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Abstract The cosmological evolution of modified Chaplygin Gas (MCG) model with the
sign-changeable interactions is studied. The key point of the new interaction is the decelera-
tion parameter q ≡ −äa/ȧ2 in the interaction term Q. This new feature gives the possibility
that interaction Q can change its sign when the universe changes from deceleration (q > 0)

to acceleration (q < 0) and brings different evolution to cosmology. We find that there exist
some stable scaling attractors, which can alleviate the coincidence problem. The equation
of state (EoS) of MCG approaches the attractor phase from either wg > −1 or wg < −1
depending on the choice of its initial cosmic density parameter and the ratio of pressure to
critical energy density. So, the phantom divide is crossed. Furthermore, we show numeri-
cally the evolution of 2κ2

9H 3 Q with the proper parameters and find the new interaction Q has
a transition from Q < 0 to Q > 0 as the universe expands, which is different from the usual
interaction. The numerical calculation shows that a heteroclinic orbit (solution of dynamical
system) can interpolate between MCG matter-dominated phase (an unstable critical point)
and MCG vacuum-energy-dominated attractor.

Keywords Dark energy · Modified Chaplygin gas · Sign-changeable interaction

1 Introduction

Strong evidences from the current cosmological observations such as SNeIa [1–4],
SDSS [5], WMAP [6] converge upon the fact that the universe is spatially flat and there
exists an exotic component called dark energy, which drives the speed-up expansion of
the universe. Many scenarios have been proposed to explain the acceleration. One of the
candidates for dark energy is generalized Chaplygin gas (GCG) [7–11] which is stemmed
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from the Chaplygin gas (CG) [12, 13]. In particular, Hao and Li [8] have extended the
EoS of GCG to w < −1 regime. GCG can be extended to modified Chaplygin gas (MCG)
model [14–19], which can also describe the current accelerating expansion of the universe.
MCG has a simple EoS

pg = Aρg − B

ρα
g

(1)

where A, B and α are constants, and 0 < α ≤ 1. It is obvious that when A is zero, the above
equation corresponds to the EoS of GCG, whereas when B = 0 it reduces to the EoS of
barotropic fluid.

On the other hand, the interaction between dark energy and dark matter is widely studied
to alleviate the coincidence problem [20–37]. Dark energy and dark matter interact through
a coupling term Q, according to

ρ̇m + 3Hρm = Q (2)

ρ̇X + 3H(ρX + pX) = −Q (3)

where ρm and ρX are the densities of dark matter and dark energy respectively; pX is the
pressure of dark energy; the overdot represents derivative with respect to cosmic time t , and
H is Hubble parameter. The sign of Q determines the direction of energy transfer. A positive
Q implies the transfer of energy from dark energy to dark matter, and vice versa. Since
the format of interaction term Q can not be determined from fundamental physics, one
can only discuss it to a phenomenological level. The most familiar interactions including
Q = 3c1Hρm, Q = 3c2HρX and Q = 3cHρtot = 3cH(ρm +ρX) are extensively considered.
However, these interactions are always positive or negative and hence cannot change their
signs.

Recently, Cai and Su [38] investigated the interaction in a way independent of specific
interacting forms by use of observational data (SNe, BAO, CMB and Hubble parameter).
They found that interaction Q may cross the non-interacting line (Q = 0), i.e., the sign of
Q changed in the approximate redshift range of 0.45 ≤ z ≤ 0.9. Noting this redshift range is
coincident with the one of our universe changing from deceleration to acceleration [39, 40],
Wei [41] find that the sign of Q can change when the universe changes from deceleration
(q > 0) to acceleration (q < 0) if the interaction Q is proportional to the deceleration param-
eter q ≡ −äa/ȧ2. Noting that the deceleration parameter q is dimensionless, from Eqs. (2)
and (3), Q ∝ qρ̇ and Q ∝ qHρ are both viable from the dimensional point of view, and then
Wei [41] has proposed the linear combination of these two, namely Q = q(ᾱρ̇ + 3βHρ),
where ᾱ and β are both dimensionless constants. The key point of the new interaction is
the deceleration parameter q in the interaction term Q. This new feature gives the possi-
bility that interaction Q can change its sign when the universe changes from deceleration
(q > 0) to acceleration (q < 0) and brings different evolution to cosmology. Since the term
ᾱρ̇ in Q is introduced from the dimensional point of view [41], one can remove this term by
setting ᾱ = 0, and then Q becomes simply Q = 3βqHρ. Following the literature [42], we
are interested in three interactions of this type, namely Q = 3βqHρtot , Q = 3βqHρX and
Q = 3βqHρm.

