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Abstract To obtain a classification of correlations of tripartite mixed states, various cor-
related states are introduced by using measurement-induced disturbance, including CCC,
QC, GQC, CCX, CXC, XCC, CXX, XCX and XXC-states. Standard forms of them are es-
tablished and equivalent characterizations of them are obtained in terms of normality and
commutativity of the associated component operators.
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1 Introduction

In quantum information, quantum and classical correlations of multipartite mixed states are
important and complex quantum properties. Remarkably, quantum correlations may occur
not only in entangled states, but also in separable ones and be still a potential resource in
some quantum information processing tasks, such as deterministic quantum computation
with one qubit [1], and quantum search algorithms without entanglement [2].

In this context, how to characterize and quantify quantum correlations has more attracted
attentions. For the bipartite case, an important and usual measure is given by quantum dis-
cord (QD) [3], which arises as the difference between mutual information and classical
correlations. In [4–6], some other methods for measure of quantum correlations were in-
troduced. The problem of the separation of total correlations in a given quantum state into
entanglement, dissonance, and classical correlations was discussed in [7] by using the con-
cept of relative entropy as a distance measure of correlations. A global measure for quantum
correlations in multipartite systems was introduced in [8] by suitably recasting the quantum
discord in terms of relative entropy and local von Neumann measurements. A witness for
nonclassical multipartite states was investigated in [9] based on their disturbance under local
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measurements, which provides a sufficient condition for nonclassicality without demanding
an extremization procedure. Piani et al. in [10] proposed a different method to distinguish
the classical correlated states from the set of all states and proved that a classical correlated
state is equivalent to a local-broadcasted state.

The authors in [11] gave a new characterization of a bipartite classical correlated (CC)
state, corresponding results for the left and right classical correlations (LCC and RCC) were
also obtained, and a sufficient and necessary condition for a convex combination of two CC
states to be CC was proved. Based on the characterization of CC states, a quantity Q(ρ) was
associated to a state ρ and it was shown that a state ρ is CC if and only if Q(ρ) = 0.

The aim of this paper is to classify the correlations of tripartite mixed states. Firstly, var-
ious correlated states will be introduced, including CCC, QC, GQC, CCX, CXC, XCC,
CXX, XCX and XXC-states. Secondly, standard forms of them will be given by using
measurement-induced disturbance and equivalent characterizations will be obtained in terms
of normality and commutativity of the associated component operators. Lastly, some exam-
ples of each kind of correlated states will be list.

2 Correlations of Tripartite Mixed States

In what follows, we let HA, HB and HC be the state spaces (finite dimensional Hilbert
spaces) of quantum mechanical systems A, B and C. We agree that, according to quantum
mechanics, the inner product of a Hilbert space is right-linear and left conjugate-linear. By
the postulates of quantum mechanics, the state space of the composite system of A, B and C

is given by the tensor product HABC := HA ⊗ HB ⊗ HC of spaces of dimensions dA, dB, dC ,
respectively. We use D(HX) to denote the set of all states (i.e., density operators) on HX ,
and IX to stand for the identity on HX for X = A,B,C. The adjoint operator of an operator
T is denoted by T †. Also, we use ONB(HX) to denote the set of all orthonormal bases for
HX . Clearly, if HA, HB and HC have orthonormal bases

e := {|ei〉 : 1 ≤ i ≤ dA

}
, f := {|fj 〉 : 1 ≤ j ≤ dB

}
and g := {|gk〉 : 1 ≤ k ≤ dC

}
,

(2.1)

respectively, then HABC has an orthonormal basis

e ⊗ f ⊗ g := {|ei〉 ⊗ |fj 〉 ⊗ |gk〉 : 1 ≤ i ≤ dA,1 ≤ j ≤ dB,1 ≤ k ≤ dC

}
. (2.2)

Recall that a quantum measurement of a quantum system with state space H is an opera-
tor family M := {M1,M2, . . . ,Mn} on H such that

∑n

i=1 M
†
i Mi = IH . A quantum measure-

ment Π on the tripartite system HABC is said to be a local projective measurement (LPM),
if it is of the form

Π = {
ΠA

i ⊗ ΠB
j ⊗ ΠC

k : 1 ≤ i ≤ dA,1 ≤ j ≤ dB,1 ≤ k ≤ dC

}
, (2.3)

where ΠX
n is a one-dimensional orthogonal projection on HX for every n with sum IX , for

X = A,B,C.
Note that measurement operators of an LPM (2.3) have the property that

∑dX

n=1 ΠX
n = IX

and so ΠX
n ΠX

m = 0(m �= n) for X = A,B,C.
Similar to [4], we introduce the following.
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Definition 2.1 Let ρ ∈ D(HABC). If there exists an LPM (2.3) such that Π(ρ) = ρ, then
ρ is said to be completely classical correlated (shortly, CCC). Otherwise, ρ is said to be
quantum correlated (QC).

