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Abstract A unification model of 4D gravity and SU(3)× SU(2)×U(1) Yang-Mills theory
is presented. It is obtained from a Kaluza-Klein compactification of 8D quaternionic gravity
on an internal CP2 = SU(3)/U(2) symmetric space. We proceed to explore the nonlinear
connection Aa

μ(x,y) formalism used in Finsler geometry to show how ordinary gravity in
D = 4 + 2 dimensions has enough degrees of freedom to encode a 4D gravitational and
SU(5) Yang-Mills theory. This occurs when the internal two-dim space is a sphere S2. This
is an appealing result because SU(5) is one of the candidate GUT groups. We conclude by
discussing how the nonlinear connection formalism of Finsler geometry provides an infinite
hierarchical extension of the Standard Model within a six dimensional gravitational theory
due to the embedding of SU(3) × SU(2) × U(1) ⊂ SU(5) ⊂ SU(∞).

Keywords Quaternions · Gravity · Grand unification · Finsler geometry · Kaluza-Klein

1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative algebras are
deeply related and are essential tools in many aspects in Physics, see [1–11] for references,
among many others. In particular, a 15D model of a Chern-Simons E8 Gauge theory of
Gravity was proposed by [12, 13] as a unified field theory of a Lanczos-Lovelock Gravita-
tional Lagrangian with a E8 Generalized Yang-Mills field theory in the 15D boundary of a
16D bulk space. More recently, a Clifford Cl(5,C) Unified Gauge Field Theory of Confor-
mal Gravity, Maxwell and U(4) × U(4) Yang-Mills in 4D was provided by [23]. For other
results on grand unification based on Clifford algebras see [45–50] and references therein.

It has been argued by [37] that a Kaluza-Klein compactification of 8D gravity on CP2

involving a nontrivial torsion may bypass the no-go theorems [39] that one cannot obtain the
group SU(3) × SU(2) × U(1) from a Kaluza-Klein mechanism in 8D. It was assumed by
[37] that if the torsion components T a

μν were proportional to F I
μνe

a
I , where ea

I is a vielbein
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employed to change the SU(2) × U(1) group index I = 1,2,3,4 to the internal four-dim
space CP2 index a = 1,2,3,4, the 8D Lagrangian corresponding to the curvature scalar
and associated with a connection with contorsion K : R(Γ + K) = R(Γ ) + (K)2 + ∇K

yields a gravitational and SU(3) × SU(2) × U(1) Yang-Mills theory upon compactification
on CP2 = SU(3)/SU(2)×U(1). The problem was that no proof was presented in [37] which
shows why T a

μν is proportional to F I
μνe

a
I .

It is known that a horizontal-vertical splitting of the tangent space geometry using the
canonical distinguished d-connection (instead of the torsionless Levi-Civita connection)
within the formalism of Lagrange-Finsler spaces leads to nontrivial torsion T a

μν compo-
nents and which are related to the generalized field strength Fa

μν associated with a nonlinear
connection Aa

μ(xν, yb). The coordinates xν, yb are the horizontal base space and internal
vertical space coordinates, respectively. A mapping between Finsler and Kaluza-Klein theo-
ries and the comparison of the Finslerian gauge approach to the Yang-Mills one can be found
in [24, 25], respectively. In Sect. 3 we will explore the nonlinear connection Aa

μ(xν, yb) for-
malism of Finsler geometry to show how gravity in 4 + 2 dimensions has enough degrees
of freedom to encompass 4D gravity and a SU(5) Yang-Mills theory. This is an appealing
result because SU(5) is a candidate GUT group.

A complexification of ordinary gravity (not to be confused with Hermitian-Kahler ge-
ometry) has been known for a long time. Complex gravity requires that gμν = g(μν) + ig[μν]
such that gνμ = (gμν)

∗. A treatment of a non-Riemannan geometry based on a complex tan-
gent space and involving a symmetric g(μν) plus antisymmetric g[μν] metric component was
first advanced by Einstein-Strauss [14, 15] (and later on by [16]) in their proposal to unify
Electromagnetism (EM) with Gravity by identifying the EM field strength Fμν with the
antisymmetric metric g[μν] component. However this identification led to several problems.

Borchsenius [18] formulated the quaternionic extension of Einstein-Strauss unified the-
ory of gravitation with EM by identifying the SU(2) Yang-Mills field strength F i

μν , i =
1,2,3 with the internal degrees of a freedom (g[μν])i of a quaternionic-valued “metric ten-
sor”. Again this approach is problematic. For these reasons in Sect. 2 we shall build an uni-
fication model of 4D gravity and SU(3) × SU(2) × U(1) Yang-Mills theory obtained from
a Kaluza-Klein compactification of 8D quaternionic gravity on CP2, rather than introduc-
ing by hand the torsion squared terms [37]. In this way we avoid the problems encountered
by [14, 15, 18], and also construct unified theories that contain the electro-weak force and
gravity in 4D. Our results differ also from the construction in [38] to unify the electro-weak
force with gravity in 4D after complexifying the de Sitter group.