In the present paper, we investigate cosmological evolution of MCG with this new type
of interactions. It is shown that the new interacting term Q can change its sign from Q < 0
to Q > 0 as the universe expands, which is different from the usual interaction. We find that
there exist some stable scaling attractors, which can alleviate the coincidence problem. The
EoS of MCG approaches the attractor phase from either wg > −1 or wg < −1 depending



3434 Int J Theor Phys (2012) 51:3432–3442

on the choice of its initial cosmic density parameter and the ratio of pressure to critical
energy density. So, the phantom divide is crossed. We also find that there exist heteroclinic
orbits [43] in the models, which connect MCG vacuum-energy-dominated attractor to MCG
matter-dominated critical point.

The paper is organized as follow: In Sect. 2, MCG model with the new type of interaction
in dark sector is introduced and the dynamical analysis of the model is investigated. We
conclude in Sect. 3.

2 MCG Model with the Sign-Changeable Interactions

In our scenario, the universe is filled with two components, one is MCG component ρg (as
dark energy) with an EoS pg = Aρg − B

ρα
g

, and the other is dark matter component ρm with
wm = 0, i.e., the total energy density ρtot = ρg +ρm. In the flat FRW universe, the Friedmann
and Raychaudhuri equations could be written as

H 2 = κ2

3
ρtot = κ2

3
(ρm + ρg) (4)

Ḣ = −κ2

2
(ρtot + ptot ) = −κ2

2
(ρm + ρg + pg) (5)

where κ2 = 8πG.
We assume the interaction between MCG and pressureless dark matter. Hence the energy

balance equations for the interacting MCG and dark matter can be expressed as

ρ̇m + 3Hρm = Q (6)

ρ̇g + 3H(ρg + pg) = −Q (7)

Following the literature [42], we are interested in three new type of interactions including
Q = 3βqHρtot , Q = 3βqHρg and Q = 3βqHρm. The key point of the new interaction is
the deceleration parameter q in Q. This new feature gives the possibility that interaction
Q can change its sign when the universe changes from deceleration (q > 0) to acceleration
(q < 0) and brings different evolution to cosmology.

Case I: Q = 3βqHρtot

Introducing the following dimensionless variables:

x = κ2ρg

3H 2

y = κ2pg

3H 2
(8)

N = lna

the equation system (4)–(7) can be rewritten as the following autonomous system:

dx

dN
= −3

[
x + y + 1

2
β(1 + 3y)

]
+ 3x(1 + y)

dy

dN
= −3

[
(1 + α)A − α

y

x

][
x + y + 1

2
β(1 + 3y)

]
+ 3y(1 + y) (9)



Int J Theor Phys (2012) 51:3432–3442 3435

Table 1 Critical points for the case of Q = 3βqHρtot

Name xc yc

T.1 1 + β −1

T.2 [√A(2 + 3β) −
√

8β + A(2 + 3β)2]/(4√
A) [A(2 + 3β) − √

A
√

8β + A(2 + 3β)2]/4

T.3 [√A(2 + 3β) +
√

8β + A(2 + 3β)2]/(4√
A) [A(2 + 3β) + √

A
√

8β + A(2 + 3β)2]/4

Accordingly, the Friedman equation yields

Ωg + Ωm = 1 (10)

where Ωg ≡ x and Ωm ≡ κ2ρm

3H 2 are the cosmic density parameters for MCG and dark matter,
respectively. The EoS of MCG could be expressed in terms of the new variables as

wg = pg

ρg

= y

x
(11)

and the sound speed is

c2
s = −α

y

x
+ (1 + α)A (12)

The new interaction Q satisfies

2κ2

9H 3
Q = β(1 + 3y) (13)

From the autonomous system (9), we can find three critical points and present them in Ta-
ble 1.