After an LPM (2.3), a state ρ ∈ D(HABC) is changed to

Π(ρ) :=
dA∑

i=1

dB∑

j=1

dC∑

k=1

(
ΠA

i ⊗ ΠB
j ⊗ ΠC

k

)
ρ
(
ΠA

i ⊗ ΠB
j ⊗ ΠC

k

)
. (2.4)

Clearly, Π(Π(ρ)) = Π(ρ) and so Π(ρ) is always a CCC-state.
Different with the bipartite case, a tripartite state has some “partial correlations”. For

instance, there are another three different types of quantum correlations. To discuss further
quantum correlated states, we introduce the following.

Definition 2.2 Let ρ ∈ D(HABC). We say that ρ is bi-classical correlated (BCC) if there are
one-rank projective measurements ΠX = {ΠX

n : n = 1,2, . . . , dX} on HX for X = A,B,C

such that one of the following holds:

(i)
∑dA

i=1

∑dB

j=1(Π
A
i ⊗ ΠB

j ⊗ IC)ρ(ΠA
i ⊗ ΠB

j ⊗ IC) = ρ (ρ is called a CCX-state);

(ii)
∑dB

j=1

∑dC

k=1(IA ⊗ ΠB
j ⊗ ΠC

k )ρ(IA ⊗ ΠB
j ⊗ ΠC

k ) = ρ (ρ is called an XCC-state);

(iii)
∑dA

i=1

∑dC

k=1(Π
A
i ⊗ IB ⊗ ΠC

k )ρ(ΠA
i ⊗ IB ⊗ ΠC

k ) = ρ (ρ is called a CXC-state).

Definition 2.3 Let ρ ∈ D(HABC). We say that ρ is single-classical correlated (SCC) if
there are one-rank projective measurements ΠX = {ΠX

n : n = 1,2, . . . , dX} on HX for
X = A,B,C such that one of the following holds:

(i)
∑dA

i=1(Π
A
i ⊗ IB ⊗ IC)ρ(ΠA

i ⊗ IB ⊗ IC) = ρ (ρ is called a CXX-state);
(ii)

∑dB

j=1(IA ⊗ ΠB
j ⊗ IC)ρ(IA ⊗ ΠB

j ⊗ IC) = ρ (ρ is called an XCX-state);

(iii)
∑dC

k=1(IA ⊗ IB ⊗ ΠC
k )ρ(IA ⊗ IB ⊗ ΠC

k ) = ρ (ρ is called an XXC-state).
Put S(X) = {ρ ∈ D(HABC) : ρ is X}. Obviously, S(CCC) ⊂ S(BCC) ⊂ S(SCC).

Definition 2.4 A state ρ ∈ D(HABC) is said to be genuine quantum correlated (GQC) if it
is not SCC.

By the method in [11], for any tripartite state ρ ∈ D(HABC), and for any orthonormal
bases (2.1), we have

ρ =
∑

ijk�st

pijk�st |ei〉〈ej | ⊗ |fk〉〈f�| ⊗ |gs〉〈gt |. (2.5)

Let

Ak�st (ρ) =
∑

ij

pijk�st |ei〉〈j |, (2.6)

Bijst (ρ) =
∑

k�

pijk�st |fk〉〈f�|, (2.7)

Cijk�(ρ) =
∑

st

pijk�st |gs〉〈gt |. (2.8)

With these notations, we can obtain the following.
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Theorem 2.1 Let ρ ∈ D(HABC). Then
(1) ρ is CCC if and only if it can be represented as

ρ =
∑

mns

δmns |em〉〈em| ⊗ |fn〉〈fn| ⊗ |gs〉〈gs |, (2.9)

for some bases {|em〉} ∈ ONB(HA), {|fn〉} ∈ ONB(HB) and {|gs〉} ∈ ONB(HC), and a
probability distribution {δmns}.

