Finally, in Sect. 6, we have made a conclusion about
our work.

2 Non-singular model for anisotropic stars with constant Λ

Let us assume that the interior space-time of a star in (2 + 1) dimension is described by the
KB metric

ds2 = −e2ν(r)dt2 + e2μ(r)dr2 + r2dθ2, (1)

with 2μ(r) = Ar2 and 2ν(r) = Br2 + C where A, B and C are arbitrary constants which
will be determined on the ground of various physical requirements. The energy momentum
tensor in the interior of the anisotropic star is assumed in the following standard form

Tij = diag(ρ,−pr,−pt),

where ρ, pr and pt correspond to the energy density, normal pressure and transverse pres-
sure respectively.

Therefore, the Einstein field equations for the metric (1) with constant Λ can be written
as (assuming natural units G = c = 1)
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2πρ + Λ = μ′e−2μ

r
, (2)

2πpr − Λ = ν ′e−2μ

r
, (3)

2π pt − Λ = e−2μ
(
ν ′′ + ν ′2 − ν ′μ′). (4)

Now, plugging the metric (1) in (2)–(4), we get the following expressions of energy
density ρ, normal pressure pr , tangential pressure pt as

ρ = 1

2π

[
Ae−Ar2 − Λ

]
, (5)

pr = 1

2π

[
Be−Ar2 + Λ

]
, (6)

pt = 1

2π

[
e−Ar2(

B2r2 + B − ABr2
) + Λ

]
. (7)

Using (5)–(7), the equations of state (EOS) parameters corresponding to radial and trans-
verse directions are written as

ωr(r) = Be−Ar2 + Λ

Ae−Ar2 − Λ
(8)

ωt(r) = e−Ar2
(B2r2 + B − ABr2) + Λ

Ae−Ar2 − Λ
. (9)

3 Physical Analysis

In this section we will discuss the following features of our model:

3.1 Matching Conditions

The exterior (p = ρ = 0) solution corresponds to a static, BTZ black hole is written in the
following form as

ds2 = −(−M0 − Λr2
)
dt2 + (−M0 − Λr2

)−1
dr2 + r2dθ2, (10)

Here we match our interior metric to the exterior BTZ metric and as a consequence, we get

A = − 1

R2
ln

(
K2R2 − M0

)
, (11)

B = K2

K2R2 − M0
, (12)

C = K2

K2R2 − M0
− ln

(
K2R2 − M0

)
. (13)

3.2 Regularity at the Centre

In this analysis, we consider anti-de Sitter space-time and to ensure that cosmological con-
stant is always negative, we write Λ = −K2. Since the radial EOS is always less than unity,
therefore (8) at once indicates that the cosmological constant should be negative.

Now, we find the central density and central pressures (radial and transverse) as
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ρ0 = ρ(r = 0) = 1

2π

(
A + K2

)
(14)

pr(r = 0) = pt(r = 0) = p0 = 1

2π

(
B − K2

)
(15)

From (5) and (6), we find

dρ

dr
= −A2

π
re−Ar2

< 0,

and

dpr

dr
= −AB

π
re−Ar2

< 0.

which gives a meaningful result that density and pressure are decreasing function of r . The
above equations imply at r = 0,

dρ

dr
= 0,

dpr

dr
= 0,

d2ρ

dr2
= −A2

π
< 0,

(16)

and

d2pr

dr2
= −AB

π
< 0.

which support maximality of central density and radial central pressure.
For our model, the measure of anisotropy, Δ = pt − pr , is given by

Δ = B(B − A)

2π
r2e−Ar2

. (17)

The anisotropy, as expected, vanishes at the center.
The energy density and the two pressures are continuous function of radial coordinate r

that means they are well behaved in the interior of the stellar configuration. The radius of
star is obtained by letting pr(r = R) = 0 , which gives

R =
√

1

A
ln

(
B

K2

)
. (18)

We have considered the data from a 3 spatial dimensional object in order to fix the con-
stants of the model. Although it is not very clear the physical meaning by considering stellar
objects of 2 spatial dimensions, however, if an observer is sitting in the plane, θ = constant,
then he sees all characteristics as a (2 + 1) dimensional picture. So apparently, one can use
all the data which are more or less the same for both spacetimes.