The authors [19, 20] much later provided the octonionic gravitational extension of Borch-
senius theory involving two interacting SU(2) Yang-Mills fields and where the exceptional
group G2 was realized naturally as the automorphism group of the octonions. The octonionic
geometry (gravity) construction developed by [19, 20] was extended further to spaces with
noncommutative and nonassociative spacetime coordinates and momenta in [21] and which
set the stage for the study of Exceptional Jordan Strings and Nonassociative Ternary Gauge
Field Theories [22]. Having presented this very brief introduction we shall proceed with the
main results of this work.

2 Gravity and Standard Model Unification from 8D Quaternionic Gravity

A geometrical treatment of a non-Riemannian geometry including an internal complex,
quaternionic and octonionic space has been investigated by several authors [14, 15, 18–20],
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Castro-Jordan. A quaternionic-valued metric is defined as

gμν = gμνeo + gi
[μν]ei, eiej = −δij eo + εijkek, i, j, k = 1,2,3 (2.1)

obeying the symmetry condition g†
μν = gνμ where the Hermitian conjugation is taken in the

internal quaternionic space. Namely, one can represent the generators of the quaternionic
algebra in terms of the Hermitian Pauli spin 2 × 2 matrices σi and the unit 2 × 2 matrix as
eo = 12×2; ei = −iσi . Hence the Hermitian conjugation is carried on the 2 × 2 matrices. The
physical distance is

ds2 = 1

2
Trace

(
gμνdxμdxν

) = g(μν)dxμdxν (2.2)

due to the traceless condition of the Pauli spin matrices and commuting nature of the co-
ordinates. One may choose gμν = g(μν) + ig[μν] and maintain the Hermiticity condition
g†

μν = gνμ if (ig[μν]eo)
† = −ig[μν]eo; i.e. if one includes a complex conjugation on i as well

and which is compatible with the fact that (ei)
† = (−iσi)

† = +iσi = −ei since the Pauli
spin 2 × 2 matrices σi are taken to be Hermitian.

The quaternionic-valued connection is

Υ σ
μρ = (

Γ σ
(μρ) + iΓ σ

[μρ]
)
eo + (

Θσ
[μρ]

)i
ei (2.3)

we explicitly write (μρ), [μρ] to denote the symmetry and antisymmetry properties of the
connection components. We will show how a Kaluza-Klein compactification in the internal
space CP2, from 8D to 4D, yields a gravitational, SU(3)×SU(2)×U(1) Yang-Mills theory
in 4D.

The gravitational and U(1) Maxwell’s EM sector are encoded, respectively, in the sym-
metric piece Γ σ

(μρ)eo and antisymmetric piece iΓ σ
[μρ]eo corresponding to the unit element eo

of the quaternionic-algebra-valued connection. The SU(2) sector is encoded in the internal
part (Θσ

[μρ])
iei . The SU(3) Yang-Mills sector arises upon the Kaluza-Klein compactification

resulting from the isometry group of the CP2 internal space. Therefore, from a pure quater-
nionic gravity in 8D one can obtain a grand unified field theory of gravity and the standard
model group SU(3) × SU(2) × U(1) in 4D.

This result can be attained by restricting Γ σ
[μρ] = δσ

ρ Aμ − δσ
μAρ to be the Einstein-

Schrodinger connection, where Aμ is the EM field. Due to the antisymmetry, Γ σ
[μρ] trans-

forms as a tensor. This is not the case with Γ σ
(μρ). The internal part of the connection Θσ

[μρ] is
restricted to be of the form (δσ

ρ Θi
μ − δσ

μΘi
ρ)ei, i = 1,2,3, such that the commutator becomes

[Θμ,Θν] = 2Θi
μΘj

ν εijkek . The quaternionic-valued curvature

Rσ
μνρ = ∂μΥ σ

νρ − ∂νΥ
σ
μρ + Υ σ

μτΥ
τ
νρ − Υ σ

ντΥ
τ
μρ

= (
Rσ

μνρ + iF σ
μνρ

)
eo + (

Pσ
μνρ

)k
ek + extra terms (2.4)

has for components the following terms: the standard Riemannian curvature tensor written
in terms of the Christoffel symbols as