(2) ρ is a CCX-state if and only if there exist bases {|em〉} ∈ ONB(HA), {|fn〉} ∈
ONB(HB) and operators γmn ∈ B(HC) such that

ρ =
∑

mn

|em〉〈em| ⊗ |fn〉〈fn| ⊗ γmn. (2.10)

(3) ρ is a CXC-state if and only if there exist bases {|ei〉} ∈ ONB(HA), {|gk〉} ∈
ONB(HC) and operators βik ∈ B(HC) such that

ρ =
∑

ik

|ei〉〈ei | ⊗ βik ⊗ |gk〉〈gk|. (2.11)

(4) ρ is an XCC-state if and only if there exist bases {|fj 〉} ∈ ONB(HB), {|gk〉} ∈
ONB(HC) and operators αjk ∈ B(HA) such that

ρ =
∑

jk

αjk ⊗ |fj 〉〈fj | ⊗ |gk〉〈gk|. (2.12)

(5) ρ is a CXX-state if and only if there exist a basis {|em〉} ∈ ONB(HA) and operators
δm ∈ B(HBC) such that

ρ =
∑

m

|em〉〈em| ⊗ δm. (2.13)

(6) ρ is an XCX-state if and only if there exist a basis {|fk〉} ∈ ONB(HB) and operators
Ak� ∈ B(HA), Bk� ∈ B(HC) such that

ρ =
∑

k

∑

�

Ak� ⊗ |fk〉〈fk| ⊗ Bk�. (2.14)

(7) ρ is an XXC-state if and only if there exist a basis {|gk〉} ∈ ONB(HC) and operators
εk ∈ B(HAB) such that

ρ =
∑

k

εk ⊗ |gk〉〈gk|. (2.15)

Proof (1) Let ρ be CCC. Then there exists an LPM (2.3) such that Π(ρ) = ρ. Thus, there
exist orthonormal bases (2.1) for HA, HB and HC , respectively, such that ΠA

m = |em〉〈em|
for all m, ΠB

n = |fn〉〈fn| for all n, ΠC
s = |gs〉〈gs | for all n. By using (2.5), we can get

ρ =
∑

mns

(
ΠA

m ⊗ ΠB
n ⊗ ΠC

s

)
ρ
(
ΠA

m ⊗ ΠB
n ⊗ ΠC

s

)

=
∑

mnsijk�uv

pijk�uv|em〉〈em|ei〉〈ej |em〉〈em| ⊗ |fn〉〈fn|fk〉〈f�|fn〉〈fn|
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⊗ |gs〉〈gs |gu〉〈gv|gs〉〈gs |
=

∑

mns

δmns |em〉〈em| ⊗ |fn〉〈fn| ⊗ |gs〉〈gs |,

where δmns = pmmnnss , which gives a probability distribution {δmns}.
Conversely, suppose that ρ is of the form (2.9). Then by taking ΠA

m = |em〉〈em|, ΠB
n =

|fn〉〈fn| and ΠC
s = |gs〉〈gs |, we get an LPM (2.3) such that Π(ρ) = ρ.

(2) Let ρ be CCX. Then there are one-rank projective measurements ΠX = {ΠX
n : n =

1,2, . . . , dX} on HX for X = A,B such that

dA∑

i=1

dB∑

j=1

(
ΠA

i ⊗ ΠB
j ⊗ IC

)
ρ
(
ΠA

i ⊗ ΠB
j ⊗ IC

) = ρ.

Thus, there exist an orthonormal basis {|ei〉} for HA such that ΠA
m = |em〉〈em| for all m =

1,2, . . . , dA and an orthonormal basis {|fj 〉} for HB such that ΠB
n = |fn〉〈fn| for all n =

1,2, . . . , dB . Taking any basis {|gs〉} for HC and using by (2.5) imply that

ρ =
∑

mn

(
ΠA

m ⊗ ΠB
n ⊗ IC

)
ρ
(
ΠA

m ⊗ ΠB
n ⊗ IC

)

=
∑

mnijk�st

pijk�st

(|em〉〈em|ei〉〈ej |em〉〈em|) ⊗ (|fn〉〈fn|fk〉〈f�|fn〉〈fn|
) ⊗ |gs〉〈gt |

=
∑

mn

|em〉〈em| ⊗ |fn〉〈fn| ⊗ γmn,

where γmn = ∑
st pmmnnst |gs〉〈gt |. This shows that ρ is of the form (2.10).

