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Abstract We consider a radiating shear-free spherically symmetric metric in higher dimen-
sions. Several new solutions to the Einstein’s equations are found systematically using the
method of Lie analysis of differential equations. Using the five Lie point symmetries of
the fundamental field equation, we obtain either an implicit solution or we can reduce the
governing equations to a Riccati equation. We show that known solutions of the Einstein
equations can produce infinite families of new solutions. Earlier results in four dimensions
are shown to be special cases of our generalised results.

Keywords Gravitating fluids · Symmetries · Higher dimensional physics

1 Introduction

The spherically symmetric radiating spacetimes with vanishing shear are important for ap-
plications in relativistic astrophysics, radiating stars and cosmology. In the literature, there
exists a large number of studies of various models involving gravitational collapse with ra-
diative processes. Studies modeling relativistic stars show that a necessary requirement for
these models is that the interior radiating spacetime has to be matched at the boundary, with
the radial pressure being nonzero, to the exterior Vaidya radiating spacetime. Krasinski [1]
pointed out the significance of relativistic heat conducting fluids in modeling inhomoge-
neous processes. Some exact solutions in the presence of heat flow have been developed by
Bergmann [2], Maiti [3] and Modak [4]. In considering spherical gravitational collapse, the
appearance of singularities and the formation of horizons, Banerjee and Chatterjee [5] and
Banerjee et al. [6] have investigated heat conducting fluids in higher dimensional cosmolog-
ical models. Davidson and Gurwich [7] and Maartens and Koyama [8] highlighted the role
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of heat flow in gravitational dynamics and perturbations in the framework of brane world
cosmological models.

A proper and complete model of a radiating relativistic star requires the presence of heat
flux. The result given by Santos et al. [9] indicates that the interior spacetime must con-
tain a nonzero heat flux so that the matching of the interior at the boundary to the exterior
Vaidya spacetime is possible. Models of heat flow in astrophysics have been used in grav-
itational collapse, black hole physics, formation of singularities and particle production at
the stellar surface in four and higher dimensions. Herrera et al. [10], Maharaj and Govender
[11] and Misthry et al. [12] showed that heat conducting relativistic radiating stars are also
useful in the investigation of the cosmic censorship hypothesis and in describing collapse
with vanishing tidal forces. Solutions to the Einstein field equations for a shear-free spher-
ically symmetric spacetime with a homothetic vector, together with radial heat flux, have
been presented by Wagh et al. [13]. Analytical solutions to the field equations for radiating
collapsing spheres in the diffusion approximation have been found by Herrera et al. [14].
Recent examples of radiating stars, with generalised energy momentum tensors, are given
by Herrera et al. [15] and Pinheiro and Chan [16].

Shear-free fluids, in the presence of heat flux, are also important in modeling inhomoge-
neous cosmological processes. The need for radiating models in the formation of structure,
evolution of voids, the study of singularities, and investigations of the cosmic censorship
hypothesis, has been pointed out by Krasinski [1]. Banerjee et al. [17] generated a model of
a heat conducting sphere which radiates energy during collapse without the appearance of a
horizon at any stage. This result holds in four dimensions but may be extended to models in
higher dimensions. Banerjee and Chatterjee [5] studied heat conducting fluids in cosmolog-
ical models in higher dimensions, and determined that gravitational collapse is also possible
without the appearance of an event horizon. The presence of heat flow in brane world models
sometimes allows for more general behaviour than is the case in standard general relativity.
Govender and Dadhich [18] proved that the analogue of the Oppenheimer-Snyder model of
a collapsing dust permits a radiating brane.

In this paper we analyse the master equation for higher dimensional radiating fluids stud-
ied by Banerjee and Chatterjee [5] applicable to a (n+2)-dimensional spherically symmetric
metric. In our analysis, we used the Lie theory of extended groups as a systematic approach
to generalise known solutions and generate new solutions of the same equation. The higher
dimensional radiating model is derived in Sect. 2. In Sect. 3, we give a brief outline of the
Lie theory. In Sect. 4, we discuss the new solutions of the master equation that can be found
via Lie symmetries by taking one potential to be a function of the remaining potential. Also
in this section, we systematically study other group invariant solutions admitted by the fun-
damental equation by taking specific ratios of the potentials. In Sect. 5, we extend known
solutions to new solutions of the fundamental equation utilising Lie theory. Regardless of the
complexity of the generating function chosen it is possible to find new exact solutions; we
demonstrate this in two cases. We conclude this paper with some brief observations about
the nature of the new exact solutions in Sect. 6.

