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Abstract We analyse a new family of solutions to the Einstein field equations describing the
collapse of a fluid sphere in the presence of heat flux and shear. These solutions ensure that
the collapsing fluid is accelerating and provide a generalisation of the geodesic fluid models
studied in earlier treatments. In particular, we demonstrate the role played by pressure in the
dynamics of the collapse process.
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1 Introduction

The Cosmic Censorship Hypothesis asserts that any reasonable matter distribution undergo-
ing continued gravitational collapse should form a black hole. The singularity theorems of
Hawking and Penrose formed the bedrock of all investigations into the endstates of gravi-
tational collapse [1]. One of the earliest attempts at understanding the contraction of a fluid
sphere under the action of gravity was due to Oppenheimer and Snyder in which they studied
a dust sphere undergoing continued gravitational collapse [2]. This model has subsequently
been generalised to include charge, the cosmological constant and it has been extended to
higher dimensions. The Oppenheimer-Snyder model is an idealised one as dissipative ef-
fects are ignored during the collapse process. It was only until 1985 when Santos presented
the junction conditions [3] for a radiating sphere matched to Vaidya’s outgoing solution that
researchers began to take an active role in determining the role played by dissipation in the
final outcome of gravitational collapse.
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The earliest models of dissipative collapse included radiating spheres dissipating energy
to the exterior spacetime in the form of radial heat flux, the presence of bulk viscosity, elec-
tromagnetic field and even the cosmological constant. These models were restricted to the
shear-free case. Banerjee et al. presented a model of shear-free collapse [4] in which the
rate of collapse is balanced by the rate of energy emission thus leading to the avoidance
of the formation of the horizon. This is one of the first models of a reasonable matter dis-
tribution undergoing gravitational collapse leading to the formation of a naked singularity.
The first exact model of a dissipative sphere undergoing collapse in the presence of shear
was provided by Naidu et al. [5]. Fluid trajectories within the stellar fluid were assumed
to be geodesics. This model was subsequently generalised by Thirukannesh and Maharaj
[6] and later by Rajah and Maharaj [7]. Another interesting class of shearing models is the
Euclidean stars first proposed by Herrera and Santos [8]. These models exhibit the special
feature that the proper radius equals the areal radius throughout the collapse process.

A complete description of a radiating stellar model requires the smooth matching of the
interior spacetime with Vaidya’s [9] solution. These junction conditions are well-known and
have been widely utilised in modeling radiating stars with vanishing shear. The conserva-
tion of momentum flux across the matching hypersurface requires that the isotropic pressure
at the boundary be proportional to the magnitude of the heat flux. This condition leads to a
nonlinear ordinary differential equation which governs the temporal behaviour of the model.
In the case of nonvanishing shear, the momentum balance at the stellar surface demands that
the radial pressure be proportional to the magnitude of the heat flux. In this case there are
a limited number of exact solutions to the boundary condition with nearly all of them de-
scribing acceleration-free collapse or geodesic flows within the stellar fluid. The first exact
model of a Euclidean star was obtained by Govender et al. [10]. Another interesting appli-
cation of shearing fluids is the so-called expansion-free collapse models studied by Herrera
and coworkers in which they show the emergence of a cavity after a central explosion within
the stellar interior [11]. It has been shown that various impositions on the Weyl tensor, lo-
cal anisotropy of pressure and/or the presence of dissipative fluxes generate energy-density
inhomogeneities within the stellar fluid.

It is the purpose of this paper to seek solutions to the Einstein field equations describing
a spherically symmetric matter distribution with shear and nonvanishing acceleration. We
show that the boundary condition for a general spherically symmetric interior matter dis-
tribution matched to Vaidya’s outgoing solution leads to a Riccati equation. We solve this
equation for particular combinations of the metric functions. We further investigate the ther-
mal behaviour of a particular model and relate our results to the acceleration-free models in
the literature.