Rσ
μνρ = ∂μΓ σ

(νρ) − ∂νΓ
σ
(μρ) + Γ σ

(μτ)Γ
τ
(νρ) − Γ σ

(ντ)Γ
τ
(μρ) (2.5)

The tensor containing the Maxwell field strength is

Fσ
μνρ = δσ

ρ (∂μAν − ∂νAμ) + δσ
μ∂νAρ − δσ

ν ∂μAρ (2.6)
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such that the contraction Fσ
μνσ = (D − 1)Fμν in D-dim is proportional to the U(1) EM field

strength Fμν = ∂μAν −∂νAμ. And, finally, the SU(2) field strength is encoded in the internal
part of the curvature tensor which can be written as

Pμν = ∂μΘν − ∂νΘμ + [Θμ,Θν]
= (

∂μΘk
ν − ∂νΘ

k
μ

)
ek + 2Θi

μΘj
ν εijkek. (2.7)

leading to

Pσ
μνρ = (

Pσ
μνρ

)k
ek = δσ

ρ (Pμν)
kek

= δσ
ρ

(
∂μΘν − ∂νΘμ + [Θμ,Θν]

)k
ek (2.8)

There are extra terms in Eq. (2.4) involving products of the form

Γ σ
(μτ)Γ

τ
[νρ], Γ σ

(μτ)

(
Θτ

[νρ]
)k

, Γ σ
[μτ ]Γ

τ
[νρ], Γ σ

[μτ ]
(
Θτ

[νρ]
)k

(2.9)

and for simplicity are not written down. The first two terms in (2.9) can be reabsorbed inside
the ordinary derivatives to yield “covariantized” SU(2) × U(1) field strengths involving the
analog of covariant-like derivatives ∇μ acting on the gauge fields; and the last two terms are
analogous (but not identical) to torsion-squared terms and products of torsion terms.

If one has quaternionic gravity in 8D, the indices are M,N,L = 1,2,3, . . . ,8 and, if
one wishes, one may build a Lagrangian out of the following tensorial quantities found
within the quaternionic-valued curvature above: namely the 8D Riemannian scalar curvature
R = g(MN)RMN , the U(1) and SU(2) field strengths FMN,F i

MN . In particular, let us start
with a standard Lagrangian for gravity plus SU(2) × U(1) Yang-Mills in 8D given by

L = R − 1

4
(FMN)2 − 1

4

(
F i

MN

)2
, M,N = 1,2,3, . . . ,8 (2.10)

where we set the numerical couplings to unity. The components of the Ricci tensors after a
Kaluza-Klein compactification are given by [36]

Rμν = Rμν − 1

2
Ka

I KaJ F I
μρF

Jρ
ν , Rμa = 1

2
KI

a DνF
Iν
μ (2.11a)

Rab = Rab + 1

4
KI

a KJ
b F I

μνF
Jμν (2.11b)

where KaI are the Killing vectors associated with the SU(3) isometry group (metric preserv-
ing symmetry) of the internal space CP2 = SU(3)/SU(2) × U(1). The range of the indices
is μ,ν = 1,2,3,4; a, b = 1,2,3,4 and I, J = 1,2,3, . . . ,8. Equations (2.11a), (2.11b) lead
to the following decomposition of the 8D scalar curvature

R = R[gμν] − 1

4
F I

μνF
μν

I + gabRab + · · · (2.11c)

so that the Lagrangian (2.10) furnishes a four-dim theory of gravity and SU(3) Yang-Mills
interacting with a non-linear sigma model scalar field stemming from the metric degrees of
freedom in the internal space. The indices I = 1,2,3, . . . ,8 span the 8 generators of the
SU(3) algebra and R = g(μν)Rμν is the four-dim scalar curvature.
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Concluding, from a quaternionic-valued gravitational theory in 8D, one has the necessary
field ingredients to build the Lagrangian (2.10) and generate a gravitational and SU(3) ×
SU(2) × U(1) Yang-Mills theory in 4D after a Kaluza-Klein compactification on CP2. For
this reason, this kind of grand unification program warrants further investigation. Closely
related to the Lagrangian in Eq. (2.10) is that the authors [35] have shown how an Einstein-
Yang-Mills theory in 4 + d dimensions admits a solution (an spontaneous compactification)
of the form M4 ×G/H , where M4 is an Einstein space and G/H is a symmetric space, if the
gauge group of the Yang-Mills theory in 4 + d dimensions is H or larger. This agrees with
our results above which are based on having H = SU(2) × U(1) and d = 4. The authors
[35] focused in particular in the case when the four-dim base space M4 is Minkowski or
Anti de Sitter space.

