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Abstract A dark energy model with EoS parameter is investigated in f (R,T ) gravity in
Bianchi type-III space-time in the presence of perfect fluid source. To obtain a determi-
nate solution special law of variation for Hubble’s parameter proposed by Berman (Nuovo
Cimento B 74:183, 1983) is used. We have also assumed that the scalar expansion is propor-
tional to shear and the EoS parameter is proportional to skewness parameter. It is observed
that the EoS parameter, skewness parameters in the model turn out to be functions of cosmic
time. Some physical and kinematical properties of the model are also discussed.
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1 Introduction

In recent years there has been a lot of interest in modified theories of gravity in view of the
direct evidence of late time accelerated expansion of the universe which comes from high red
shift supernova experiment (Riess et al. [1, 2], Perlmutter et al. [3], Bennett [4]). Among the
various modifications of general relativity, f (R) (Akbar and Cai [5]) and f (R,T ) (Harko
et al. [6]) theories of gravity are treated most seriously during the last decade. These the-
ories are supposed to provide natural gravitational alternatives to dark energy. It has been
suggested that cosmic acceleration can be achieved by replacing Einstein-Hilbert action of
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general relativity with a general function f (R) where R is a Ricci scalar. Chiba et al. [7],
Nojiri and Odintsov [8, 9], Multamaki and Vilja [10, 11], and Shamir [12] are some of
the authors who have investigated several aspects of f (R) gravity models which show the
unification of early time inflation and late time acceleration.

Subsequently, Harko et al. [6] proposed another extension of standard general relativity,
f (R,T ) modified theory of gravity wherein the gravitational Lagrangian is given by an arbi-
trary function of the Ricci scalar R and of the trace of the stress-energy tensor T . They have
derived the field equations from Hilbert-Einstein type variational principle. The covariant
divergence of the stress energy tensor is also obtained. The f (R,T ) gravity model depends
on a source term, representing the variation of the matter energy tensor with respect to the
metric. They have also demonstrated the possibility of reconstruction of arbitrary FRW cos-
mologies by an appropriate choice of a function (T ).

Dark energy and dark energy models in general relativity and in modified theories of
gravity have, recently, become an interesting subject of investigation for several authors
(Sahni and Starobinsky [13], Padmanabhan [14], Caldwell [15], Nojiri and Odintsov [16],
Kamenshchik et al. [17] Wang et al. [18], Setare [19], Naidu et al. [20], Rao et al. [21]). Dark
energy is usually characterized by the equation of state (EoS) parameter given by ω(t) = p

ρ

which is not necessarily constant, where p is the fluid pressure and ρ is energy density.
Caroll and Hoffman [22], Ray et al. [23], Akarsu and Kilinc [24], Yadav and Yadav [25],
Pradhan et al. [26], Amirhashchi [27] have studied dark energy models with variable EoS
parameter.

Spatially homogeneous and anisotropic cosmological models are important in the dis-
cussion of large scale structure of the universe and such models have been studied in gen-
eral relativity to realize the picture of the universe in it’s early stages. Yadav et al. [28],
Pradhan et al. [29] have investigated homogeneous and anisotropic Bianchi type-III space
time in the context of massive strings. Yadav and Yadav [30] has obtained Bianchi type-
II anisotropic dark energy model with constant deceleration parameter. Recently, Pradhan
and Amirhashchi [31] have investigated a new anisotropic Bianchi type-III dark energy
model, in general relativity, with equation of state (EoS) parameter without assuming con-
stant deceleration parameter. Very recently, Naidu et al. [32–34] have presented Bianchi
type-II and III dark energy models in Saez-Bellaster [35] scalar-tensor theory of gravita-
tion. While Reddy et al. [36] have obtained five dimensional Kaluza-Klein cosmological
model in f (R,T ) gravity. Motivated by the above work’s we have investigated, in this pa-
per Bianchi-III anisotropic dark energy cosmological model with variable EoS parameter in
f (R,T ) gravity, choosing an appropriate form of f (T ) proposed by Harko et al. [6]. This
paper is organized as follows. In Sect. 2, the metric and the field equations are obtained in
this theory. Section 3 deals with the solution of the field equations. In Sect. 4 some phys-
ical properties of the derived dark energy model are discussed. The last section contains
conclusions.