2 Radiating Model

We consider the shear-free, spherically symmetric line element with an exterior (n + 2)-
dimensional manifold given by

ds2 = −A2dt2 + 1

F 2

[
dr2 + r2dX2

n

]
(1)
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where A = A(t, r) and F = F(t, r) and

X2
n = dθ2

1 + sin2 θ1dθ2
2 + · · · + sin2 θ1 sin2 θ2 . . . sin2 θn−1dθ2

n (2)

The energy momentum tensor for a nonviscous heat conducting fluid is given by

Tij = (ρ + p)vivj + pgij + qivj + qjvi (3)

where ρ is the energy density of the fluid, p the isotropic fluid pressure, vi is the (n + 2)-
velocity and qi is the heat flow vector. Using (1) and (3) we find that the nontrivial Einstein
field equations in comoving coordinates are

ρ = n(n + 1)F 2
t

2A2F 2
− n(n + 1)F 2

r

2
+ nFFrr + n2FFr

r
, (4a)

p = −nArFFr

A
+ nArF

2

rA
+ n(n − 1)F 2

r

2
− n(n − 1)FFr

r

+ nFtt

A2F
− n(n + 3)F 2

t

2A2F 2
− nAtFt

A3F
, (4b)

p = F 2Arr

A
− (n − 1)FFrr + n(n − 1)F 2

r

2
+ (n − 1)F 2Ar

rA

− (n − 1)2FFr

r
− (n − 2)FFrAr

A
+ nFtt

A2F

−n(n + 3)F 2
t

2A2F 2
− nAtFt

A3F
, (4c)

q = −nFFtr

A
+ nFtFr

A
+ nFFtAr

A2
(4d)

The isotropy of pressure is given by (4b) and (4c) together in the form

FAxx + 2AxFx − (n − 1)AFxx = 0 (5)

with x = r2. Equation (5) is the master equation for the system of higher dimensional Ein-
stein field equations with n ≥ 2. In this paper, we reduce the order of (5) via Lie analysis in
order to find general solutions in higher dimensions.

3 Lie Analysis

The symmetry analysis for a system of ordinary differential equations in two dependent
variables requires the determination of the one-parameter (ε) Lie group of transformations

x̄ = f (x,F,A, ε)

F̄ = g(x,F,A, ε) (6)

Ā = h(x,F,A, ε)
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that leaves the solution set of the system invariant. It is difficult to calculate these transfor-
mations directly, and as such, we must resort to approximations via

x̄ = x + εξ(x,F,A) + O(ε2)

F̄ = F + εη(x,F,A) + O(ε2) (7)

Ā = A + εζ(x,F,A) + O(ε2)

The transformations (7) can be obtained once we find the (symmetry) operator

Z = ξ
∂

∂x
+ η

∂

∂F
+ ζ

∂

∂A
(8)

which is a set of vector fields. Once these symmetries are determined, it is possible to regain
the finite (global) form of the transformation, given by (6), on solving Lie’s equations

dx̄

dε
= ξ(x̄, F̄ , Ā)

dF̄

dε
= η(x̄, F̄ , Ā) (9)

dĀ

dε
= ζ(x̄, F̄ , Ā)

subject to initial conditions

x̄|ε=0 = x, F̄ |ε=0 = F, Ā|ε=0 = A (10)

The full details on the symmetry approach to solving differential equations can be found in
a number of excellent texts (Bluman and Kumei [19], Olver [20]).

The determination of the generators is a straight forward process and has been automated
by computer algebra packages (Dimas and Tsoubelis [21], Cheviakov [22]). In practice,
we have found the package PROGRAM LIE (Head [23]) to be the most useful. It is quite
accomplished given its age—it often yields results when its modern counterparts fail.

