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Abstract Two schemes, introducing generalized measurement and entanglement concen-
tration respectively, for dense coding are investigated by using a one-dimensional four-
particle cluster state, where the supervisors (Cliff and David) can control the average amount
of information transmitted from the sender (Alice) to the receiver (Bob) by adjusting the lo-
cal measurement angles θ3 and θ4. It is shown that the results for the average amounts of
information are unique from the different two schemes.
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1 Introduction

Quantum entanglement [1] is a quintessential property of quantum mechanics that sets it
apart from any classical physical theory. An important feature of entanglement is that it
gives rise to correlations that cannot be explained by any local realistic description of quan-
tum mechanics. In recent years, quantum entanglement has become an important physical
resource for quantum teleportation [2–5], dense coding [6–8], quantum state sharing [9–12],
and quantum computation [13, 14] and so on.

Since the original idea of quantum dense coding considered in 1992 by Bennett and
Wiesner [15], dense coding has been generalized in various directions. For example, it is
possible to generalize the dense coding for continuous variables [16, 17], multipartite com-
munication [18–23]. The original controlled dense coding protocol was proposed in 2001
[24]. In this protocol, one party (Alice) can transmit information to the second party (Bob)
whereas the local measurements of the third party (Cliff and David) serves as quantum
erasure. Cliff and David can control the quantum channel between Alice and Bob and the
average amount of information transmitted from Alice to Bob via a local measurements.
Since that, Huang et al. studied controlled dense coding scheme between multi-parties with
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multi-qubit GHZ state [7]. Jiang et al. proposed a scheme to realize controlled dense coding
with three-particle symmetric state [25].

In this paper, two methods are shown to realize dense coding with one-dimensional clus-
ter state via local measurements [26]. One of the strategies is Alice directly applies one of
the four unitary operators {I, σX, iσY , σZ} on her qubit and then sends it to Bob, then Bob
can obtain 2 bits of information with a certain probability via a generalized measurement de-
scribed by positive-operator-valued measure (POVM) elements on his two qubit states. The
second one is Alice first concentrates the entanglement of the channel between she and Bob,
and then performs dense coding. It is shown that the successful probability only depends
on the local measurement angles θ3 and θ4 performed by Cliff and David, respectively. This
implies that Cliff and David can control the average amount of information transmitted from
Alice to Bob by adjusting local measurement angles. It is also shown that the results for the
average amounts of information are unique from the different two schemes.

2 Dense Coding with Generalized Measurement

Let us consider that the quantum channel is a four-particle cluster state

|C〉1234 = 1

2
(|0000〉 + |0011〉 + |1100〉 − |1111〉)1234, (1)

where qubits 1, 2, 3 and 4 are hold by Alice, Bob, Cliff and David, respectively. In or-
der to control the quantum channel between Alice and Bob and the amount of information
transmitted from Alice to Bob, David performs a von Neumann measurement on his qubit 4
under the basis,

|+〉4 = sin θ4|0〉4 + cos θ4|1〉4, |−〉4 = cos θ4|0〉4 − sin θ4|1〉4, (2)

where θ4 is a measured angle with the region [0,π/4], After the measurement, David in-
forms his measurement result to Alice and Bob. It is noted that the von Neuman measure-
ment of qubit 4 gives the outcome |+〉4 or |−〉4 with equal probability. Thus, the cluster
state (1) in the new basis {|+〉4, |−〉4} can be rewritten as

|C〉1234 = 1√
2

(|ψ〉123 ⊗ |+〉4 + |ϕ〉123 ⊗ |−〉4

)
, (3)

with

|ψ〉123 = 1√
2

[
sin θ4

(|000〉123 + |110〉123
) + cos θ4

(|001〉123 − |111〉123
)]

,

|ϕ〉123 = 1√
2

[
cos θ4

(|000〉123 + |110〉123

) − sin θ4

(|001〉123 − |111〉123

)]
.

(4)

Corresponding to Cliff’s measurement result |+〉4 or |−〉4, it is obvious that the state of
qubits 1, 2 and 3 collapses to |ψ〉123 or |ϕ〉123, respectively. In this paper, we consider the
case that David’s measurement outcome gives |+〉4 and the state of qubits 1, 2 and 3 col-
lapses to |ψ〉123, the other one can be treated in a similar way.

