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Abstract In this article we obtain a new class of well behaved charged solutions by using
particular forms of the metric potential g44 and electric intensity, which involves a parameter
K . The metric describing the superdense stars joins smoothly with the Reissner-Nordstrom
metric at the pressure free boundary. This class of solutions describes well behaved charged
fluid balls. The class of solutions gives range of parameter K (0.13 ≤ K ≤ 1.9999) for which
the solution is well behaved hence, suitable for modeling of super dense star. The interior of
the stars possess there energy density, pressure, pressure-density ratio and velocity of sound
to be monotonically decreasing towards the pressure free interface. In view of the surface
density 2 × 1014 gm/cm3, the maximum mass of the charged fluid balls and corresponding
radius are 0.4711M� and 7.0122 km. The red shift at the centre and boundary are found to
be 0.1640 and 0.1100 respectively.

Keywords Reissner–Nordstrom metric · Charged fluids · Superdense star · General
relativity

1 Introduction

Exact interior solutions of the Einstein-Maxwell field equations joining smoothly to the
Nordstrom solution at the pressure free interface are gathering big applause due to some of
the following reasons:
– Gravitational collapse of a charged fluid sphere to a point singularity may be avoided.
– Charged solutions of Einstein-Maxwell equations are useful in the study of cosmic matter.
– Charged-dust models and electromagnetic mass models are expected to provide some clue

about structure of an electron.
– Several fluid spheres which do not satisfy some or all the relevant physical condition i.e.

reality conditions, become relevant when they are charge.
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Charged fluid model are normally of three kinds:

– The charged fluid reduces to a neutral fluid in the absence of charge.
– There is several charged fluid can not be uncharged or more correctly charge cannot van-

ish.
– Some charge fluid models reduces to flat space after the removal of charge. The later is

said to be charged fluid with electromagnetic mass.

Many of workers have charged the well known neutral solutions to obtain the charged
fluids such as Schwarzschild interior solution [2, 7], Whittaker’s interior solution by [6],
charged analogue of Durgapal–Fuloria [5] solution by Gupta and Maurya [8]. Some more
solutions in this context are published recently [1, 9, 10, 13–19].

In the present article our aim is to obtain a class of regular and well behaved solution. To
achieve the same we consider a spherically symmetric metric with its metric potential g44 =
(1 − Cr2)−1/3 and using a particular electric intensity, which involves a parameter K . The
metric so obtained is joined smoothly with the Reissner-Nordstrom metric and then utilized
to describe a class of super-dense star models with the surface density 2×1014 gm/cm3. The
charged models so obtained are found regular and well behaved throughout the interior of
the star.

2 Field Equations

Let us consider a spherically symmetric metric curvature coordinates as

ds2 = −eλdr2 − r2(dθ2 + sin2 θdφ2) + eνdt2 (1)

where the functions λ(r) and ν(r) satisfy the Einstein-Maxwell equations

−κT i
j = Ri

j − 1

2
Rδi

j = −κ

[
(c2ρ + p)vivj − pδi

j + 1

4π

(
−F imFjm + 1

4
δi
jFmnF

mn

)]
(2)

with κ = 8πG

c4 while ρ,p, vi,Fij denote energy density, fluid pressure, flow vector and skew-
symmetric electromagnetic field tensor respectively. The resulting field equations [4] are
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Let us take the transformation,

eν = B(1 − Cr2)−1/3, (6)

where B and C are positive constant.
Substitution of (6) in to (3)–(5) leads to

2Y

3(1 − x)
− (1 − Y )

x
+ Cq2

x2
= κp

C
(7)
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(1 − Y )

x
− 2

dY

dx
− Cq2

x2
= κc2ρ

C
(8)

and

dY

dx
+ P (x)Y = f (x) (9)

where

x = Cr2, e−λ = Y, P (x) = − (2x2 − 18x + 9)

3x(1 − x)(3 − 2x)

f (x) = 3[(2q2C/x) − 1](1 − x)

x(3 − 2x)

The solution of (9) is given by

Y = FA + FI (10)

where

F = −
∫

P (x)dx = x(1 − x)7/3

(3 − 2x)3
, I = 3

∫ [(2q2C/x) − 1](3 − 2x)2dx

x2(1 − x)4/3

and A is arbitrary constant of integration.