Therefore, we have used the data from X ray buster 4U 1820-30 to calculate the corre-
sponding constants. It is known that the mass of X ray buster 4U 1820-30 is 2.25 M� and
radius 10 km. To understand the physical behavior of the solutions of our model, we have
assumed certain values of Λ. As we considered the anti de-Sitter spacetime, we have used
negative values, say, Λ = −0.035,−0.038,−0.04 (see [29, 30]).

Using the data from X ray buster 4U 1820-30, we have obtained the values of the
constants A and B via (11) and (12) for different values of Λ in units of km−2 (see Ta-
ble 1).
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Table 1 Values of the constants
A, B for X ray buster 4U
1820-30 for different values of Λ

Λ M R (km) A B

−0.035 2.25 M� 10 0.017078 0.19310

−0.038 2.25 M� 10 0.007313 0.07896

−0.04 2.25 M� 10 0.003834 0.05869

Fig. 1 Density (along vertical
axis) variation at the stellar
interior of X ray buster 4U
1820-30 of mass 2.25 M� and
radius 10 km for different values
of Λ

Plugging in G and c in the relevant equations, we have calculated the central density
ρ0 = 9.49 × 1015 gm cm−3, surface density ρR = 9.23 × 1015 gm cm−3, central pressure
pr(r = 0) = pt(r = 0) = 3.28 × 1036 dyne cm−2 for Λ = −0.04.

We draw the figures for the density variation and pressures at the stellar interior of X ray
buster 4U 1820-30 (see Figs. 1 and 2). Figure 3 indicates that Δ > 0 i.e. the ‘anisotropy’
is directed outward. Thus our model exerts a repulsive ‘anisotropic’ force (Δ > 0) which
allows the construction of more massive distributions. In Fig. 2, one can note that transverse
pressure is increasing towards the surface. These types of stars are composed of unknown
matters whose density is above the normal nuclear density, ρn ∼ 4.6 × 1014 gm cm−3. As a
result, these highly compact stars are anisotropic in nature and peculiar phenomena may be
happened there.

3.3 TOV Equation

The generalized TOV equation for an anisotropic fluid distribution is given by

d

dr

(
pr − Λ

2π

)
+ ν ′(ρ + pr) + 1

r
(pr − pt) = 0. (19)

According to Ponce de León [31] suggestion, one can rewrite the above TOV equation as

−MG(ρ + pr)

r2
e

μ−ν
2 − d

dr

(
pr − Λ

2π

)
+ 1

r
(pt − pr) = 0, (20)
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Fig. 2 Radial and transverse
pressures variation at the stellar
interior X ray buster 4U 1820-30
of mass 2.25 M� and radius
10 km for different values of Λ.
Solid lines and chain lines
indicate radial and transverse
pressures respectively

Fig. 3 The anisotropic behavior
at the stellar interior X ray buster
4U 1820-30 of mass 2.25 M�
and radius 10 km for different
values of Λ

where MG = MG(r) is the gravitational mass inside a sphere of radius r and is given by

MG(r) = r2e
ν−μ

2 ν ′. (21)

[This can be derived from the Tolman-Whittaker formula using Einstein field equations.]
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Fig. 4 Three different forces
acting on fluid elements of X ray
buster 4U 1820-30 of mass
2.25 M� and radius 10 km in
static equilibrium is shown
against r with Λ = −0.04

This modified form of TOV equation delineates the equilibrium condition for the X ray
buster 4U 1820-30 subject to the gravitational and hydrostatic plus another force due to the
anisotropic nature of the stellar object. Now, we write the above equation as

Fg + Fh + Fa = 0, (22)

where

Fg = −Br(ρ + pr), (23)

Fh = − d

dr

(
pr − Λ

2π

)
= AB

π
re−Ar2

, (24)

Fa = 1

r
(pt − pr). (25)

The profiles of Fg , Fh and Fa for our chosen source are shown in Fig. 4. The figure
provides the information about the static equilibrium due to the combined effect of pressure
anisotropy, gravitational and hydrostatic forces.