Conversely, let us assume (2.10) holds. Then by taking ΠA
m = |em〉〈em| and ΠB

n =
|fn〉〈fn|, we obtain one-rank projective measurements ΠX = {ΠX

n : n = 1,2, . . . , dX} on
HX for X = A,B . From (2.10), we see that

dA∑

i=1

dB∑

j=1

(
ΠA

i ⊗ ΠB
j ⊗ IC

)
ρ
(
ΠA

i ⊗ ΠB
j ⊗ IC

) = ρ.

This shows that ρ is a CCX-state.
(3 and 4) Similar to (2).
(5) Let ρ be a CXX-state. Then there exists a rank-one projective measurement {ΠA

i :
i = 1,2, . . . , dA} on HA such that

dA∑

i=1

(
ΠA

i ⊗ IB ⊗ IC

)
ρ
(
ΠA

i ⊗ IB ⊗ IC

) = ρ.

Thus, there exists an orthonormal basis {|ei〉} for HA such that ΠA
m = |em〉〈em| for all m =

1,2, . . . , dA. Taking any bases {|fj 〉} for HB and {|gs〉} for HC and using by (2.5) imply that

ρ =
dA∑

m=1

(
ΠA

m ⊗ IB ⊗ IC

)
ρ
(
ΠA

m ⊗ IB ⊗ IC

)

=
∑

mijk�st

pijk�st

(|em〉〈em|ei〉〈ej |em〉〈em|) ⊗ |fk〉〈f�| ⊗ |gs〉〈gt |
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=
∑

mk�st

pmmk�st |em〉〈em| ⊗ |fk〉〈f�| ⊗ |gs〉〈gt |

=
dA∑

m=1

|em〉〈em| ⊗ δm,

where δm = ∑
k�st pmmk�st |fk〉〈f�| ⊗ |gs〉〈gt | ∈ B(HBC).

Conversely, we assume ρ = ∑dA

i=1 |ei〉〈ei | ⊗ δi , where {δi}dA

i=1 ⊂ B(HBC) and {|ei〉} is
some orthonormal basis for HA. Put ΠA

m = |em〉〈em| for all m. Then we get a rank-one
projective measurement {ΠA

m : m = 1,2, . . . , dA} on HA such that

dA∑

m=1

(
ΠA

m ⊗ IB ⊗ IC

)
ρ
(
ΠA

m ⊗ IB ⊗ IC

) =
dA∑

m=1

|em〉〈em| ⊗ δm = ρ.

Hence, ρ is a CXX-state.
(6) Let ρ be an XCX-state. Then there exists a rank-one projective measurement {ΠB

m :
m = 1,2, . . . , dB} on HB such that

dB∑

m=1

(
IA ⊗ ΠB

m ⊗ IC

)
ρ
(
IA ⊗ ΠB

m ⊗ IC

) = ρ.

Thus, there exists an orthonormal basis {|fj 〉} for HB such that ΠB
m = |fm〉〈fm| for all m =

1,2, . . . , dB . Taking any bases {|ei〉} for HA and {|gs〉} for HC and using by (2.5) imply that

ρ =
dB∑

m=1

(
IA ⊗ ΠB

m ⊗ IC

)
ρ
(
IA ⊗ ΠB

m ⊗ IC

)

=
∑

mijk�st

pijk�st |ei〉〈ej | ⊗
(|fm〉〈fm| · |fk〉〈f�| · |fm〉〈fm|) ⊗ |gs〉〈gt |

=
∑

ijkst

pijkkst |ei〉〈ej | ⊗ |fk〉〈fk| ⊗ |gs〉〈gt |.

Let

α : {1,2, . . . , d2
A

} → {
(i, j) : i, j = 1,2, . . . , dA

}
and

β : {1,2, . . . , d2
C

} → {
(s, t) : s, t = 1,2, . . . , dC

}

be bijections. Define Pm = |ei〉〈ej |,Qn = |gs〉〈gt |, a(k)
mn = pijkkst whenever α−1((i, j)) =

m,β−1((s, t)) = n. Then we get a d2
A × d2

C matrix Ak := [a(k)
mn]. For each k, by the sin-

gular value decomposition of Ak , we know that there exist a d2
A × d2

A unitary matrix
Uk := [u(k)

mn], a d2
C × d2

C unitary matrix Vk := [v(k)
mn] and a p × p positive diagonal matrix

Dk := diag[d(k)

1 , d
(k)