Instead of having for Lagrangian the one provided by Eq. (2.10), let us begin with the real
part of the quaternionic-valued scalar curvature, and set the numerical physical (coupling)
constants to unity, for simplicity

L = 1

2
gMN RMN + quaternionic complex conjugate

= g(MN)RMN − g[MN]FMN − (
g[MN])

j
F

j

MN + · · · (2.12)

the Lagrangian (2.12) is the quaternionic version of the Einstein-Hilbert gravitational one.
If one imposes the correspondence g[MN] ↔ FMN and (g[MN])j ↔ F

j

MN in (2.12) then one
recovers the correspondence with the gravity-Yang-Mills Lagrangian in (2.10). However,
we must emphasize that the Lagrangians of Eqs. (2.10), (2.12) are not the same because an
antisymmetric metric tensor is not physically the same as a gauge field strength. Similarly,
one could have interpreted the Born-Infeld actions for EM and gravity, respectively

∫ √
det |gμν + Fμν |,

∫ √
det |gμν + Rμν | (2.13)

as if one had the determinants of an effective “metric” given by gμν + Fμν and gμν + Rμν .
Before studying the quaternionic version of the Einstein-Hilbert Lagrangian (2.12), let us

focus now on the Kaluza-Klein compactification of complex gravity. Earlier on we restricted
the connection to be given as Γ σ

[μρ] = δσ
ρ Aμ − δσ

μAρ , and similarly, the internal part of the
quaternionic connection Θσ

[μρ] = (δσ
ρ Θi

μ − δσ
μΘi

ρ)ei . One may relax these restrictions and fo-
cus solely on a complex gravitational theory (without including the imaginary quaternionic
part) where the antisymmetric part of the connection Γ σ

[μρ] is now unrestricted and ask how
a Kaluza-Klein compactification of complex gravity might look like. Because real gravity in
8D yields ordinary gravity and SU(3) Yang-Mills theory in 4D, upon a compactification on
CP2, one may wonder if complex gravity might furnish a complex gravitational and SU(3)

Yang-Mills theory in 4D upon compactification on CP2.
It is known that the complexification of the su(N),u(N) algebras are respectively the

algebras sl(N,C),gl(N,C). Rather than focusing on SL(N,C) Yang-Mills theories (in-
volving noncompact groups) we shall concentrate on complex-valued SU(N) Yang-Mills
fields (AI

μ + iÃI
μ)TI where TI are the N2 − 1 generators of SU(N). The symmetric and

antisymmetric metric components gAB = g(AB) + ig[AB] in 8D admit the following 4 + 4
decomposition

g(μν) + ig[μν] = γ(μν) + iγ[μν] + φ(ab)A
a
μAb

ν + iφ[ab]Ãa
μÃb

ν (2.14a)

gab = φ(ab) + iφ[ab], gμa = φ(ab)A
b
μ + iφ[ab]Ãb

μ, gaμ = (gμa)
∗ (2.14b)
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and such that the interval ds2 is the same as in ordinary real gravity with symmetric metrics

ds2 = φ(ab)dyadyb + (
γ(μν) + φ(ab)A

a
μAb

ν

)
dxμdxν + 2φ(ab)A

b
μdxμdya. (2.15)

The antisymmetric metric components do not contribute to the distance due to the commuta-
tivity of the coordinate differentials. Another geometrical setting where the 4 + 4 decompo-
sition of symmetric and nonsymmetric metrics is relevant is in the study of Finsler geometry.
A very rigorous treatment of nonsymmetric theories of gravity [16] involving nonsymmetric
metrics in Finsler geometry was undertaken by [32] following the early work of Eisenhart
[33, 34]. Nonsymmetric metrics were very relevant in the study of Born’s deformed recip-
rocal complex gravity and Noncommutative gravity [17].

It is reasonable to expect that a Kaluza-Klein compactification scenario should yield a
complexified SU(3) Yang-Mills theory based on the following complex-valued field strength

Fk
μν + iF̃ k

μν = ∂μ

(
Ak

ν + iÃk
ν

) − ∂ν

(
Ak

μ + iÃk
μ

) + flj
k
(
Al

μ + iÃl
μ

)(
Aj

ν + iÃj
ν

);
k = 1,2,3, . . . ,8 (2.16)

One may note that now one ends up with field strength components whose fields Aa
μ, Ãa

μ

mix due to the nonabelian nature of SU(3)

F k
μν = ∂μAk

ν − ∂νA
k
μ + flj

k
(
Al

μAj
ν − Ãl

μÃj
ν

)
(2.17a)

F̃ k
μν = ∂μÃk

ν − ∂νÃ
k
μ + flj

k
(
Al

μÃj
ν + Ãl

μAj
ν

)
(2.17b)