3 New Class of Solutions

In order to solve the integral I for obtaining the new class of solution, we consider the
electric intensity E of the form

E2

C
= Cq2

x2
= Kx

2(3 − 2x)2
(11)

where K ≥ 0 is constant. For 0 < x < 2/3 and K ≥ 0, the electric field intensity given by
(10) is physically palatable since E2 remains regular and positive throughout the sphere. In
addition, the electric field given by (11) vanishes at the centre of the star.

With reference of (11), (9) yields following solution

Y =
[

9Kx(1 − x)2

(3 − 2x)3
+ 9(3 − 4x)(1 − x)2

(3 − 2x)3
+ Ax(1 − x)7/3

(3 − 2x)3

]
(12)

Using (12), into (7) and (8), we get the following expressions for pressure and energy
density

κp

C
=

[
K(18 − 21x + 4x2)

2(3 − 2x)3
+ A(3 − x)(1 − x)4/3

3(3 − 2x)3
− (18 − 21x + 4x2)

(3 − 2x)3

]
(13)

κc2ρ

C
=

[
324 − 999x + 462x2 − 56x3

(3 − 2x)4
− K · B(x)

(3 − 2x)4
− A · (1 − x)4/3 · H(x)

3 · (3 − 2x)4

]
(14)

where

B(x) = (162 − 423x + 294x2 − 32x3), H(x) = (27 − 51x + 10x2)
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Consequently the expressions for pressure and density gradients read as

κ

C
· dp

dx
=

[
K · (45 − 60x + 8x2)

2 · (3 − 2x)4
+ A · (9 − 21x + 4x2)

9 · (3 − 2x)4
− (45 − 60x + 8x2)

(3 − 2x)4

]
(15)

κc2

C
· dρ

dx
=

[
− (405 + 1620x − 1344x2 + 112x3)

(3 − 2x)5
− K · D(x)

2 · (3 − 2x)5
+ A · E(x)

9 · (3 − 2x)5

]
(16)

where

D(x) = (27 − 744x + 928x2 − 64x3), E(x) = (135 + 99x − 330x2 + 40x3)

4 Conditions for Regular and Well Behaved Model

For well behaved nature of the solution implies in curvature coordinates, the following con-
ditions should be satisfied (augmentation of Delgaty-Lake [3] and Pant et al. [16] condi-
tions).

(i) The solution should be free from physical and geometric singularities and non zero
positive values of eλ and eν i.e. (eλ)r=0 = 1 and ev > 0.

(ii) Pressure p should be zero at boundary r = a.
(iii) c2ρ ≥ p > 0 or c2ρ ≥ 3p > 0, 0 ≤ r ≤ a, where former inequality denotes weak

energy condition (WEC), while the later inequality implies strong energy condition
(SEC).

(iv) (dp/dr)r=0 = 0 and (d2p/dr2)r=0 < 0 so that pressure gradient dp/dr is negative for
0 < r ≤ a.

(v) (dρ/dr)r=0 = 0 and (d2ρ/dr2)r=0 < 0 so that density gradient dρ/dr is negative for
0 < r ≤ a.
The condition (iii) and (iv) imply that pressure and density should be maximum at the
centre and monotonically decreasing towards the surface.

(vi) The casualty condition (dp/c2dρ)1/2 < 1 i.e. velocity of sound should be less than that
of light throughout the model. In addition to the above the velocity of sound should

be decreasing towards the surface i.e. d
dr

(
dp

dρ
) < 0 or (

d2p

dρ2 ) > 0 for 0 ≤ r ≤ a i.e. the
velocity of sound is increasing with the increase of density.

(vii) The ratio of pressure to the density (p/c2ρ) should be monotonically decreasing with
the increase of r i.e. d

dr
(

p

c2ρ
)r=0 = 0 and d2

dr2 (
p

c2ρ
)r=0 < 0 and d

dr
(

p

c2ρ
) is negative

valued function for r > 0.
(viii) The central red shift Z0 and surface red shift Za should be positive and finite i.e.

Z0 = [(e−ν/2 − 1)r=0] > 0 and Za = [eλ(a)/2 − 1] > 0 and both should be bounded.
(ix) Electric intensity E, such that E(0) = 0 is taken to be monotonically increasing i.e.