2 , . . . , d(k)
p ] where p = min{d2

A, d2
C} such that

a(k)
mn =

p∑

�=1

u
(k)
m�d

(k)
� v

(k)
�n .
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Thus,

ρ =
∑

k

∑

mn

∑

�

u
(k)
m�d

(k)
� v

(k)
�n Pm ⊗ |fk〉〈fk| ⊗ Qn

=
∑

k

∑

�

(√
d

(k)

�

∑

m

u
(k)

m�Pm

)
⊗ |fk〉〈fk| ⊗

(√
d

(k)

�

∑

n

v
(k)

�n Qn

)

=
∑

k

∑

�

Ak� ⊗ |fk〉〈fk| ⊗ Bk�,

where

Ak� =
√

d
(k)
�

∑

m

u
(k)
m�Pm ∈ B(HA), Bk� =

√
d

(k)
�

∑

n

v
(k)
�n Qn ∈ B(HC).

Conversely, we assume that there exist a basis {|fm〉} ∈ ONB(HB) and operators Ak� ∈
B(HA), Bk� ∈ B(HC) such that

ρ =
∑

k

∑

�

Ak� ⊗ |fk〉〈fk| ⊗ Bk�.

Put ΠB
j = |fj 〉〈fj | for all j = 1,2, . . . , dB . Then we get a rank-one projective measurement

{ΠB
j : j = 1,2, . . . , dB} on HB such that

dB∑

j=1

(
IA ⊗ ΠB

j ⊗ IC

)
ρ
(
IA ⊗ ΠB

j ⊗ IC

) =
∑

j

∑

�

Aj� ⊗ |fj 〉〈fj | ⊗ Bj� = ρ.

This shows that ρ is an XCX-state.
(7) Similar to (5). �

Corollary 2.1 If ρ ∈ D(HABC) is CCC, then for every positive integer k, (tr(ρk))−1ρk is
also a CCC state.

Proof Since ρ ∈ D(HABC) is CCC, Theorem 2.1(1) implies that it can be represented as

ρ =
∑

mns

δmns |em〉〈em| ⊗ |fn〉〈fn| ⊗ |gs〉〈gs |,

for some bases {|em〉} ∈ ONB(HA), {|fn〉} ∈ ONB(HB) and {|gs〉} ∈ ONB(HC), and a
probability distribution {δmns}. Hence,

(
tr
(
ρk

))−1
ρk =

∑

mns

(
tr
(
ρk

))−1
(δmns)

k|em〉〈em| ⊗ |fn〉〈fn| ⊗ |gs〉〈gs |.

Clearly, {(tr(ρk))−1(δmns)
k} is also a probability distribution. It follows from Theorem 2.1(1)

that the state (tr(ρk))−1ρk is also a CCC state. �

Generally, by using Theorem 2.1 a proof similar to Corollary 2.1, we can obtain the
following.
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Corollary 2.2 Let ρ ∈ D(HABC) and P ∈ {CCC, CCX, CXC, XCC, CXX, XCX, XXC}. If ρ

is a P-state, then for every nonzero polynomial Q(x) = ∑k

i=0 aix
i with nonnegative real

coefficients ai , the state (tr(Q(ρ))−1Q(ρ)) is also a P-state.

Corollary 2.3 Let ρ ∈ D(HABC). Then
(1) ρ is a CXX-state if and only if there exist a basis {|em〉} ∈ ONB(HA) and states

ρBC
m ∈ D(HBC) as well as a probability distribution {pm} such that

ρ =
∑

m

pm|em〉〈em| ⊗ ρBC
m . (2.16)

(2) ρ is an XCX-state if and only if there exist a basis {|fm〉} ∈ ONB(HB) and states
ρA

k� ∈ B(HA), ρC
k� ∈ B(HC) and a probability distribution {qk�} such that

ρ =
∑

k

∑

�

qk�ρ
A
k� ⊗ |fk〉〈fk| ⊗ ρC

k�. (2.17)

(3) ρ is an XXC-state if and only if there exist a basis {|gs〉} ∈ ONB(HC) and states
εAB
s ∈ B(HAB) as well as a probability distribution {ps} such that

ρ =
∑

s

psε
AB
s ⊗ |gs〉〈gs |.

(4) ρ is a CCX-state if and only if there exist bases {|em〉} ∈ ONB(HA), {|fn〉} ∈
ONB(HB), states ρC

mn ∈ B(HC) and a probability distribution {qmn} such that

ρ =
∑

mn

qmn|em〉〈em| ⊗ |fn〉〈fn| ⊗ ρC
mn.