2 Shearing Spacetimes

The interior spacetime of the collapsing sphere is described by the general spherically sym-
metric, shearing metric in comoving coordinates

ds® = —A’dt*> + B’dr® + R*(d6” + sin’ 0d¢?), (1

where the metric functions A = A(t,r), B= B(t,r) and R = R(t, r) are to be determined.
The matter content for the interior is described by

Top =+ P ) Vo Vg + PLgag+ (Pr— PL)XaXp + 40 Ve +qVa 2)
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where p represents the energy density, P, the radial pressure, P, the tangential pressure and
q* is the heat flux vector. The fluid four-velocity V is comoving and is given by

Ve = %88‘. 3)
The heat flow vector assumes the form
q*=1(0,4,0,0), “4)
since g*V,, = 0 ensuring radial heat dissipation. We further have
X Xe =1, X"V =0. (5)
The expansion scalar and the fluid four acceleration are given by
O=V  ay=VupV’, (6)

and the shear tensor by

1
Ga,g = V(a;,s) + Ay Vﬂ) — g(’)(ga,_«; + Vi Vﬁ) (7)

For the comoving line element (1) the kinematical quantities take the following forms

a ——A, 8
=7 8)
1 /B _R
@:Z<E+ZE> ©)
_1(A R 10
"7(2‘})’ {10

where dots and primes denote differentiation with respect to ¢ and r respectively. The
nonzero components of the Einstein’s field equations for the line element (1) and the energy-
momentum (2) are

1 23+R R 1 R (R P LBR_(BY an
F=2\"B"R)R B|"R R BR \®R)|
1 21‘é 2A R\ R +1 2A’+R/ R 1 a2
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LT A2|B"R A\B"R)"BR
l A// R// A/B/ A/ BI R/
- )= (13)
A BJR

(14)

~
|
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This is an underdetermined system of four coupled partial differential equations in seven
unknowns viz., A, B, R, u, P,, P, and q.
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3 Exterior Spacetime and Junction Conditions

The exterior spacetime is taken to be the Vaidya solution given by [9]
2 2m(v) 2 20702 1 i 2
ds*=—(1-——)dv* —2dvdR+ R (d6* + sin® 0d¢?), (15)

where m(v) represents the Newtonian mass of the gravitating body as measured by an ob-
server at infinity. The necessary conditions for the smooth matching of the interior spacetime
(1) to the exterior spacetime (15) have been extensively investigated. We present the main
results that are necessary for modeling a radiating star. The continuity of the intrinsic and
extrinsic curvature components of the interior and exterior spacetimes across a time-like

boundary are
_[R (§>2_<5>2 | 16
m(v)z—{z[ 1 B +]}E (16)

(P)s =gs. (17)

Relation (17) determines the temporal evolution of the collapsing star.

4 Temporal Evolution

The junction condition (Pg)x = ¢ yields

s (_R 21’é+ R\’ 2A1é+A2 B4 R _AR], A R4 4
T \24AR’ R R AR R2 R AR 2| R A

which is of the form

B =Cy(t)B* +Ci(t) B+ Cy(t) (19)

This is a Riccati equation which, in general, is difficult to solve. It can always be transformed
to a second order linear equation, but that equation will also be difficult to solve given the
forms of the C;. We now attempt to integrate (18) in a special case.

If we set
2R N R* 24AR A
R R AR R

then (18) reduces to a linear equation. We now need to solve

. [R R o 1
A—|=4+—=|A=A" —
R 2R 2RR
which is a Bernoulli equation in the variable A. This equation can be integrated in general

to yield

5 RR?

G o
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where f(r) is a function of integration. With the result (20), we find that (18) becomes
B R AR B+A Rl+2A/ =0 Q1)
R AR 2[R Al

which is linear in B. We are in a position to integrate (21) which then allows us to obtain a
particular solution of the junction condition (18) given by

RR?
A= —— (22)
f(r)—R
B— gr)— [(A'+ %)Aexp[f(ﬁ%é — %)dr]dr @3
expl [ (47 — X)drldt
R=R(.r) (24)

where g(r) is the second function of integration. We believe that (22)—(24) is a new solution
to the boundary condition (18) which allows for nonzero acceleration of the fluid particles.
We note that once the arbitrary function R is specified, we can then obtain explicit forms
for A(r,t) and B(r, t) which completely specifies the gravitational behaviour of our model.
(Note: This solution was also independently obtained by Thirukkanesh et al. [12].)

Other particular solutions for (18) have also been found by Fleming [13] and Thirukka-
nesh et al. [12] and we do not list them here.