Since in a spatially flat universe, the physically meaningful range is 0 < Ωg ≤ 1, conse-
quently 0 < xc ≤ 1. Moreover, xc and yc must be real. Together with the constraint of the
sound velocity 0 ≤ c2

s < 1, we can analyze the existence conditions of the critical points in
Table 1. For Point (T.1), it can exist under condition −1 < β ≤ 0 and − α

(1+α)(1+β)
≤ A <

1+β−α

(1+α)(1+β)
. Point (T.2) can exist for 0 < A < 1, − 2

3 < β < 0 and 8β +A(2 + 3β)2 ≥ 0. Point

(T.3) can exist for 0 < A < 1, − 2
3 < β ≤ 0 and 8β + A(2 + 3β)2 ≥ 0.

To study the stability of the critical point (x(i)
c , y(i)

c ), i = 1,2,3, we linearize the system
near the critical points and then translate the system to origin, we could readily write the
first order perturbation equation as

dU

dN
= M(i) · U (14)

where U is a 2-column vector consist of the perturbations of x and y. M(i) is a 2 × 2
matrix at the critical point (x(i)

c , y(i)
c ). The stability of the critical points is determined by the

eigenvalues of the matrix M(i) at the critical point (x(i)
c , y(i)

c ). For the point (x(1)
c , y(1)

c ), the
two eigenvalues are

λ
(1)

1 = − 3

4(1 + β)
(Θ + Ξ)

(15)

λ
(1)

2 = − 3

4(1 + β)
(Θ − Ξ)
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Table 2 Critical points for the case of Q = 3βqHρg

Name xc yc

G.1 1
1−β

−1

G.2 2A+β
A(2−3β)

2A+β
2−3β

where

Θ = 4 + 2α + 4β + 3αβ + A(1 + α)
(
2 + 5β + 3β2

)

Ξ =
([

4 + 2α + 4β + 3αβ + A(1 + α)
(
2 + 5β + 3β2

)]2
(16)

− 16(1 + α)(1 + β)2(1 + A + Aβ)
) 1

2

It is easily shown that the two eigenvalues of (x(1)
c , y(1)

c ) are negative for −1 < β ≤ 0 and
− α

(1+α)(1+β)
≤ A <

1+β−α

(1+α)(1+β)
. So, Point (T.1) is a stable sink [44] point. For the point

(x(2)
c , y(2)

c ), the two eigenvalues are λ
(2)

1 = −6s2 and λ
(2)

2 = 3(1 + s1 − s2)(1 + α). For
the point (x(3)

c , y(3)
c ), the two eigenvalues are λ

(3)

1 = 6s2 and λ
(3)

2 = 3(1 + s1 + s2)(1 + α),
where s1 = A(2 + 3β)/4 and s2 = √

A
√

8β + A(2 + 3β)2/4. Noting that the existence of
(x(2)

c , y(2)
c ) requires 0 < A < 1, − 2

3 < β < 0 and 8β + A(2 + 3β)2 ≥ 0, one has λ
(2)

1 ≤ 0

and λ
(2)

2 > 0. So, Point (T.2) is a saddle point, namely the usual matter-dominated phase is
unstable. We have λ

(3)

1 ≥ 0 and λ
(3)

2 > 0 if (x(3)
c , y(3)

c ) exists. So, Point (T.3) is a source [44]
point, namely the MCG matter-dominated phase is unstable.

For the case with interaction Q = 3βqHρtot , we find that there exists a stable scaling at-
tractor (T.1) with wg = − 1

1+β
and Ωg = 1 +β , which can help to alleviate the cosmological

coincidence problem.

Case II: Q = 3βqHρg

Introducing (8), the corresponding equation system (4)–(7) can be rewritten as the fol-
lowing autonomous system:

dx

dN
= −3

[
x + y + 1

2
β(1 + 3y)x

]
+ 3x(1 + y)

(17)
dy

dN
= −3

[
(1 + α)A − α

y

x

][
x + y + 1

2
β(1 + 3y)x

]
+ 3y(1 + y)

The new interaction Q satisfies

2κ2

9H 3
Q = βx(1 + 3y) (18)

From the autonomous system (17), we can find two critical points and present them in Ta-
ble 2.