(5) ρ is a CXC-state if and only if there exist bases {|em〉} ∈ ONB(HA), {|gs〉} ∈
ONB(HC) and states βms ∈ B(HC) and a probability distribution {qik} such that

ρ =
∑

ik

qik|ei〉〈ei | ⊗ βik ⊗ |gk〉〈gk|.

(6) ρ is an XCC-state if and only if there exist bases {|fn〉} ∈ ONB(HB), {|gs〉} ∈
ONB(HC) and states αns ∈ B(HA) and a probability distribution {qjk} such that

ρ =
∑

jk

qjkαjk ⊗ |fj 〉〈fj | ⊗ |gk〉〈gk|.

Proof (1) Let ρ be a CXX-state. Then by Theorem 2.1(5) there exist a basis {|em〉} ∈
ONB(HA) and operators δm ∈ B(HBC) such that

ρ =
∑

m

|em〉〈em| ⊗ δm.

For every |ψ〉 ∈ HBC , we compute that

0 ≤ 〈ei,ψ |ρ|ei,ψ〉 = 〈ψ |δi |ψ〉.
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Thus, δi ≥ 0 for all i. Put

ρBC
m =

{
δm

tr(δm)
, δm �= 0;

1
dBdC

IBC, δm = 0; pm =
{

tr(δm), δm �= 0;
0, δm = 0.

Then ρBC
m ∈ D(HBC),pm ≥ 0 for all m and

∑dA

m=1 pm = tr(trBC(ρ)) = 1 as well as (2.16)
holds.

Conversely, it is clear that ρ is a CXX-state.
(2) Let ρ be an XCX-state. Then Theorem 2.1(6) yields that there exist a basis {|fm〉} ∈

ONB(HB) and operators Ak� ∈ B(HA), Bk� ∈ B(HC) such that

ρ =
∑

k

∑

�

Ak� ⊗ |fk〉〈fk| ⊗ Bk�.

Put � = {(k, �) : Ak� �= 0,Bk� �= 0}. Let (k, �) ∈ �. Take |ψA〉 ∈ HA such that 〈ψA|Ak�|ψA〉 =
1. For every |ψC〉 ∈ HC , we have

0 ≤ 〈
ψA,fk,ψ

C
∣∣ρ

∣∣ψA,fk,ψ
C
〉 = 〈

ψC
∣∣Bk�

∣∣ψC
〉
.

This shows that Bk� ≥ 0. Similarly, Ak� ≥ 0. Put

ρA
k� =

{
Ak�

tr(Ak�)
, (k, �) ∈ �;

1
dA

IA, (k, �) /∈ �; ρC
k� =

{
Bk�

tr(Bk�)
, (k, �) ∈ �;

1
dC

IC, (k, �) /∈ �;

qk� =
{

tr(Ak�) tr(Bk�), (k, �) ∈ �;
0, (k, �) /∈ �.

Then ρA
k� ∈ D(HA),ρC

k� ∈ D(HC), qk� ≥ 0 for all k, � and
∑

k� qk� = tr(trAC(ρ)) = 1 as well
as (2.17) holds.

Conversely, it is clear that ρ is a XCX-state.
The proof of (3)–(6) is similar to that of (1), (2). �

An N -partite state ρ is called fully separable if ρ = ∑
i piρ

i
1 ⊗ ρi

2 ⊗ · · · ⊗ ρi
N , where∑

i pi = 1 and ρi
1, ρ

i
2, . . . , ρ

i
N are all states in individual subsystems for every i. From Corol-

lary 2.3, one can see that the states having certain classical correlations are all fully separa-
ble.

Corollary 2.4 CCC-XCX-CCX-CXC- and XCC-states are all fully separable.

Next theorem gives a characterization of each kind of correlated states in terms of nor-
mality and commutativity of the associated component operators.

Theorem 2.2 If a state ρ ∈ D(HABC) is CCC (resp. BCC, SCC), then for any orthonor-
mal bases {|ei〉} for HA and {|fk〉} for HB and {|gs〉} for HC , {Ak�st (ρ)}, {Bijst (ρ)} and
{Cijk�(ρ)} (resp. at least two of {Ak�st (ρ)}, {Bijst (ρ)}, {Cijk�(ρ)}, at least one of {Ak�st (ρ)},
{Bijst (ρ)}, {Cijk�(ρ)}) are commuting families of normal operators.
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Proof Let ρ ∈ D(HABC) be CCC. Then there exist orthonormal bases {|εx〉} for HA, {|ηy〉}
for HB and {|ζz〉} for HC such that

ρ =
dA∑

x=1

dB∑

y=1

dC∑

z=1

cxyz|εx〉〈εx | ⊗ |ηy〉〈ηy | ⊗ |ζz〉〈ζz|.