Utilising PROGRAM LIE, we show that (5) admits the following Lie point symme-
tries/vector fields:

Z1 = ∂

∂x
, (11a)

Z2 = x
∂

∂x
, (11b)

Z3 = A
∂

∂A
, (11c)

Z4 = F

n − 1

∂

∂F
, (11d)

Z5 = x2 ∂

∂x
+ xF

n − 1

∂

∂F
(11e)

where n > 2. It is normal practice to use the symmetries (11a)–(11e) to reduce the order of
the equation in the hope of finding solutions of the master equation. We need to proceed with
some caution due to the overdetermined nature of (5). Thereafter we indicate how known
solutions can be extended using these symmetries.
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4 New Solutions via Lie Symmetries

One of the main purposes of calculating symmetries is to use them for symmetry reduc-
tions and hopefully obtain group invariant solutions. The goal of this section is to apply the
symmetries calculated in Sect. 3 to obtain symmetry reductions and exact solutions where
possible. The application of symmetries (11a)–(11e) to the master equation results in either
an implicit solution of (5) or we can reduce the governing equations to complicated Riccati
equations that are difficult to solve. However there are two cases in which we can find new
solutions regardless of the complexity of the function chosen.

4.1 The Choice A = A(F)

An obvious case to consider in this subsection, is when one dependent variable in (5) is
a function of the other. Usually such an approach results in a more complicated equation
to solve. In spite of this, we can make significant progress if we use the Lie symmetry Z1

(which gives the same result as Z2). For our purposes we use the partial set of invariants of

Z1 = ∂

∂x
(12)

given by

p = F

q(p) = Fx (13)

r(p) = A

This transformation reduces equation (5) to

q ′(p)
[
(n − 1)r(p) − pr ′(p)

] = q(p)
[
pr ′′(p) + 2r ′(p)

]
(14)

which can be integrated to give

q = q0e

∫ 2r′+pr′′
(n−1)r−r′p dp (15)

Substituting for the metric functions via (13), we can integrate one more time to give the
solution

∫ [
e

− ∫ 2AF +FAFF
(n−1)A−FAF

dF
]
dF = q0x + x0 (16)

where q0 and x0 are arbitrary functions of time. Equation (16) suggests that, given any
function A depending on arbitrary F , we can work out F explicitly from (16). Such an
explicit relationship between F and A has not been found previously. Note that since (5) is
linear, once we obtain F via (16) we can use it to obtain the general solution of (5) using
standard techniques for solving linear equations.

We illustrate this method with simple examples. Using A = 1, we evaluate (16) to obtain

F = q0(t)x + x0(t) (17)

We can easily generate the general solution to (5) as

A = −C1

q(x0 + qx)
+ C2 (18)
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F = −1 + n

qC1(1 + n)
(x0 + qx)

2
1−n

×
[

1 + n

−1 + n
q(x0 + qx)

1+n
−1+n C1 + (−C1 + q(x0 + qx)C2)

1+n
−1+n C2

]
(19)

If we take A = F 2, then (16) is reduced to
∫

F

(
6

3−n

)

dF = q0x + x0 (20)

and hence

F =
[

9 − n

3 − n
(q̄0x + x̄0)

] 3−n
9−n

A =
[

9 − n

3 − n
(q̄0x + x̄0)

] 6−2n
9−n

(21)

The functional form of F can be easily extended to obtain

F = C1

( 9−n
3−n

)
3−n
9−n (9 − 10n + n2)(q0x + x0)

3−n
9−n

+ −9+2n−n2

9−10n+n2

q0(−9 + 2n − n2)

+ C2

[
9 − n

3 − n
(q0x + x0)

] 3−n
9−n

(22)

where C1 and C2 are arbitrary functions of time, which is the general solution to (5) when

A =
[

9 − n

3 − n
(q̄0x + x̄0)

] 6−2n
9−n

(23)

4.2 The Choice W = F

A1/(n−1)

The combination of symmetries given by

Z3 + Z4 = A
∂

∂A
+ F

n − 1

∂

∂F
(24)

gives rise to the invariant

W = F

A1/(n−1)
(25)

Then (5) is transformed by (25) to the form

−nWA2
x + (n − 1)A2Wxx = 0 (26)

with solution

A = C1(t) exp

(∫
±

√
(n − 1)2Wxx√

nW
dx

)

(27)
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which comes as a result of treating equation (26) as a nonlinear first order ordinary differ-
ential equation in A. Given any function W we can integrate the right hand side of (27) and
find a form for A.

If we take W = a(t)x + b(t), then (27) gives

A = C̄1(t) (28)

and

F = C̄1(t)
1/(n−1)

(a(t)x + b(t)) (29)

which are new solutions of (5) for n > 2.
Alternatively, we could substitute the inverse of (25), i.e.