Now, we analyze the existence conditions and stability of the critical points in Table 2.
It is shown that Point (G.1) can exist and be a stable sink point under condition β ≤ 0 and
− α(1−β)

1+α
≤ A <

1−α(1−β)

1+α
. Point (G.2) can exist for 0 < A < 1 and −2A < β ≤ 0, but it is an

unstable saddle point if it exists. Point (G.2) corresponds to MCG matter-dominated phase.
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Table 3 Critical points for the case of Q = 3βqHρm

Name xc yc

M.1 1 −1

M.2 1 A

M.3 − β
A(2+3β)

− β
2+3β

For the case with interaction Q = 3βqHρg , we find that there exists a stable scaling at-
tractor (G.1) with wg = −1+β and Ωg = 1

1−β
, which can help to alleviate the cosmological

coincidence problem.

Case III: Q = 3βqHρm

Introducing (8), the corresponding equation system (4)–(7) can be rewritten as the fol-
lowing autonomous system:

dx

dN
= −3

[
x + y + 1

2
β(1 + 3y)(1 − x)

]
+ 3x(1 + y)

(19)
dy

dN
= −3

[
(1 + α)A − α

y

x

][
x + y + 1

2
β(1 + 3y)(1 − x)

]
+ 3y(1 + y)

The new interaction Q satisfies

2κ2

9H 3
Q = β(1 − x)(1 + 3y) (20)

From the autonomous system (19), we can find three critical points and present them in
Table 3.

Now, we analyze the existence conditions and stability of the critical points in Table
3. For Point (M.1), noting that its existence requires − α

1+α
≤ A < 1−α

1+α
, it is a stable sink

point for β ≥ −1. For Point (M.2), noting that its existence requires 0 ≤ A < 1, it is an
unstable saddle point for β < − 2A

1+3A
, whereas it is an unstable source point for β ≥ − 2A

1+3A
.

Point (M.2) corresponds to MCG matter-dominated phase. For Point (M.3), noting that its
existence requires 0 < − β

2+3β
≤ A < 1, it is an unstable saddle point, which corresponds to

the usual matter-dominated phase.
For the case with interaction Q = 3βqHρm, we find that there exists a MCG vacuum-

energy-dominated attractor (M.1) with wg = −1 and Ωg = 1, namely de Sitter attractor.
In the following, we study the above dynamical system numerically. For definite, we

choose the parameters as A = 0.1, α = 0.5 and β = −0.2. The initial x and y are chosen as
shown in Table 4 and the results are contained in Figs. 1–10. From Fig. 1, we can observe
that for the case with interaction Q = 3βqHρtot , the EoS wg could approach to the attractor
wg = −1.25 from either wg > −1 or wg < −1. The corresponding cosmic density parameter
Ωg could tend to 0.8 for different initial conditions in Fig. 4. From Fig. 2, we can observe
that for the case with interaction Q = 3βqHρg , the EoS wg could approach to the attractor
wg = −1.2 from either wg > −1 or wg < −1. The corresponding cosmic density parameter
Ωg could tend to 0.83 for different initial conditions in Fig. 5. From Fig. 3, we can observe
that for the case with interaction Q = 3βqHρm, the EoS wg could approach to the attractor
wg = −1 from either wg > −1 or wg < −1. The corresponding cosmic density parameter
Ωg could tend to 1 for different initial conditions in Fig. 6. From Figs. 7, 8, 9, we can observe
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Table 4 The initial values of x and y in the plots Figs. 1–10

x 0.14 0.15 0.16 0.17 0.18 0.19

y −0.19 −0.18 −0.17 −0.16 −0.15 −0.14

Fig. 1 The evolution of the EoS
of MCG for different initial x and
y in the case of Q = 3βqHρtot ,
where we have taken A = 0.1,
α = 0.5 and β = −0.2. The
curves from bottom to top
correspond to the initial
conditions specified in Table 4
from left to right respectively

Fig. 2 The evolution of the EoS
of MCG for different initial x and
y in the case of Q = 3βqHρg ,
where we have taken A = 0.1,
α = 0.5 and β = −0.2. The
curves from bottom to top
correspond to the initial
conditions specified in Table 4
from left to right respectively

that the new interaction Q has a transition from Q < 0 to Q > 0, which is different from the
usual interaction. From Fig. 10, we can observe that for the case without interaction Q = 0
(β = 0), the EoS wg could approach to the attractor wg = −1 from either wg > −1 or wg <

−1. We find there exists difference in global structure of phase diagram between models with
and without these interactions. For MCG model with the sign-changeable interactions, the
EoS w can cross the cosmological constant boundary w = −1. While for the case without
interaction Q = 0, the EoS w can not cross −1.