5 A Particular Radiating Model

In order to study the physical viability of the class of solutions describing dissipative col-
lapse we take a closer look at solutions (22)—(24). To this end we choose

R(r,t)=a+cr —bt (25)

which subsequently allows us to obtain

A(r,t) =2 /w (26)

a~/b(a + cr — bt) — 2ct,/ M

a+cr — bt

B(r,t) = 27

where we have set f(r) =a + cr. The temporal and spatial behaviour of R(r,t) are cho-
sen so as to avoid any singular behaviour in the kinematical and dynamical quantities. The
Einstein field equations (11)—(14) yield

b — bt
o= <4bc3(cr — b)Yt +a’ (—4bc ++a+cr —bt %)

b — bt
—24? (—Zbcz(c —r)=2b%t+Va+cr —br w>

/b — bt
- 2a<—4bc4r +4b°3t + Arva+ cr — bt %
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b —b
—3bc*ta + cr — bt W))

3
X <‘/ w(—a —cr —l—bt)(—a«/a +cr — bt + 2ct/ w> )

(28)

2¢?
(av/aFor = bt —2cr, [ Heer=iny)

The thermodynamical quantities at the center of star become

P, =qB= (29)

—59<4b*ct td < 4be +/a b(a_bt))
b(a—b
—2a2<—2bc — 2Bt + Aa = (@ t ’))

—-b
—2a (4bzc3t 3bc?tNa — [))

3
/(,/M(—Hbz)(—a«/a —br+2ct,/@> ) (30)

2¢?
Poy= Qo= 3D
(a~/a — bt — 2ct bla— b’))z

The kinematical quantities yield

a+cr+2(a+cr)t —2bt?

o= (32)
2t /2B (—R)
—2ac+/R — 2¢(cr — 4bt)/R — 3at bTR
0= \/7 (33)
2R3/2)(av/R —2ct,/ &)
= (34)
M= Sater—bo

6 Energy Conditions and Stability

In order to test the physical viability of our solution it is imperative to impose the energy
conditions on the interior matter distribution. We firstly require that the energy density, radial
pressure and tangential pressure all be positive within the stellar core, i.e.,

p=0, P >0, P =0

We further require that the energy density and pressure decrease outwards from the center
to the stellar surface, i.e.,

o <0, P/ <0
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Fig. 1 Density vs. radial coordinate

We expect this as the density of the star at the center is the highest and gradually drops off
towards the surface (Fig. 1). From Fig. 2 we note that the radial pressure also drops off as one
moves from the center of the star to the stellar surface. Since p = ¢ B for all time, the heat
flux is highest at the center of the core and falls off radially outwards leading to cooling of the
surface layers. An interesting feature of this model is that the tangential pressure becomes
negative for this particular epoch of the star’s evolution (Fig. 3). This suggest that the tension
on each concentric shell is such that it tends to cause the shell to expand while the sphere
is collapsing under gravity. We can think of the negative tangential pressure as contributing
to the outward radial pressure thus slowing down the collapse process. Graphical analysis
of the energy conditions confirm: (o + P,)> — 4> >0and p — P, — 2P, + [(p + P,)* —
4612 > 0 to always hold within the stellar interior. These requirements ensure that the
energy conditions (weak, strong and dominant) are satisfied at all interior points of our
stellar model.

7 Thermal Behaviour

The behaviour of the temperature during dissipative collapse has been extensively studied
in shear-free models and shearing models with geodesic flows. Up to this point, the only
nonzero accelerating models with shear are the so-called Euclidean stars which were first
investigated by Herrera et al. [8]. The first exact model of a Euclidean star was presented by
Govender et al. [10]. This model has been generalised by Govender and Govinder [14] in
which the thermal behaviour and stability of Euclidean stars were investigated. The thermal
behaviour of these models were well studied within the context of extended irreversible ther-
modynamics. Just as in the cases of shear-free models and shearing, geodesic models it was
shown that relaxational effects due to heat dissipation leads to higher interior temperatures
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Radial pressure

1.x107° |-

8.x1077 1

6.x1077 |-

4.x1077 |-

Fig. 2 Radial pressure vs. radial coordinate
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Fig. 3 Tangential pressure vs. radial coordinate

of the Euclidean stellar core. To this end we investigate the evolution of the temperature pro-
files in our class of accelerating models with nonzero shear. We employ a causal transport
equation for the heat flux in order to display relaxational effects during the collapse process
[15]. The truncated causal transport equation for the heat flux for the line element (1) is
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given by
(ATY
B

where 7 is the relaxation time and « is the thermal conductivity. Switching ‘oft” t leads to
the noncausal Fourier heat transport equation