These expressions should be compared with the standard SU(3) × SU(3) field strength,
where the respective fields A′a

μ and Ã′a
μ do not mix

F ′k
μν = ∂μA′k

ν − ∂νA
′k
μ + flj

kA′l
μA′j

ν (2.18a)

F̃ ′k
μν = ∂μÃ′k

ν − ∂νÃ
′k
μ + flj

kÃ′l
μÃ′j

ν (2.18b)

If one equates

Fk
μν = F ′k

μν, F̃ k
μν = F̃ ′k

μν (2.19)

it imposes a relationship among the gauge fields Ak
μ, Ãk

μ,A′k
μ , Ã′k

μ of the form

Ak
μ − A′k

μ = ∂μΛk ≡ Λk
μ, Ãk

μ − Ã′k
μ = ∂μΛ̃k ≡ Λ̃k

μ ⇒ (2.20a)

∂[νAk
μ] = ∂[νA′k

μ], ∂[νÃk
μ] = ∂[νÃ′k

μ], k = 1,2,3, . . . ,8 (2.20b)

where the derivatives ∂μΛk = Λk
μ, ∂μΛ̃k = Λ̃k

μ are not arbitrary functions but are con-
strained to satisfy the following set of stringent relations obtained by imposing the equalities

flj
k
(
Al

μAj
ν − Ãl

μÃj
ν

) = flj
kA′l

μA′j
ν , k = 1,2,3, . . . ,8 (2.21a)

flj
k
(
Al

μÃj
ν + Ãl

μAj
ν

) = flj
kÃ′l

μÃ′j
ν , k = 1,2,3, . . . ,8 (2.21b)

resulting from Eqs. (2.19), and after using Eqs. (2.20a), (2.20b) leading to a complicated
functional relation among Λk

μ, Λ̃k
μ and A′k

μ , Ã′k
μ of the form Λk

μ[A′k
μ , Ã′k

μ ]; Λ̃k
μ[A′k

μ , Ã′k
μ ].
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Hence, Eqs. (2.20a), (2.20b), (2.21a), (2.21b) provide a functional relation among the prime
and unprimed fields of the form

Ak
μ = A′k

μ + Λk
μ

[
A′k

μ , Ã′k
μ

]
, Ãk

μ = Ã′k
μ + Λ̃k

μ

[
A′k

μ , Ã′k
μ

]
(2.22)

which permits us to equate the Yang-Mills kinetic terms

(
F ′k

μν

)2 + (
F̃ ′k

μν

)2 = (
Fk

μν

)2 + (
F̃ k

μν

)2
(2.23)

To sum up, by taking the real part of the complex scalar curvature for the 8D Lagrangian:
1
2 [gABRAB + (gABRAB)∗], and after performing a Kaluza-Klein compactification on CP2,
one would expect to generate the real part of the complexified SU(3) Yang-Mills kinetic
terms in 4D

1

2

[(
Fk

μν + iF̃ k
μν

)2 + (
Fk

μν − iF̃ k
μν

)2]

= (
Fk

μν + iF̃ k
μν

)(
F

μν

k − iF̃
μν

k

) = (
Fk

μν

)2 + (
F̃ k

μν

)2 = (
F ′k

μν

)2 + (
F̃ ′k

μν

)2
(2.24)

Therefore, after recurring to the relations (2.19)–(2.22), one could extract in principle the
SU(3) × SU(3) 4D Yang-Mills Lagrangian (2.24) from the complex gravitational theory
in 8D after a Kaluza-Klein compactification on the internal space CP2. Because the latter
group SU(3) × SU(3) contains the standard model group SU(3) × SU(2) × U(1), this is
an appealing construction in 8D that does not require an ordinary gravitational theory in
D = 11 [39] and which differs from the proposals in [37, 38].

Having described heuristically the Kaluza-Klein compactification of complex gravity and
how a complex SU(3) Yang-Mills might arise, we now turn to the pure quaternionic grav-
ity case based on the metric g(μν)eo + gi

[μν]ei , when the internal part of the connection is
unrestricted (Θσ

[μρ])
iei 
= δσ

[ρΘ
i
μ]ei , and ask firstly what a quaternionic analog of a SU(3)

Yang-Mills theory might look like. In general, a quaternionic-valued and SU(N)-valued
gauge field can be written as Aμ = Aam

μ (ea ⊗ Tm) involving the SU(N) algebra generators
Tm,m = 1,2,3, . . . ,N2 − 1 and the quaternion algebra generators (including the unit gen-
erator) ea = e0, e1, e2, e3; i.e. one has quaternionic-valued components for the SU(N) gauge
fields. The quaternionic-valued SU(N) commutator is defined by