2 Metric and Field Equations

We consider spatially homogeneous and anisotropic Bianchi type-III metric given by

ds2 = dt2 − A2(t)dx2 − e−2αxB2(t)dy2 − C2(t)dz2 (1)

where A, B and C are cosmic scale factors and m is a positive constant. The energy mo-
mentum tensor for anisotropic dark energy is given by

T i
j = diag[ρ,−px − py − pz] = diag[1 − ωx − ωy − ωz]ρ (2)
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where ρ is the energy density of the fluid and px , py , pz are the pressures along x, y and z

axes respectively. Here ω is the EoS parameter of the fluid and ωx , ωy , and ωz are the EoS
parameters in the directions of x, y and z axes respectively. The energy momentum tensor
can be parameterized as

T i
j = diag

[
1,−ω,−(ω + γ ),−(ω + δ)

]
ρ. (3)

For the sake of simplicity we choose ωx = ω and the skewness parameters γ and δ are the
deviations from ω on y and z axes respectively.

Now varying the action

S = 1

16π

∫
f (R,T )

√−gd4x +
∫

Lm

√−gd4x (4)

Of the gravitational field with respect to the metric tensor components gij , we obtain the
field equations of f (R,T ) gravity model as (Harko et al. [6])

fR(R,T )Rij − 1

2
(R,T )gij + (gij� − ∇i∇j )fR(R,T )

= 8πTij − fT (R,T )Tij − fT (R,T )Θij (5)

where

Tij = − 2√−g

δ(
√−g)

δgij
Lm, Θij = −2Tij − pgij ,

fR(R,T ) = ∂f (R,T )

∂R
and fT (R,T ) = ∂f (R,T )

∂T

(6)

Here f (R,T ) is an arbitrary function of Ricci scalar R and of the trace T of the stress
energy tensor of matter Tij and Lm is the matter Lagrangian density and in the present study
we have assumed that the stress energy tensor of matter as

Tij = (ρ + p)uiuj − pgij (7)

Now assuming that the function f (R,T ) given by Harko et al. [6]

f (R,T ) = R + 2f (T ) (8)

where f (T ) is an arbitrary function of trace of the stress energy tensor of matter and using
Eqs. (6) and (7), the field equations (5) take the form

Rij − 1

2
Rgij = 8πTij + 2f ′(T )Tij + [

2pf ′(T ) + f (T )
]
gij (9)

where the overhead prime indicates differentiation with respect to the argument. We also
choose

f (T ) = μT (10)

where μ is a constant (Harko et al. [6]).
Now assuming commoving coordinate system, the field equations (9) for the metric (1)

with the help of (2), (3) and (10) can be written as

Ȧ

A

Ḃ

B
+ ȦĊ

AC
+ Ḃ

B

Ċ

C
− m2

A2
= −ρ[8π + 2μ + 1 − 3ω − γ − δ] − 2μp (11)

B̈

B
+ C̈

C
+ Ḃ

B

Ċ

C
= ρ

[
(8π + 2μ)ω − (1 − 3ω − δ − γ )

] − 2μp (12)
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Ä

A
+ C̈

C
+ Ȧ

A

C̈

C
= ρ

[
(8π + 2μ)(ω + γ ) − (1 − 3ω − δ − γ )

] − 2μp (13)

Ä

A
+ B̈

B
+ Ȧ

A

Ḃ

B
− m2

A2
= ρ

[
(8π + 2μ)(ω + δ) − (1 − 3ω − δ − γ )

] − 2μp (14)

Ȧ

A
− Ḃ

B
= 0 (15)

where an overhead dot denotes differentiation with respect to t .

3 Solution of the Field Equations

Integrating Eq. (15), we obtain

B = αA (16)

where α is a constant of integration which can be taken as unity without loss of generality,
so that we have

B = A (17)

Using Eq. (17) in Eqs. (12) and (13) we obtain

γ = 0 (18)

Now using Eqs. (17) and (18) in the field equations (11)–(14) we get
(

Ȧ

A

)2

+ 2
Ċ

C

Ȧ

A
− m2

A2
= −ρ[8π + 2μ + 1 − 3ω − δ] − 2μp (19)

C̈

C
+ Ä

A
+ Ċ

C

Ȧ

A
= ρ

[
(8π + 2μ)ω − (1 − 3ω − δ)

] − 2μp (20)

2
Ä

A
+

(
Ȧ

A

)2

− m2

A2
= ρ

[
(8π + 2μ)(ω + δ) − (1 − 3ω − δ)

] − 2μp (21)

The average scale factor a and the spatial volume V are defined as

a = 3
√

A2C, V = a3 = A2C (22)

The generalized mean Hubble parameter H is given by

H = 1

3
(H1 + H2 + H3) (23)

where H1 = Ȧ
A

= H2, H3 = Ċ
C

are the directional Hubble’s parameters in the directions of x,
y and z axes respectively. Using Eqs. (22) and (23), we obtain

H = 1

3
(H1 + H2 + H3) = ȧ

a
(24)