(dE/dr) > 0 for 0 < r < a.

5 Properties of New Class of Solution

[κp

C
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For pr=0 and ρr=0 must be positive, pr=0
c2ρr=0

≤ 1 and (d2p/dr2)r=0 < 0, (d2ρ/dr2)r=0 < 0.
Consequently we have

−9K − 18 < A <
9K

10
+ 27 (23)

Hence velocity of sound at the centre given by
[

dp

c2dρ

]
r=0

= −9K + 10A − 270

45K + 2A − 90
(24)

which should be [ dp

c2dρ
]r=0 < 1, for all values of K ≥ 0 and A.

Using (13) and (14) [
p

c2ρ

]
= I (x)

J (x)
(25)

where

I (x) =
[

K · (18 − 21x + 4x2)

2(3 − 2x)3
+ A · (3 − x)(1 − x)4/3

3(3 − 2x)3
− (18 − 21x + 4x2)

2(3 − 2x)3

]

J (x) =
[
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(3 − 2x)4
− K · B(x)
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]

Differentiating (25) w.r.t. x

d

dx

[
p

c2ρ

]
= J (x) dI (x)

dx
− I (x) dJ (x)

dx

{J (x)}2
(26)

[
d2

dr2

(
p

c2ρ

)]
r=0

= 2C · α · β − γ · δ
α2

(27)

where

α = 3(36 − 9K − A), β = (−270 − 9K + 10A)

γ = (−18 + 9K + A), δ = (−90 + 45K + 2A)

The expression of right hand side of (27) is negative for all values of K ≥ 0 and A. Then
pressure-density ratio p

c2ρ
is maximum at the centre.
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The expression for gravitational red-shift Z is given by

Z = (1 − x)1/6

√
B

− 1 (28)

The central value of gravitational red-shift to be non zero positive finite, we have

1 >
√

B > 0

Differentiating (28) w.r.t. x, we get,

[
d2Z

dr2

]
r=0

= − C

3
√

B
< 0 (29)

The expression of right hand side of (29) is negative, and then the gravitational red shift
is the maximum at centre and monotonically decreasing towards the surface.

Differentiating (11) w.r.t. x, we get,

d

dx

(
E2

C

)
= K

2

[
(3 + 2x)

(3 − 2x)3

]

d
dr

( E2

C
) = Cr · K

2 [ (3+2x)

(3−2x)3 ] = +ve for 0 < x < 2/3.
Thus the electric intensity is zero at the centre and monotonically increasing towards the

pressure free interface for all values of K > 0.

6 Boundary Conditions

Besides the above, the charged fluid spheres is expected to join smoothly with the Reissner-
Nordstrom metric at the pressure free boundary r = a

ds2 = −
(

1 − 2M

r
+ e2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2) +
(

1 − 2M

r
+ e2

r2

)
dt2 (30)

which requires the continuity of eλ, eν and q across the boundary

e−λ(a) = 1 − 2M

a
+ e2

a2
(31)

eν(a) = y2
(r=a) = 1 − 2M

a
+ e2

a2
(32)

q(a) = e (33)

p(r=a) = 0 (34)

The condition (34) can be utilized to compute the values of arbitrary constants A as
follows:

On setting xr=a = X = Ca2 (a being the radius of the charged sphere). Pressure at
p(r=a) = 0 gives

A =
[

3 · (18 − 21X + 4X2)

(3 − X) · (1 − X)4/3
· (K − 2)

2

]
(35)



Int J Theor Phys (2012) 51:943–953 949

Fig. 1 Behavior of pressure (P ) versus radius

Fig. 2 Behavior of density versus radius

Fig. 3 Behavior of charge (Q) versus radius

The expression for mass can be written as

m(a) = a

2

[
1 − KX · (18 − 39X + 20X2)

2 · (3 − 2X)3
− 9(3 − 4X)(1 − X)2

(3 − 2X)3
− AX(1 − X)7/3

(3 − 2X)3

]

such that e−λ(a) = 1 − 2M
a

+ e2

a2 , where M = m(a) and y2
(r=a) = 1 − 2M

a
+ e2

a2 gives

B =
[

9K · X(1 − X)7/3

(3 − 2X)3
+ 9 · (3 − 4X)(1 − X)7/3

(3 − 2X)3
+ A · X · (1 − X)8/3

(3 − 2X)3

]
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Fig. 4 Behavior of velocity of sound versus radius