Ŵ = A1/(n−1)

F
(30)

into (5) and obtain

nAx
2Ŵ 2 − 2(n − 1)2A2Ŵx

2 + (n − 1)2A2ŴŴxx = 0 (31)

with solution

A = C2(t) exp

(

±
∫ √

2(n − 1)2Ŵx
2 − (n − 1)2ŴŴxx√
nŴ

dx

)

(32)

Again, given any function W we can integrate the right hand side of (32) and find a form for
A.

If we take W = a(t)x + b(t) as before we find that

A1 = C2(t) [a(t)x + b(t)]

√
2(n−1)√

n (33)

and

F1 =

[
C2(t)(a(t)x + b(t))

√
2(n−1)√

n

] 1
n−1

a(t)x + b(t)
(34)

which is essentially a new solution of the master equation in higher dimensional space. We
can also have

A2 = C̄2(t)

(a(t)x + b(t))

√
2(n−1)√

n

(35)

and

F2 =

[
C̄2(t)(a(t)x + b(t))

−√
2(n−1)√

n

]1/n−1

a(t)x + b(t)
(36)

thus obtaining two different solutions from the same seed function.
Observe that (27) and (32) will contain all solutions of the master equation (5) for ap-

propriately chosen seed functions W or Ŵ which are ratios of the metric functions. We are
always able to reduce (5) to the quadratures (27) or (32) regardless of the complexity of the
seed functions.
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5 Extending Known Solutions

Another use of Lie point symmetries is the extension of known solutions of differential
equations. This is possible due to the fact that the symmetries generate transformations that
leave the equations invariant. As a result, applying those transformations to known solutions
will (usually) result in new solutions.

We illustrate the approach by using the simple infinitesmal generator Z1, where we ob-
serve that

ξ = 1, η = 0, ζ = 0 (37)

We solve the Lie equations (9), subject to initial conditions (10), to obtain

x̄ = x + a1

F̄ = F (38)

Ā = A

This means that using (38) we can map (5) to the form

F̄ Āx̄x̄ + 2Āx̄ F̄x̄ − (n − 1)ĀF̄x̄x̄ = 0 (39)

As a result of this mapping, any existing solution to (5) can be transformed to a solution of
(39) by (38). Usually, a1 is an arbitrary constant. However, since F and A depend on x and
t we take a1 to be an arbitrary function of time, a1 = a1(t).

If we now take each of the remaining symmetries successively, we obtain the general
transformation

x̄ = ea2(a1 + x)

1 − a5ea2(a1 + x)

F̄ = ea4F

1 − a5ea2(a1 + x)
(40)

Ā = ea3A

where the ai are all arbitrary functions of time and n > 2.
Thus any known solution of (5) can be transformed to a new solution of (5) via (40). For

example, if we start with the solution

A = 1, F = α(t)x + β(t) (41)

the transformation (40) yields the new solution

x̄ = ea2(a1 + x)

1 − a5ea2(a1 + x)

F̄ = ea4(α(t)x + β(t))

1 − a5ea2(a1 + x)
(42)

Ā = ea3

All the new results that we derived in the previous section can be similarly extended via (40).
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6 Conclusion

In this work, we have provided symmetry reductions and exact solutions of the Einstein
field equations governing shear-free heat conducting fluids in higher dimensions. Explicit
relationships were provided between the gravitational potentials, obviating a need to start
with “simple” forms for one to calculate the other. We were also able to provide a gen-
eral transformation to extend our (and any other) known solution into new solutions. When
n = 2 we regain the results of Deng [24] who developed a method to generate solutions
when simple forms of A or F are chosen. The case n = 2 also contains the results of Msomi
et al. [25] who adopted a more geometric and systematic approach using Lie theory to gen-
eralise known solutions and generate new solutions. The new solutions of this paper may
be used to study the physics of radiating astrophysical and cosmological models in higher
dimensions.

It is interesting to observe an important feature of the solutions admitted by (5). When
Fxx = 0 we find that (5) becomes

FAxx + 2AxFx = 0

This equation has the remarkable feature that it is independent of the dimension n. Thus
any solution with Fxx = 0 presented by Deng [24] and Msomi et al. [25] in four dimen-
sions will also be applicable in higher dimensions. This direct application of four dimen-
sional solutions into higher dimensional spacetimes is rather unusual in general relativ-
ity.
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