3.4 Maximum Mass-Radius Relation

We calculate the mass m(r) within a radial distance r as

m(r) =
∫ r

0
2πρr̃dr̃ = 1

2

[
1 + K2r2 − e−Ar2]

. (26)

In Fig. 5, we have plotted this mass to radius relation. One can note that the upper bound on
the mass in our model can be written as

2m(r) ≡ 1 + K2r2 − e−Ar2 ≤ 1 + K2r2 − e−AR2
, (27)

which implies
(

m(r)

r

)

max

≡ M

R
≤ 1 + K2R2 − e−AR2

2R
. (28)
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Fig. 5 Variation of mass
function at stellar interior for
different values of Λ

Fig. 6 Variation of m(r)
r is

shown against r for different
values of Λ

The plot m(r)

r
against r (see Fig. 6) indicates that the ratio m(r)

r
is an increasing function

of the radial parameter. It is interesting to note that the constraint on the maximum allowed
mass-radius ratio in our case falls within the limit to the (3+1) dimensional case of isotropic
fluid sphere i.e., (m(r)

r
)max = 0.216 < 4

9 (here we have used Λ = −0.04).
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Fig. 7 The variation of redshift
function Zs is shown against r

for different values of Λ

3.5 Compactness and Redshift

From the above mass function (26), we obtain the compactness of the star as

u = m(r)

r
= 1

2r

(
1 + K2r2 − e−Ar2)

, (29)

and correspondingly the surface redshift (Zs ) is given by

Zs = (1 − 2u)− 1
2 − 1, (30)

where

Zs =
[

1 − 1

r

(
1 + K2r2 − e−Ar2)

]− 1
2 − 1. (31)

Thus, the maximum surface redshift of our (2 + 1) dimensional star of radius 10 km can be
found as Zs = 0.328 (here we have used Λ = −0.04).

Figure 7 indicates the variation of redshift function Zs against r for different values of Λ.

4 Variable Λ

Now, we consider the model taking the cosmological constant as radial dependence i.e.
Λ = Λ(r) = Λr (say).

To get the physically acceptable stellar models, we assume that the radial pressure of the
compact star is proportional to the matter density i.e.

pr = mρ, m > 0, (32)

where m is the equation of state parameter.
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Now, using the above equation of state and (1)–(4), we get the energy density ρ, normal
pressure pr , tangential pressure pt and cosmological parameter Λr , respectively as

ρ = (A + B)

2π(m + 1)
e−Ar2

> 0, (33)

pr = m(A + B)

2π(m + 1)
e−Ar2

> 0, (34)

pt = e−Ar2

2π

[
Br2(B − A) + m(A + B)

1 + m

]
. (35)

Λr = e−Ar2

m + 1
[mA − B]. (36)

Also, the equation of state (EOS) parameters corresponding to normal and transverse
directions can be written as

ωr(r) = m, (37)

ωt(r) = m + (m + 1)(B − A)Br2

(A + B)
. (38)

5 Physical Analysis

In this section we will discuss the following features of our model:
One can see from (33) and (34) that

dρ

dr
= −

[
A(A + B)

π(m + 1)
re−Ar2

]
< 0,

and

dpr

dr
= −

[
m(A + B)A

π(m + 1)
re−Ar2

]
< 0.

Also, at r = 0, our model provides

dρ

dr
= 0,

dpr

dr
= 0,

d2ρ

dr2
= −A(A + B)

π(m + 1)
< 0,

and

d2pr

dr2
= −mA(A + B)

π(m + 1)
< 0.

which indicate maximality of central density and central pressure.
The central density and radial central pressures are given by

ρ0 = ρ(r = 0) = (A + B)

2π(m + 1)
(39)

pr(r = 0) = pt(r = 0) = p0 = m(A + B)

2π(m + 1)
(40)

It is obvious that the radial pressure vanishes at the surface i.e. at r = R, pr(r = R) = 0
where R is the radius of the star. Equation (34) implies either m = 0 or A = −B . But,
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A = −B implies ρ = 0, which is not possible, therefore, we should take m = 0. In other
words, in (2 + 1) dimensional KB spacetime with variable Λ, only dust anisotropic model
exists.