[Aμ,Aν] = [
Aam

μ (ea ⊗ Tm),Abn
ν (eb ⊗ Tn)

]

= 1

2
Aam

μ Abn
ν {ea, eb} ⊗ [Tm,Tn] + 1

2
Aam

μ Abn
ν [ea, eb] ⊗ {Tm,Tn} (2.25)

where

{ea, eb} = −2δabeo, [ea, eb] = 2cabcec (2.26)

and

{Tm,Tn} = 1

N
δmn + dmnpTp, [Tm,Tn] = fmnpTp (2.27)

From Eqs. (2.25)–(2.27) one arrives at the different components of the field strengths

Fk
μν = ∂μAk

ν − ∂νA
k
μ + flj

kAl
μAj

ν − δabflj
kAal

μ Abj
ν (2.28a)

Fc
μν = ∂μAc

ν − ∂νA
c
μ + cab

c δlj

N
Aal

μ Abj
ν (2.28b)
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Fck
μν = ∂μAck

ν − ∂νA
ck
μ + cab

cdlj
kAal

μ Abj
ν + flj

kAl
μAcj

ν (2.28c)

From the first three terms in the right hand side of Eq. (2.28a) one learns that Fk
μν does

contain explicitly the SU(N) field strength if δabflj
kAal

μ Abj
ν 
= flj

kAl
μAj

ν . After requiring

the summation over the l, j indices in Eq. (2.28b) to be
δlj

N
Aal

μ Abj
ν = Aa

μAb
ν , in the special

case that the indices span the range of values given by a, b = 1,2,3; l, j = 1,2, . . . ,N2 − 1,
the field strength Fc

μν becomes

Fc
μν = ∂μAc

ν − ∂νA
c
μ + cab

c δlj

N
Aal

μ Abj
ν

= ∂μAc
ν − ∂νA

c
μ + cab

cAa
μAb

ν (2.29)

and effectively behaves as a SU(2)-valued field strength since the quaternionic structure
constants cabc coincide with the epsilon symbols εabc when a, b, c = 1,2,3. When the index
for c in Eq. (2.28b) is c = 0 ⇒ c 0

ab = 0, and Eq. (2.28b) becomes in this case

F 0
μν = ∂μA0

ν − ∂νA
0
μ (2.30)

and which behaves effectively as an U(1) field strength.
Therefore, when N = 3, the field strength components in Eqs. (2.28a), (2.28b) associ-

ated with a quaternionic-valued SU(3) Yang-Mills theory, contain the SU(3),SU(2),U(1)

field strengths as special cases, and consequently, the Standard Model group. In this way
one can see once more how a quaternionic-valued gravitational theory in 8D can furnish
a gravitational and SU(3) × SU(2) × U(1) Yang-Mills theory in 4D after a Kaluza-Klein
compactification on CP2. There are additional field strength components Fck

μν stemming
from the noncommutativity of the quaternions which do not belong to the Standard Model
group and which are given by Eq. (2.28c). As expected, the structure of the quaternionic-
valued SU(3) Yang-Mills theory is richer than a one based on the standard model group
SU(3) × SU(2) × U(1).

One may compare these results with the Clifford Cl(5,C) Unified Gauge Field Theory
of Conformal Gravity, Maxwell and U(4) × U(4) Yang-Mills in 4D [23], the Kaluza-Klein
theory without extra dimensions involving a curved Clifford space [49, 50] and the Clifford
Cl(8) algebra models of [45–48].

3 Gravity and SU(5) Yang-Mills Unification from Nonlinear Connections in Finsler
Geometry

In this section we will explore a different approach than the standard Kaluza-Klein one to
unification from gravity in higher dimensions. It will be based on the nonlinear connec-
tion formalism of Finsler geometry, [26–31]. Some time ago it was shown by [40–43] that a
Kaluza-Klein-like formalism of Einstein’s theory, based on the (2+2)-fibration of a generic
4-dimensional spacetime, describes General Relativity as a Yang-Mills gauge theory on the
2-dimensional base manifold, where the local gauge symmetry is the group of the diffeo-
morphisms of the 2-dimensional fibre manifold. They found the Schwarzschild solution by
solving the field equations after a very laborious procedure. Their formalism was valid for
any m + n decomposition of the D-dim spacetime D = m + n. The line element in m + n

dimensions is parametrized as follows

ds2 = φabdyadyb + (
γμν + φabA

a
μAb

ν

)
dxμdxν + 2φabA

b
μdxμdya (3.1)
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where all fields depend on the xμ, ya coordinates and the metric is symmetric. In par-
ticular, the nonlinear gauge connection is given by Aa