For any orthonormal bases {|ei〉} for HA and {|fk〉} for HB and {|gs〉} for HC , we see that
for all k, �, s, t ,

Ak�st (ρ) = 〈fk, gs |ρ|f�, gt 〉 =
dA∑

x=1

dB∑

y=1

dC∑

z=1

cxyz〈fk|ηy〉〈ηy |f�〉〈gs |ζz〉〈ζz|gt 〉 · |εx〉〈εx |.

This shows that {Ak�st (ρ)} is a commuting family of normal operators. Similarly, {Bijst (ρ)}
and {Cijk�(ρ)} are also commuting families of normal operators.

The proof is similar for the case for ρ being BCC or SCC. �

Corollary 2.5 Let e = {|ei〉}, f = {|fk〉} and g = {|gs〉} be any orthonormal bases for HA,
HB and HC , respectively. Then ρ ∈ D(HABC) is CCC (resp. BCC, SCC) if and only if
{Ak�st (ρ)}, {Bijst (ρ)} and {Cijk�(ρ)}(resp. at least two of {Ak�st (ρ)}, {Bijst (ρ)}, {Cijk�(ρ)},
at least one of {Ak�st (ρ)}, {Bijst (ρ)}, {Cijk�(ρ)}) are normal and commutative.

Proof Necessity. It is clear from Theorem 2.1.
Sufficiency. Suppose that {Ak�st (ρ)}, {Bijst (ρ)} and {Cijk�(ρ)} are commuting families of

normal operators, then we can denote that

Ak�st (ρ) =
∑

x

〈
e′
x

∣∣Ak�st (ρ)
∣∣e′

x

〉∣∣e′
x

〉〈
e′
x

∣∣,

Bijst (ρ) =
∑

y

〈
f ′

y

∣∣Bijst (ρ)
∣∣f ′

y

〉∣∣f ′
y

〉〈
f ′

y

∣∣,

Cijk�(ρ) =
∑

z

〈
g′

z

∣∣Cijk�(ρ)
∣∣g′

z

〉∣∣g′
z

〉〈
g′

z

∣∣,

where {|e′
x〉}, {|f ′

y} and {|g′
z} are some orthonormal bases for HA, HB and HC , respectively.

Then

ρ =
∑

k�st

Ak�st (ρ) ⊗ |fk〉〈f�| ⊗ |gs〉〈gt |

=
∑

k�st

(∑

x

〈
e′
x

∣∣Ak�st (ρ)
∣∣e′

x

〉∣∣e′
x

〉〈
e′
x

∣∣
)

⊗ |fk〉〈f�| ⊗ |gs〉〈gt |

=
∑

x

∣∣e′
x

〉〈
e′
x

∣∣ ⊗
[∑

k�st

∑

ij

pijk�st

〈
e′
x

∣∣ei

〉〈
ej

∣∣e′
x

〉|fk〉〈f�| ⊗ |gs〉〈gt |
]

=
∑

x

∣∣e′
x

〉〈
e′
x

∣∣ ⊗
[∑

st

∑

ij

〈
e′
x

∣∣ei

〉〈
ej

∣∣e′
x

〉(∑

y

〈
f ′

y

∣∣
∑

k�

pijk�st |fk〉
〈
f�

∣∣f ′
y

〉∣∣f ′
y

〉〈
f ′

y

∣∣
)

⊗ |gs〉〈gt |
]
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=
∑

xyz

( ∑

ijk�st

pijk�st

〈
e′
x

∣∣ei

〉〈
ej

∣∣e′
x

〉〈
f ′

y

∣∣fk

〉〈
f�

∣∣f ′
y

〉〈
g′

z

∣∣gs

〉〈
gt

∣∣g′
z

〉)∣∣e′
x

〉〈
e′
x

∣∣⊗∣∣f ′
y

〉〈
f ′

y

∣∣⊗∣∣g′
z

〉〈g′
z

∣∣,

where

�xyz =
∑

ijk�st

pijk�st

〈
e′
x

∣
∣ei

〉〈
ej

∣
∣e′

x

〉〈
f ′

y

∣
∣fk

〉〈
f�

∣
∣f ′

y

〉〈
g′

z

∣
∣gs

〉〈
gt

∣
∣g′

z

〉

satisfies
∑

xyz �xyz = 1 and �xyz ≥ 0 for all x, y, z, so ρ is CCC.
The proof is similar for the case for ρ being BCC or SCC. �

3 Examples

By using Corollary 2.5 and Theorem 2.2, we can give some examples of CCC, CCX, CXC,
XCC, CXX, XCX, XXC and GQC-states of the system C

2 ⊗ C
2 ⊗ C

2, respectively.
(1) CCC: arbitrary product state, e.g., |φ〉 = |000〉;
(2) GQC: the GHZ state |φ〉 = |000〉 + |111〉;
Take

ρ1 = 1

2

(
1 1
1 1

)
, ρ2 =

(
1 0
0 0

)
, 0 < λ < 1.

(3) CCX: ρ = λ|0〉〈0|⊗ |0〉〈0|⊗ρ1 + (1−λ)|0〉〈0|⊗ |1〉〈1|⊗ρ2, which is not CCC since
the operators C0000(ρ) = λρ1 and C0011(ρ) = (1 − λ)ρ2 are not commutative;

(4) CXC: ρ = λ|0〉〈0|⊗ρ1 ⊗|0〉〈0|+ (1−λ)|1〉〈1|⊗ρ2 ⊗|1〉〈1|, which is not CCC since
the operators B0000(ρ) = λρ1 and B1111(ρ) = (1 − λ)ρ2 are not commutative;

(5) XCC: ρ = λρ1 ⊗|0〉〈0|⊗ |0〉〈0|+ (1−λ)ρ2 ⊗|1〉〈1|⊗ |1〉〈1|, which is not CCC since
the operators A0000(ρ) = λρ1 and A1111(ρ) = (1 − λ)ρ2 are not commutative;

(6) CXX: ρ = |0〉〈0|⊗ 1
2 (|00〉+ |11〉)(〈00|+ 〈11|), which is not CCC since the operators

B0000(ρ) = 1
2 |0〉〈0| and B0001(ρ) = 1

2 |0〉〈1| are not commutative, C0000(ρ) = 1
2 |0〉〈0| and

C0001(ρ) = 1
2 |0〉〈1| are not commutative;

(7) XCX: ρ = λρ1 ⊗ |0〉〈0| ⊗ ρ1 + (1 − λ)ρ2 ⊗ |0〉〈0| ⊗ ρ2 which is not CCC since
A0000(ρ) = λ

2 ρ1 + (1 − λ)ρ2 and A0001(ρ) = λ
2 ρ1 are not commutative, C0000(ρ) = λ

2 ρ1 +
(1 − λ)ρ2 and C0100(ρ) = λ

2 ρ1 are not commutative;
(8) XXC: ρ = 1

2 (|00〉 + |11〉)(〈00| + 〈11|) ⊗ |0〉〈0| which is not CCC since the operators
A0000(ρ) = 1

2 |0〉〈0| and A0100(ρ) = 1
2 |0〉〈1| are not commutative, B0000(ρ) = 1

2 |0〉〈0| and
B0100(ρ) = 1

2 |0〉〈1| are not commutative.
According to [12], a k-partite state ρ in C

N ⊗ C
N ⊗ · · · ⊗ C

N is said to be a Schmidt-
correlated (SC) state if it can be expressed as

ρ =
N−1∑

m,n=0

amn|mm. . .m〉〈nn . . . n|,

where
∑N−1

m=0 amm = 1. It was proved in [12] that for an SC state ρ, it is fully separable if
and only if it has a positive partial transposition, and ρ is genuinely entangled if and only if
it has no positive partial transpositions.

From the correlation point of view, for a tripartite SC state ρ = ∑N−1
m,n=0 amn|mmm〉〈nnn|

in C
N ⊗ C

N ⊗ C
N , we get easily that it is CCC if and only if amn = 0 for all m �= n, and it
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is GQC if and only if amn = 0 for some m �= n. In fact, under bases e = f = g = {|m〉}N−1
m=0

for HA = HB = HC = C
N , respectively, we have

Amnmn = Bmnmn = Cmnmn = amn|m〉〈n|.
Thus, it implies from Corollary 2.5 that ρ is CCC if and only if {amn|m〉〈n|} is a commuting
family of normal operators if and only if amn = 0(m �= n). Similarly, ρ is GQC if and only if
{amn|m〉〈n|} is not a commuting family of normal operators if and only if there exists a pair
(m,n)(m �= n) such that amn �= 0.
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