Critical points are always exact constant solutions in the context of autonomous dy-
namical system. Theses points are often the extreme points of the orbits and therefore de-
scribe the asymptotic behavior. If the solutions interpolate between critical points they can
be divided into a heteroclinic orbit [43]. Therefore, we consider the possibility of form-
ing heteroclinic orbit. For MCG model with interaction Q = 3βqHρtot , heteroclinic or-
bits can be found in Fig. 11, where we choose A = 0.3, α = 0.5 and β = −0.02. From
Fig. 11, we can see that the universe can evolve from MCG matter-dominated phase to
MCG vacuum-energy-dominated phase. Other models possess with similar characteris-
tics.
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Fig. 3 The evolution of the EoS
of MCG for different initial x and
y in the case of Q = 3βqHρm ,
where we have taken A = 0.1,
α = 0.5 and β = −0.2. The
curves from bottom to top
correspond to the initial
conditions specified in Table 4
from left to right respectively

Fig. 4 The evolution of the
cosmic density parameter for Ωm

and Ωg respectively for different
initial x and y in the case of
Q = 3βqHρtot , where we have
taken A = 0.1, α = 0.5 and
β = −0.2

Fig. 5 The evolution of the
cosmic density parameter for Ωm

and Ωg respectively for different
initial x and y in the case of
Q = 3βqHρg , where we have
taken A = 0.1, α = 0.5 and
β = −0.2

Fig. 6 The evolution of the
cosmic density parameter for Ωm

and Ωg respectively for different
initial x and y in the case of
Q = 3βqHρm , where we have
taken A = 0.1, α = 0.5 and
β = −0.2
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Fig. 7 The evolution of 2κ2Q

9H3

for different initial x and y in the
case of Q = 3βqHρtot , where
we have taken A = 0.1, α = 0.5
and β = −0.2

Fig. 8 The evolution of 2κ2Q

9H3

for different initial x and y in the
case of Q = 3βqHρg , where we
have taken A = 0.1, α = 0.5 and
β = −0.2

Fig. 9 The evolution of 2κ2Q

9H3

for different initial x and y in the
case of Q = 3βqHρm , where we
have taken A = 0.1, α = 0.5 and
β = −0.2

Fig. 10 The evolution of the
EoS of MCG without interaction
(Q = 0) for different initial x and
y , where we have taken A = 0.1,
α = 0.5 and β = 0. The curves
from bottom to top correspond to
the initial conditions specified in
Table 4 from left to right
respectively
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Fig. 11 The attractor property of
the MCG with Q = 3βqHρtot ,
where we have taken A = 0.3,
α = 0.5 and β = −0.02. The
heteroclinic orbits connect MCG
vacuum-energy-dominated
attractor T.1 to MCG
matter-dominated critical point
T.3

3 Conclusions

In the present paper, the cosmological evolution of MCG model with the sign-changeable
interactions including Q = 3βqHρtot , Q = 3βqHρg and Q = 3βqHρm is studied. We find
that the EoS of MCG approaches the attractor phase from either wg > −1 or wg < −1 de-
pending on the choice of its initial cosmic density parameter and the ratio of pressure to
critical energy density. So, the phantom divide is crossed. While for MCG without inter-
action (Q = 0), the EoS wg can not cross −1. For the two cases of Q = 3βqHρtot and
Q = 3βqHρg (β �= 0), the EoS of MCG remains less than −1 in the final state, but both
energy densities of MCG and dark matter are constant with the cosmic expansion since all
the increased MCG energy has transferred into dark matter, thus the big rip does not appear.
Therefore, there exists the stable scaling solution for the above two cases, which can alle-
viate the coincidence problem. However, for the case of Q = 3βqHρm, there exists a MCG
dominated attractor with wg = −1 and Ωg = 1, namely de Sitter attractor. Moreover, we

show numerically the evolution of 2κ2

9H 3 Q with the proper parameters and find the new inter-
action Q has a transition from Q < 0 to Q > 0 as the universe expands, which is different
from the usual interaction. The numerical calculation also shows that a heteroclinic orbit can
interpolate between MCG matter-dominated phase and MCG vacuum-energy-dominated at-
tractor.
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