μ(xρ, yb) and the span of indices
is μ,ν,ρ = 1,2, . . . ,m and a, b, c = 1,2, . . . , n. To find the (m + n)-dimensional action
principle of general relativity we must compute the scalar curvature of space-times in the
(m + n)-decomposition. For this purpose it is convenient to introduce the following non-
holonomic (non-coordinate basis) ∂̂A = (∂̂μ, ∂̂a) where

∂̂μ ≡ ∂μ − A a
μ

(
xρ, yb

)
∂a, ∂̂a ≡ ∂a (3.2)

From this definition we have

[∂̂A, ∂̂B] = f C
AB

(
xρ, yb

)
∂̂C,

where the structure coefficients (non-holonomic coefficients) f C
AB are given by

f a
μν = −F a

μν , f b
μa = −f b

aμ = ∂aA
b

μ , f C
AB = 0, otherwise (3.3)

The virtue of this non-holonomic basis is that it brings the metric (3.1) into a block diagonal
form

gAB =
(

γμν 0
0 φab

)

which drastically simplifies the computation of the scalar curvature. In this non-holonomic
(non-coordinate) basis the Levi-Civita connection is given by

Γ C
AB = 1

2
gCD(∂̂AgBD + ∂̂BgAD − ∂̂DgAB) + 1

2
gCD(fABD − fBDA − fADB) (3.4)

where fABC = gCDf D
AB . The field strength F a

μν corresponding to the (nonlinear) gauge
connection A a

μ is defined as

F a
μν = ∂μAa

ν − ∂νA
a
μ − Ac

μ∂cA
a
ν + Ac

ν∂cA
a
μ (3.5)

For completeness, the connection coefficients components are [40–43]

Γ α
μν = 1

2
γ αβ(∂̂μγνβ + ∂̂νγμβ − ∂̂βγμν)

Γ a
μν = −1

2
φab∂bγμν − 1

2
F a

μν

Γ ν
μa = Γ ν

aμ = 1

2
γ να∂aγμα + 1

2
γ ναφabF

b
μα

Γ b
μa = 1

2
φbc∂̂μφac + 1

2
∂aA

b
μ − 1

2
φbcφae∂cA

e
μ

Γ b
aμ = 1

2
φbc∂̂μφac − 1

2
∂aA

b
μ − 1

2
φbcφae∂cA

e
μ

Γ
μ

ab = −1

2
γ μν∂̂νφab + 1

2
γ μνφac∂bA

c
ν + 1

2
γ μνφbc∂aA

c
ν

Γ c
ab = 1

2
φcd(∂aφbd + ∂bφad − ∂dφab).

(3.6)
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The Torsion is defined as

T A
BC = Γ A

BC − Γ A
CB − f A

BC (3.7a)

giving vanishing torsion components, consistent with the fact that the Levi-Civita connection
is torsionless by definition. For example, from Eqs. (3.3), (3.6) one arrives at the vanishing
values

T a
μν = −Fa

μν + Fa
μν = 0, T b

μa = −T b
aμ = ∂aA

b
μ − ∂aA

b
μ = 0, . . . (3.7b)

The curvature tensors are defined as

R D
ABC = ∂̂AΓ D

BC − ∂̂BΓ D
AC + Γ D

AE Γ E
BC − Γ D

BE Γ E
AC − f E

AB Γ D
EC

RAC = R B
ABC , R = gACRAC (3.8a)

Explicitly, the scalar curvature R is given by

R = γ μν
(
R α

μαν + R a
μaν

) + φab
(
R c

acb + R
μ

aμb

)
(3.8b)

which becomes, after a very lengthy computation

R = γ μν Rμν + φac Rac + 1

4
φabγ

μνγ αβF a
μα F b

νβ

+ 1

4
γ μνφabφcd

{
(Dμφac)(Dνφbd) − (Dμφab)(Dνφcd)

}

+ 1

4
φabγ μνγ αβ

{
(∂aγμα)(∂bγνβ) − (∂aγμν)(∂bγαβ)

} + ∇AjA (3.9)

where the “gauged” Ricci tensor Rμν in the base manifold and the internal space Ricci
tensor Rac are defined by

Rμν = ∂̂μΓ α
αν − ∂̂αΓ

α
μν + Γ α

μβ Γ β
αν − Γ

β

βα Γ α
μν

Rac = ∂aΓ
b

bc − ∂bΓ
b

ac + Γ b
ad Γ d

bc − Γ d
db Γ b

ac .
(3.10)

The derivative terms ∇AjA in (3.9) are

∇AjA = ∇μjμ + ∇aj
a, ∇μjμ = (

∂̂μ + Γ α
αμ + Γ c

cμ

)
jμ

∇aj
a = (

∂a + Γ c
ca + Γ α

αa

)
ja,

(3.11)

where jμ and ja are given by

jμ = γ μν
(
φab∂̂νφab − 2∂aA

a
ν

)
, j a = φabγ μν∂bγμν. (3.12)

Therefore, Einstein gravity in D = m + n dimensions describes an m-dim generally in-
variant field theory under the gauge transformations corresponding to the Diffs N of the in-
ternal n-dim space N . Aa

μ couples to the graviton γμν , meaning that the graviton is charged
(gauged) in this theory and also to the φab field on N which can be identified as a non-linear
sigma field whose self interaction potential term is given by φab Rab [40–43].