Fig. 5 Behavior of ratio of pressure and density versus radius

Fig. 6 Behavior of red shift (Z) versus radius

Also, if the surface density ρa is prescribed as 2 × 1014 g cm−3 (super dense star case)
then value of constant C can be calculated for a given X(= Ca2), using the following ex-
pression

κc2ρa = C

[
324 − 999X + 462X2 − 56X3

(3 − 2X)4
− K · B(X)

(3 − 2X)4
− A · (1 − X)4/3 · H(X)

3 · (3 − 2X)4

]

where

B(X) = (162 − 423X + 294X2 − 32X3), H(X) = (27 − 51X + 10X2)
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7 Conclusions

In this article, we have derived a class of regular and well behaved charge superdense star
models using a particular electric field, which depend upon a parameter K , vanishing of
which leads to the neutral case. The charged superdense star models satisfy the energy con-
ditions c2ρ ≥ 3p > 0, (dp/dr) < 0, (dρ/dr) < 0, causality condition (dp/c2dρ) < 1 and
adiabatic index γ = ((p + c2ρ)/p)(dp/(c2dρ)) > 1 for 0.13 ≤ K ≤ 1.9999. The velocity
of sound and the ratio p/c2ρ are seen monotonically decreasing towards the surface for
0.13 ≤ K ≤ 1.9999. The red shift is also decreasing monotonically from the centre to the
pressure free interface for 0.13 ≤ K ≤ 1.9999. The maximum mass and the corresponding
radius of the model are computed to 0.4711M� and 7.0122 km respectively for K = 1.9999
and Ca2 = 0.2470, with the red shift Z0 = 0.1640 and Za = 0.1100.

The proposed plan for future includes the charging of the fluid spheres and plates recently
derived by two of the authors of the present paper [11, 12]. The process may provide pressure
free interface which is not available in the uncharged case.

8 Tables for Numerical Values of Physical Quantities

In Tables 1–7: Z0 = red shift at the centre, Za = red shift at the surface, Solar mass M� =
1.475 km, G = 6.673 × 10−8 cm3/gs2, c = 2.997 × 1010 cm/s, D = (8πG/c2)ρa2,

P = (8πG/c4)pa2, γ = p + c2ρ

p

dp

c2dρ
,

R = p

c2ρ
, v = (dp/c2dρ)1/2, Q = q

Table 1 Values of various parameters

0 ≤ p ≤ c2ρ (WEC) 0 ≤ 3p ≤ c2ρ (SEC)

K Ca2 Radius (Km) Max(M/M�) Ca2 Radius (Km) Max(M/M�)

0.2 0.2300 6.6967 0.3770 0.2300 6.6967 0.3770

0.4 0.2330 6.7743 0.3939 0.2330 6.7743 0.3939

0.8 0.2360 6.8548 0.4116 0.2360 6.8548 0.4116

1.2 0.2400 6.9056 0.4304 0.2400 6.9056 0.4304

1.6 0.2440 6.9592 0.4502 0.2440 6.9592 0.4502

1.9999 0.2470 7.0122 0.4711 0.2470 7.0122 0.4711

Table 2 K = 0.2, Ca2 = 0.23, Radius (a) = 6.6967 Km, Maximum mass M = 0.3770M�

x P D γ Q
√

dp/c2dρ p/c2ρ Z

0.0 0.0939 1.7183 14.6083 0.0000 0.8700 0.0546 0.1438

0.2 0.0911 1.7137 13.0500 0.0000 0.8115 0.0531 0.1420

0.4 0.0823 1.6880 10.1331 0.0000 0.6862 0.0487 0.1367

0.6 0.0661 1.5989 7.9043 0.0000 0.5603 0.0414 0.1274

0.8 0.0402 1.3499 7.1966 0.0000 0.4563 0.0298 0.1138

1.0 0.0000 0.7277 ∞ 0.0000 0.3733 0.0000 0.0950
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Table 3 K = 0.4, Ca2 = 0.2330, Radius (a) = 6.7743 Km, Maximum mass M = 0.3939M�

x P D γ Q
√

dp/c2dρ p/c2ρ Z

0.0 0.0763 1.7710 8.6785 0.0000 0.5988 0.0431 0.1471

0.2 0.0740 1.7639 8.1954 0.0019 0.5746 0.0420 0.1453

0.4 0.0669 1.7308 7.1373 0.0152 0.5154 0.0387 0.1399

0.6 0.0538 1.6307 6.1871 0.0523 0.4447 0.0330 0.1305

0.8 0.0328 1.3690 6.0800 0.1268 0.3771 0.0239 0.1167

1.0 0.0000 0.7350 ∞ 0.2551 0.3170 0.0000 0.0975

Table 4 K = 0.8, Ca2 = 0.2360, Radius (a) = 6.8548 Km, Maximum mass M = 0.4116M�

x P D γ Q
√

dp/c2dρ p/c2ρ Z

0.0 0.0582 1.8255 6.1744 0.0000 0.4366 0.0319 0.1505

0.2 0.0564 1.8157 5.9716 0.0027 0.4243 0.0311 0.1487

0.4 0.0510 1.7751 5.5007 0.0221 0.3920 0.0287 0.1432

0.6 0.0411 1.6636 5.0708 0.0758 0.3495 0.0247 0.1336

0.8 0.0250 1.3889 5.2502 0.1839 0.3049 0.0180 0.1196

1.0 0.0000 0.7430 ∞ 0.3702 0.2620 0.0000 0.1001

Table 5 K = 1.2, Ca2 = 0.2400, Radius (a) = 6.9056 Km, Maximum mass M = 0.4304M�

x P D γ Q
√

dp/c2dρ p/c2ρ Z

0.0 0.0396 1.8812 4.7667 0.0000 0.3134 0.0210 0.1549

0.2 0.0384 1.8686 4.6693 0.0034 0.3067 0.0206 0.1530

0.4 0.0347 1.8200 4.4405 0.0277 0.2884 0.0191 0.1474

0.6 0.0280 1.6961 4.2533 0.0952 0.2629 0.0165 0.1376

0.8 0.0171 1.4058 4.5598 0.2309 0.2341 0.0122 0.1232

1.0 0.0000 0.7415 ∞ 0.4651 0.2046 0.0000 0.1032

Table 6 K = 1.6, Ca2 = 0.2440, Radius (a) = 6.9592 Km, Maximum mass M = 0.4502M�

x P D γ Q
√

dp/c2dρ p/c2ρ Z

0.0 0.0202 1.9394 3.8757 0.0000 0.1999 0.0104 0.1593

0.2 0.0196 1.9239 3.8263 0.0041 0.1965 0.0102 0.1574

0.4 0.0177 1.8669 3.7136 0.0328 0.1870 0.0095 0.1517

0.6 0.0143 1.7301 3.6510 0.1126 0.1731 0.0083 0.1417

0.8 0.0088 1.4237 4.0153 0.2734 0.1567 0.0061 0.1270

1.0 0.0000 0.7407 ∞ 0.5511 0.1389 0.0000 0.1065

Detailed physically behavior of the models for various K are displayed by means of
graphs and tables as below, where Figs. 1–6 are given with reference of Tables 2–6.
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Table 7 K = 1.9999, Ca2 = 0.2470, Radius (a) = 7.0122 Km, Maximum mass M = 0.4711M�

x P D γ Q
√

dp/c2dρ p/c2ρ Z

0.0 5.1580×10−6 2.0000 3.2602 0.0000 0.0029 2.5790×10−6 0.1640

0.2 5.0078×10−6 1.9815 3.2352 0.0047 0.0029 2.5272×10−6 0.1621

0.4 4.5344×10−6 1.9159 3.1831 0.0376 0.0027 2.3668×10−6 0.1562

0.6 3.6626×10−6 1.7656 3.1874 0.1291 0.0026 2.0744×10−6 0.1460

0.8 2.2425×10−6 1.4424 3.5722 0.3135 0.0024 1.5547×10−6 0.1309

1.0 0.0000 0.7396 ∞ 0.6322 0.0021 0.0000 0.1100
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