The measure of anisotropy, Δ = pt − pr , in this model is obtained as

Δ = B(B − A)

2π
r2e−Ar2

. (41)

At the center Δ = 0 i.e. anisotropy dies out as expected.
We match the interior metric to the exterior BTZ matric and get fortunately the same

values of constants A, B and C given in (11)–(13).
As before, we have considered X ray buster 4U 1820-30 and have chosen the values of the

parameters A and B as A = 0.003834 and B = 0.05869 to obtain the central density and sur-
face density which are given by ρ0 = 1.36 × 1016 gm cm−3 and ρR = 9.234 × 1015 gm cm−3

respectively.
In this case the TOV equation is written as

Fg + Fh + Fa = 0, (42)

where

Fg = −Br(ρ),

Fh = − d

dr

(
−Λr

2π

)
(43)

Fa = 1

r
(pt ).

We note that here the variable Λ contributes to the hydrostatic force and transverse pres-
sure provide the effect of pressure anisotropy.

The profiles of Fg , Fh and Fa for our chosen source are shown in Fig. 8. The figure
provides the information of the static equilibrium due to the combined effect of pressure
anisotropy, gravitational and hydrostatic forces.

The effective mass m(r) within a radial distance r is defined as

meff (r) =
∫ r

0
2π

[
ρ + Λr

2π

]
r̃dr̃

Hence, we get

meff (r) = 1

2

[
1 − e−Ar2]

. (44)

In Fig. 9, we plot this mass to radius relation. One can note that the upper bound on the mass
in our model can be written as

2meff (r) ≡ 1 − e−Ar2 ≤ 1 − e−AR2
, (45)

which implies
(

meff (r)

r

)

max

≡ Meff

R
≤ 1 − e−AR2

2R
. (46)

The plot
meff (r)

r
against r (see Fig. 10) indicates that the ratio

meff (r)

r
is an increasing func-

tion of the radial parameter. Again, we see that maximum allowed mass-radius ratio in our
case falls within the limit to the (3 + 1) dimensional case of isotropic fluid sphere i.e.,
(

meff (r)

r
)max = 0.01598 < 4

9 (here we have used A = 0.003834 and B = 0.05869).
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Fig. 8 Three different forces
acting on the fluid elements of
X ray buster 4U 1820-30 of mass
2.25 M� and radius 10 km in
static equilibrium is shown
against r

Fig. 9 Variation of mass
function against r at stellar
interior

The compactness of the star is given as

u = m(r)

r
= 1

2r

(
1 − e−Ar2)

, (47)

and correspondingly the surface redshift (Zs ) is given by

Zs = (1 − 2u)− 1
2 − 1, (48)



944 Int J Theor Phys (2013) 52:932–945

Fig. 10 Variation of
meff

r is
shown against r at stellar interior

Fig. 11 The variation of redshift
function Zs is shown against r at
stellar interior

where

Zs =
[

1 − 1

r

(
1 − e−Ar2)

]− 1
2 − 1. (49)

Thus, the maximum surface redshift of our (2 + 1) dimensional star of radius 10 km can
be found as Zs = 0.0164 (here we have used A = 0.003834 and B = 0.05869). The Fig. 11
indicates the variation of redshift function Zs against r .
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6 Concluding Remarks

By taking the Krori and Barua metric as input and treating the matter content as anisotropic
in nature, we have obtained some new types non-singular solutions for stars with con-
stant Λ and variable Λ. In this phenomenological model, we have employed physical
data of the X ray buster 4U 1820-30 in our models. It is found that the central density
ρ0 = 9.49 × 1015 gm cm−3 and surface density ρR = 9.23 × 1015 gm cm−3 for the first case
which are beyond the normal nuclear density. For the later case, densities are more than
the former one. The models are attainable in static equilibrium conditions due to the com-
bined effect of pressure anisotropy, gravitational and hydrostatic forces. One can note that
the maximum allowed mass-radius ratio in our cases falls within the limit to the (3 + 1)

dimensional case of isotropic fluid sphere i.e., (
meff (r)

r
)max < 4

9 . We have seen that in (2+1)

dimensional KB spacetime with variable Λ, only dust anisotropic model exists. This feature
is absent in (3 + 1) dimension. Investigation on full collapsing model of a (2 + 1) dimen-
sional star is beyond the scope of this analysis. We would like to perform this study in the
future.
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