When the internal manifold N is a homogeneous compact space one can perform a har-
monic expansion of the fields w.r.t. the internal ya coordinates, and after integrating the ac-
tion w.r.t. these ya coordinates, one will generate an infinite-component field theory on the
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m-dimensional space represented by the xμ coordinates. A reduction of the Diffs N , via the
inner automorphims of a subgroup G of the Diffs N , yields the usual Einstein-Yang-Mills
theory interacting with a nonlinear sigma field. But in general, the former theory described
above is much richer than the latter one.

When the internal space N is two-dimensional, the area-preserving diffeomorphisms
subalgebra of the Diffs N algebra is generated by those vector fields ξa which are tan-
gent to the internal two-dim surface and are divergence-free ∂aξ

a = 0. If the internal sur-
face is a sphere S2 one may recur to the finding by Hoppe [44] showing that there exists
a basis-dependent limit of SU(N) such that SU(N = ∞) is isomorphic to the algebra of
area-preserving diffs of the sphere S2. The SU(∞)-valued gauge fields Aμ(xμ) = AI

μTI ,
with I = 1,2,3, . . . ,N2 − 1 = ∞, are mapped to c-functions depending on the xμ, ya co-
ordinates Aμ(xμ, ya). The Lie algebra SU(∞) commutators [Aμ(xρ),Aν(x

ρ)] are replaced
by the Poisson brackets {Aμ(xρ, ya),Aν(x

ρ, ya)}PB with respect to the internal ya = y1, y2

coordinates of the sphere. In terms of the two angles like θ,φ, the Poisson brackets are

{
Aμ

(
xρ, ya

)
,Aν

(
xρ, ya

)}
PB

≡ ∂Aμ

∂(cos θ)

∂Aν

∂φ
− ∂Aν

∂(cos θ)

∂Aμ

∂φ
(3.13)

The group trace operation in the N → ∞ limit is replaced by an integral with respect to the
internal ya coordinates of the sphere such that

∫
d4x

∫
d2y

√|detγμν |
√|detφab|φabγ

μνγ αβF a
μα F b

νβ

=
∫

d4x

∫
d2y

√|detγμν |
√|dethab(y)|γ μνγ αβ Fμα Fνβ (3.14)

where hab(y) is the standard metric on the sphere and the field strengths in the right hand
side are defined in terms of the Poisson brackets as

Fμν

(
xρ, ya

) = ∂μAν

(
xρ, ya

) − ∂νAμ

(
xρ, ya

) + {
Aμ

(
xρ, ya

)
,Aν

(
xρ, ya

)}
PB

(3.15)

Therefore, by restricting to the area-preserving Diffs S2 symmetry transformations (∂aξ
a =

0) the above horizontal-vertical decomposition of six dimensional gravity (3.9), based on
the nonlinear connection Aμ(x, y), yields a 4D theory of (gauged) gravity and SU(∞)

Yang-Mills. Because SU(5) ⊂ SU(∞), a grand unification procedure from pure gravity in
D = 4 + 2 dimensions is plausible, in principle, after one truncates (or breaks) the infinite-
dim symmetry SU(∞) down to SU(5). An spontaneous breakdown of the SU(∞) symmetry
to SU(5) via the Higgs mechanism leads to an infinite number of massive spin 1 fields and
Higgs scalars along the infinite chain of steps from SU(∞) → SU(5). A truncation of the
SU(∞) down to SU(5), rather than an infinite chain of spontaneous symmetry breaking
processes, from very high energies to lower energies, is another possibility. Despite the fact
that it does not seem very physically appealing to have an infinite hierarchy of massive spin
1 fields, and Higgs scalars along the infinite chain, one should not exclude this possibility
from being realized in Nature. Concluding, the nonlinear connection formalism of Finsler
geometry provides a hierarchical extension of the standard model, and the SU(5) GUT,
within a six dimensional gravitational theory in the form of the Lagrangian described by
Eq. (3.9), when the internal two-dim space is a sphere S2.
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