7(gB) + A(gB) = —«

(35)

(AT)
B

A(gB)=—« (36)

which suffers various pathologies in terms of causality and stability of the equilibrium states.
Adopting the thermodynamic coefficients for radiative transfer, we set

k=yTt,, 1.= (%)T“’ 37)

where a > 0, y > 0 and o > 0 are constants. We further assume that the velocity of ther-
mal dissipative signals is comparable to the adiabatic sound speed which is ensured if the
relaxation time is proportional to the collision time:

T= (ﬂ—y)rc (38)
a

where B (> 0) is a constant. Using the above definitions for t and «, (35) takes the form

T3 (AT)

B(gB)T™° + A(gB) = —a m

(39)

We are in a position to integrate (39) for the special case of constant collision time corre-
sponding to o = 0:

1 bX
T(r,t)= (F (X% (chf (azc +2ac’d + 3d? — bret? — at/ X, Tl)
2

(—aby/ X +ac\/ 2t + ¢ /"X (cd + b))

X
d2\ /2 (a /X7 — 2et, ) HEL)6
1 L (AD7eX (av/X + 2et X
+b2Xfw ( 312(a? — 4bc2t)

bX bX
- (2b2cﬂ (—2c2d <4abc\/X1 +a2,/—t ‘ +4bc2z,/—z ‘)
[bX,  bX
—b(a® — 4bc’t) (a\/Xl log X| + 2ct Tl log %)))
[bX
/<t2 T‘(a2 - 4bc2t)2>>>

42 (AD7c(X)(aV/Xs + 2ct, [ B2)
) ( 312(a? — 4bc2t)
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Fig. 4 Temperature vs. radial coordinate

X X
- (219%;3 (—2c2r <4abc\/X2 +a%/ % +4bc*t, ?)
bX bX
— b(a2 - 4bczt) <a\/X2 log X, + 2ct,/ TZ log Tz>>>
X 1/4
/<t2,/ % (a2 — 4bczt)2>>>> (40)

where we have defined (a + c¢d — bt) = X, and (a + cr — bt) = X,. In Fig. 4 we note
that the causal temperature is everywhere higher than its noncausal counterpart for each
interior point of the stellar core. This agrees with earlier results obtained in the shearing
case with zero acceleration as well as the models of Euclidean stars studied in the Govender
et al. paper [10]. The family of solutions obtained by Thirukkanesh et al. [12] has been
shown to be physically viable in modeling a radiating, collapsing sphere with shear. Our
physical analysis of the thermal behaviour of our particular model confirms the importance
of relaxational effects during late-time evolution of the collapse process in the presence of
shear.

8 Conclusion

‘We have modelled a spherically symmetric radiating star undergoing dissipative collapse in
the presence of a radially driven heat flux to the exterior spacetime. The exterior spacetime
is described by Vaidya’s outgoing solution. The matching of the interior spacetime to the
exterior spacetime across a time-like hypersurface generates a temporal evolution equation
for the metric functions which is a Riccati equation. We were in a position to integrate
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this equation under various assumptions to generate several classes of radiating solutions
with shear. We further studied the physical viability of one these classes of solutions by
imposing the energy conditions. An interesting feature of this particular model is that the
tangential pressure becomes negative for a particular period of the collapse. We point out
that such a scenario would lead to the slowing down of the collapse as opposed to case of
positive tangential pressure where the collapsing sphere is squeezed into a smaller volume.
We also showed that the causal temperature is everywhere higher within the stellar core as
compared to the Eckart temperature. Up to this point, the shearing radiating solutions that
exist in the literature are all acceleration-free [5—7]. We have investigated the evolution of the
temperature for a shearing collapsing fluid with nonzero acceleration. We have found that
in the presence of acceleration and shear, the causal temperature within the stellar core is
higher than the Eckart temperature. This reinforces the belief that relaxational effects cannot
be ignored during dissipative gravitational collapse, even when the stellar fluid is close to
hydrostatic equilibrium.
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