The expansion scalar θ and shear scalar σ are given by

θ = 2
Ȧ

A
+ Ċ

C
(25)

σ 2 = 1

3

(
Ȧ

A
− Ċ

C

)2

(26)
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The anisotropy parameter Aα is given by

Aα =
∑(

�Hi

H

)2

(27)

where �Hi = Hi − H .
The field equations (19)–(21) are three independent equations in six unknowns, A, C, ρ,

p, δ and ω. Hence to find a determinate solution three more conditions are necessary. we
consider the following conditions:

(i) we apply the variation of Hubble’s parameter proposed by Bermann [37] that yields
constant deceleration parameter models of the universe defined by

q = −aä

ȧz
= constant (28)

where the scale factor a is given by Eq. (22).
(ii) we assume that the scalar expansion θ is proportional to shear scalar σ which gives us

(Collins et al. [38])

C = Am (29)

where m > 1 is a constant.
(iii) the EoS parameter ω is proportional to skewness parameter δ (mathematical condition)

such that

ω + δ = 0 (30)

The solution of Eq. (28) is given by

a = (ct + d)
1

1+q (31)

where c �= 0 and d are constants of integration and 1 + q > 0 for accelerated expansion
of the universe.

Now using Eqs. (22), (29) and (31) the expressions for the metric coefficients in the field
equations are

A = (ct + d)
ε

(m+z)(1+q) = B (32)

C = (ct + d)
εm

(m+z)(1+q) (33)

Now with a suitable choice of coordinates and constants, the metric (1) with the help of
(30) and (31) can be written as

ds2 = dt2 − t
ε

(m+z)(1+q)
[
dx2 + e−mxdy2

] − t
εm

(m+z)(1+q) dz2 (34)

This model is similar to the Bianchi type-III dark energy model obtained by Pradhan and
Amirhashchi [31].

4 Some Physical Properties of the Model

Equation (34) represents Bianchi type-III dark energy model in f (R,T ) gravity with the fol-
lowing physical and kinematical parameters of the model which are important for discussing
the physics of the cosmological model.
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The spatial volume in the model is

V = t
2

1+q (35)

The generalized Hubble’s parameter is

H = 2

3(1 + q)t
(36)

The scalar expansion in the model is

θ = 2

(1 + q)t
(37)

The shear scalar in the model is

σ 2 = 4(m − 1)2

3[(1 + q)(m + 2)t]2
(38)

The mean anisotropy parameter is

Aα = 2(m − 2)2

3(m + 2)2
(39)

Now with the help of (30) we obtain the following physical parameters in the model (34):
The energy density in the model is

ρ = 1

(8π + 2μ)

[
8(1 − m) − 4(1 + q)(m + 2)

(1 + q)2(m + 2)2

]
1

t2
= −p (40)

Since in the case of accelerated expansion we have ρ + p = 0.
The EoS and skewness parameters in the model are

ω = −1 + 1

ρ(8π + 2μ)

[
8(1 − m) − 4(1 + q)(m + 2)

(1 + q)2(m + 2)2

]
1

t2
= −δ (41)

It may be observed that the cosmological model in f (R,T ) gravity is free from initial
singularity, i.e. at t = 0. The spatial volume in this model increase as t increases confirming
accelerated expansion of the universe. It can also be observed that H , θ , σ , δ, ω and p are
functions of t and vanish for large t while they diverge for t = 0.

Also, σ 2

θ2 = (m−1)2

3(m−2)2 �= 0 and hence the model does not approach isotropy for large values
of t . However the model becomes isotropic for m = 1, because in this case, in view of Eqs.
(17) and (29), the metric (1) becomes ds2 = dt2 − A2(t)[dx2 − e−2αxdy2 − dz2].

It may be mentioned that the behavior of the physical parameters and the dark energy
model in this case is quite similar to physical parameters an the Bianchi type-III dark energy
model obtained by Pradhan and Amirhashchi [31].

5 Conclusions

It is well known that anisotropic dark energy models with variable EoS parameter in mod-
ified theories of gravity play a vital role in the discussion of the accelerated expansion of
the universe which is the crux of the problem in the present scenario. In this paper we have
investigated homogeneous and anisotropic Bianchi type-III dark energy model in f (R,T )

gravity with variable EoS parameter in the presence of perfect fluid source. It is observed
that EoS parameter, skewness parameters in the model are all functions of t . It can also be
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seen that the model is accelerating, expanding, non-rotating and has no initial singularity.
This model confirms the high redshift supernova experiment. The dark energy model ob-
tained in this theory, it is observed, is similar to the Bianchi type-III anisotropic dark energy
model and its behavior obtained by Pradhan and Amirhashchi [31].
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