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Abstract An axially symmetric Bianchi type-I space time with variable equation of state
(EoS) parameter and constant deceleration parameter has been investigated in scale covari-
ant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With
the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo
Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. Some
physical and kinematical properties of the model are also discussed.
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1 Introduction

In recent years there has been a lot of interest in the study of alternative theories of gravita-
tion (Brans and Dicke [1] Nordtvedt [2], Sen [3], Sen and Dunn [4] and Seaz and Ballester
[5]). Canuto et al. [6] formulated scale-covariant theory of gravitation which is a viable al-
ternative to general relativity (Wesson [7]; Will [8]). In Brans-Dicke theory there exists a
variable gravitational parameter G. In the scalecovariant theory Einstein’s field equations
are valid in gravitational units where as physical quantities are measured in atomic units.
The metric tensors in the two systems of units are related by a conformal transformation

gij = φ2
(
xk

)
gij (1)
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where in Latin indices take values 1,2,3,4, bar denote gravitational units and unbar denotes
atomic quantities. The gauge function φ (0 < φ < ∞) in its most general formulation is
function of all space-time coordinates. Thus using the conformal transformation of the type
given by (1), Canuto et al. [6] transformed the usual Einstein equations into

Rij − 1

2
Rgij + fij (φ) = −8πG(φ)Tij + �(φ)gij (2)

where

φ2fij = 2φφi;j − 4φiφj − gij

(
φφ′k

ik − φkφk

)
(3)

Here Rij is the Ricci tensor, R is the Ricci scalar, � is the cosmological ‘constant’, G is the
gravitational ‘constant’ and Tij is the energy momentum tensor. A semi colon denotes co-
variant derivative and φi denotes ordinary derivative with respect to xi . A particular feature
of this theory is that no independent equation for φ exists. The possibilities that have been
considered for gauge function φ (Canuto et al. [6]) are

φ(t) =
(

t0

t

)ε

, ε = ±1, ±1

2
(4)

where t0 is a constant. The form

φ ∼ t
1
2 (5)

is the one most favored to fit observations (Canuto and Goldman [9]). Reddy and Rao [10],
Reddy et al. [11], Reddy and Naidu [12], Beesham [13–15], Reddy and Venkateshwarlu [16,
17] and Singh and Devi [18] are some of the authors who have investigated several aspects
of the scale covariant theory of gravitation.

The discovery of the accelerated expansion of the universe supposedly driven by exotic
dark energy (Perlmutter et al. [19], Reiss et al. [20], Spergel et al. [21, 22], Copeland et al.
[23]) has lead, in recent years, to the investigation of dark energy models both in general
relativity and in alternative theories of gravitation. The nature and composition of dark en-
ergy is still an open problem. Dark energy is usually characterized by the EoS parameter
ω(t) = p

ρ
which is not necessarily constant, where p is the fluid pressure and ρ is the energy

density (Carroll and Hoffman [24]). A lucid introduction and nice review of the work done
on dark energy model in general relativity is given by Farooq et al. [25] and Pradhan et
al. [26]. Pradhan and Amihaschi [27, 28], Amirhashchi et al. [29], Pradhan et al. [30] have
discussed dark energy models in anisotropic Bianchi type space times with variable EOS
parameter. Recently Naidu et al. [31, 32] have obtained Bianchi type-II and V dark energy
models in the scalar-tensor theory of gravitation proposed by Saez and Ballester [5].

Spatially homogeneous and anisotropic cosmological models play a vital role in the study
of the early stages of evolution of the universe. Here we have investigated axially symmetric
Bianchi type-I dark energy model in the scale-covariant theory of gravitation formulated by
Canuto et al. [6].

2 Metric and Field Equations

We consider a spatially homogeneous axially symmetric Bianchi type-I metric in the form

ds2 = dt2 − A2dx2 − B2
(
dy2 + dz2

)
(6)
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where A and B are functions of cosmic time t only.
One may determine EoS parameter of perfect fluid separately on each spatial axis by

preserving the diagonal form of the energy momentum tensor in a consistent way with the
metric (6). Therefore, the energy momentum tensor of the fluid is taken as

T i
j = diag

[
T 0

0 , T 1
1 , T 2

2 , T 3
3

]
(7)

We can parameterize as follows

T i
j = diag[pi,−px−,py−,pz]

= diag[1,−ωx,−ωy,−ωz]ρ
= diag[1,−ω,−(ω + δ),−(ω + γ )]ρ (8)

where ρ is the energy density of the fluid, px , py , pz are the pressures and ωx , ωy , ωz are the
directional EoS parameters along the X, Y , and Z axes respectively. ω is the deviation free
EoSparameter of the fluid. We have parameterized the deviation from isotropy by setting
ωx = ω and then introducing skewness parameters δ and γ , i.e. deviation from ω along the
Y and Z axes respectively. Since in axially symmetric Bianchi type-I space time T 2

2 = T 3
3 ,

we obtain

δ = γ (9)

In a comoving coordinate system the field equations (2) and (3) of the scale-covariant theory
for the metric (6) with help of (8) and (9) take the form

2
ȦḂ

AB
+

(
Ḃ

B

)2

− φ̈

φ
+ Ȧφ̇

Aφ
+ 2

Ḃφ̇

Bφ
+ 3

(
φ̇

φ

)2

= 8πGp (10)

2
B̈

B
+

(
Ḃ

B

)2

− φ̈

φ
+ Ȧφ̇

Aφ
+ 2

Ḃφ̇

Bφ
−

(
φ̇

φ

)2

= −8πGωp (11)

B̈

B
+ Ä

A
+ ȦḂ

AB
+ φ̈

φ
+ Ȧφ

Aφ
−

(
φ

φ

)2

= −8πGp(ω + γ ) (12)

where an overhead dot denotes ordinary differentiation with respect to t .
The spatial volume for the metric (6) is given by

V 3 = AB2 (13)

We define the average scale factor of the metric (6) as

R = (
AB2

) 1
3 (14)

so that the Hubble’s parameter is given by

H = Ṙ

R
= 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
(15)

The deceleration parameter q is conventionally defined by

q = − RṘ

(Ṙ)2
(16)
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The scale expansion θ , shear scalar σ 2 and the average anisotropy parameter are defined by

θ = Ȧ

A
+ 2

Ḃ

B
(17)

σ 2 = 1

3

(
Ȧ

A
− Ḃ

B

)2

(18)

Am = 1

3

3∑

i=1

(
�Hi

H

)2

(19)

where

�Hi = Hi − H (i = 1,2,3)

H = 1

3
(Hx + Hy + Hz) (20)

and Hx = A
A

, Hy = B
B

, and Hy = Hz are the directional Hubble’s parameters in the directions
of x, y, z respectively.

3 Solutions of the Field Equations

The field equations (10)–(12) are a system of three independent equations in five unknowns
A,B,φ,ω,γ [in view of the fact G = G(φ) and (5) and (9)]. Two additional constraints
relating these parameters are required to obtain explicit solutions of the system.

Firstly, we use the special law of variation of Hubble’s parameter proposed by Bermann
[33]. We consider the constant deceleration parameter defined by (16) and integrating it we
get

R = (at + b)
1

1+q (21)

where a �= 0 and b are constants of integration. This equation implies that the condition of
accelerated expansion is 1 + q > 0.

Secondly, we assume that the scalar of expansion θ in the model is proportional to the
shear scalar σ . This condition leads to

A = Bm (22)

where m is a constant (Collins et al. [34])
After solving the field equations (10)–(12) with the help of (14), (21) and (22) we obtain

the expressions for metric coefficients as

B = (at + b)
3

(m+2)(1+q) (23)

A = (at + b)
3m

(m+2)(1+q) (24)

Hence the metric (6) through a proper choice of integration constants (i.e. a = 1, b = 0) can
be written as

ds2 = dt2 − t
6m

(m+2)(1+q) dx2 − t
6m

(m+2)(1+q)
(
dy2 + dz2

)
(25)
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4 Some Physical and Kinematical Properties of the Model

The metric given by (25) represents an axially symmetric Bianchi type-I dark energy cos-
mological model with the following physical and kinematical parameters in scale covariant
theory of gravitation.

The energy density

p = 1

8πG

[
9(2m + 1)

(1 + q)2(m + 2)2

1

t2
− {(

φ0 − 3φ2
0

)
ε2 − φ0ε

} 1

t2
+ 3φ0ε

1 + q

1

t2

]
(26)

EoS parameter

ω = 1

8πGp

[
6

(1 + q)(m + 2)

1

t
+ 9

(1 + q)2(m + 2)2

1

t2

+ 3ε(2 − m)

(1 + q)(m + 2)

1

t2
− ε

t2

]
(27)

Skewness parameter

γ = 1

8πGp

[
3

(1 + q)2(m + 2)2

{
(1 + q)(m + 2)(m + 1) − 3

(
m2 + m + 2

)} 1

t2

+ 6

(1 + q)(m + 2)

1

t
− 6φ0ε(m − 1)

(1 + q)(m + 2)t2

]
(28)

Scalar field

φ = φ0t
ε, ε = ±1,±1

2
(29)

The spatial volume

V 3 = t
3

t1+q (30)

Scalar expansion

θ = 3

1 + q

1

t
(31)

Shear scalar

σ 2 = 3(m − 1)

(m + 2)(1 + q)2

1

t2
(32)

Average anisotropy parameter

Am = 4

3

1

(1 + q)2
(33)

Hubble’s parameter

H = 1

1 + q

1

t
(34)



3050 Int J Theor Phys (2012) 51:3045–3051

Also

σ 2

θ2
= (m − 1)

3(m + 2)2
(35)

It can be observed that the model (25) has no initial singularity, i.e. at t = 0. Physical quan-
tities p, ω, γ diverge at t = 0 while they vanish for large values of t . The scalar field φ tends
to infinity for large t when ε = 1, 1

2 while it vanishes when ε = −1,− 1
2 . The spatial volume

increases as t increases (since 1 + q > 0) which shows that the universe is expanding. The
scalar of expansion θ , shear scalar σ 2 and the Hubble’s parameter H diverge at t = 0 and
vanish for large t . The mean anisotropic parameter is uniform throughout the evolution of
the universe, since it does not depend on the cosmic time t . Since σ 2

θ2 = constant, the model
does not approach isotropy for large values of t .

However, since 1 + q > 0 the universe is expanding with the increase of cosmic time
but the rate of expansion and shear scalar decrease to zero and tend to isotropic. Thus this
case implies an accelerating model of universe. Hence it follows that our model represents
physical dark energy model.

5 Conclusions

Dark energy cosmological models are, recently, playing a vital role in the discussion of
accelerated expansion of the universe in general relativity. With the advent of alternative
theories of gravitation study of these models is gaining importance. Here we have investi-
gated axially symmetric, anisotropic Bianchi type-I dark energy model with variable EoS
parameter in a scale-covariant theory of gravitation formulated by Canuto et al. [6]. It is
observed that the model has no initial singularity and all the physical parameters are infinite
at the initial epoch, t = 0 and tend to zero for large t . It is also observed that the model does
not approach isotropy through the whole evolution of the universe. This model, definitely,
throws some light on the understanding of dark energy model in scale covariant theory of
gravitation.
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