Then Cliff measures his qubit under the following basis

|+〉3 = sin θ3|0〉3 + cos θ |1〉3, |−〉3 = cos θ3|0〉3 − sin θ3|1〉3, (5)
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and informs Alice and Bob his measurement result via a classical channel. The quantum
state |ψ〉123 can be rewritten in terms of the new basis {|+〉3, |−〉3} as

|ψ〉123

= 1√
C1

[
(sin θ3 sin θ4 + cos θ3 cos θ4)|00〉12 − (cos θ3 cos θ4 − sin θ3 sin θ4)|11〉12

] ⊗ |+〉3

+ 1√
C2

[
(cos θ3 sin θ4 − sin θ3 cos θ4)|00〉12 + (cos θ3 sin θ4 + sin θ3 cos θ4)|11〉12

]

⊗ |−〉3

= 1√
C1

(
α|00〉12 − β|11〉12

) ⊗ |+〉3 + 1√
C2

(
γ |00〉12 + δ|11〉12

) ⊗ |−〉3

= |ψ〉12 ⊗ |+〉3 + |ϕ〉12 ⊗ |−〉3 (6)

with

C1 = sin2 θ3 sin2 θ4 + cos2 θ3 cos2 θ4,

C2 = cos2 θ3 sin2 θ4 + sin2 θ3 cos2 θ4.
(7)

Generally, the states |ψ〉12 and |ϕ〉12 are not maximally entangled states, so the success prob-
ability of dense coding with them is less than 1. In the following, we discuss two schemes of
dense coding with them. The first one is base on generalized measurement, and the second
one is base on entanglement concentration.

At first, we consider the case in which Cliff’s measurement result is |+〉3 and the state of
qubits 1 and 2 collapses to |ψ〉12. After receiving the measurement result, Alice uses directly
any one of the four unitary operators {I, σX, iσY , σZ} to operate the shared state |ψ〉12. Such
as

(I ⊗ I )|ψ〉12 = 1√
C1

α|00〉12 − 1√
C1

β|11〉12 = |φ1〉12,

(σX ⊗ I )|ψ〉12 = 1√
C1

α|10〉12 − 1√
C1

β|01〉12 = |φ2〉12,

(iσY ⊗ I )|ψ〉12 = 1√
C1

α|10〉12 + 1√
C1

β|01〉12 = |φ3〉12,

(σZ ⊗ I )|ψ〉12 = 1√
C1

α|00〉12 + 1√
C1

β|11〉12 = |φ4〉12.

(8)

Then Alice sends qubit 1 to Bob, and now Bob has at his disposal two qubits which could
be in any one of the four possible states {|φ1〉12, |φ2〉12, |φ3〉12, |φ4〉12}. If Bob is able to
distinguish all the four nonorthogonal states conclusively, he can extract two classical bits
of information. It is noted that, however, the above four states are not mutually orthogonal.
According to quantum theory, they cannot be distinguished with certainty. Fortunately, it is
easy to find that the four possible states are actually linearly independent. Therefore Bob
can conclusively distinguish these states with some probability of success.

To distinguish the above set {|φ1〉12, |φ2〉12, |φ3〉12, |φ4〉12}, first Bob performs a projec-
tion onto the subspaces spanned by the basis states {|00〉, |11〉} and {|01〉, |10〉} with cor-
responding projective operators are P1 = |00〉〈00| + |11〉〈11| and P2 = |01〉〈01| + |10〉〈10|
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respectively. Obviously, P1 and P2 are mutually orthogonal, so Bob can discriminate the two
subsets of Alice’s operators: {I, σZ} and {σX, iσY }. If Bob obtains P1, then he knows that the
state will be either |φ1〉12 or |φ4〉12. Similarly, if he obtains P2, the state will be either |φ2〉12

or |φ3〉12. After this projective measurement he gets 1 bit of information [24]. Suppose Bob
obtains P1, then he performs a generalized measurement on his two qubit states. In the case,
the positive operator valued measure (POVM) elements in the subspace {|00〉, |11〉} are [27]

M1 = 1

2

(
β2/α2 β/α

β/α 1

)
, M2 = 1

2

(
β2/α2 −β/α

−β/α 1

)
,

M3 =
(

(α2 − β2)/α2 0
0 0

)
.

(9)

It is easy to check that the condition M1 + M2 + M3 = 1 is satisfied. The POVM has three
outcomes, which is independent of the state of the measured system. Therefore, POVM
provides the most general physically realized measurement in quantum mechanics.

If Bob gets M1 then the state is |φ1〉12, if he gets M2 then the state is |φ4〉12, and if he gets
M3 the state is completely indecisive. The absolutely success probability of distinguishing
|φ1〉12 and |φ4〉12 is 2β2/C1, which is also the probability that Bob obtains another 1 bit of
information. Similar procedure can be applied for the case of P2, one can easily to find that
the relevant POVM elements and the success probability are the same. So, in this case, Alice
can transmit

I 1
+ = 1

2
× 1

2
C1 ×

(
1 + 2β2

C1

)
= 1

4

(
α2 + 3β2

)
(10)

bits of information to Bob.
If Charlie’s measurement result is |−〉3, then the state of qubits 1 and 2 collapses to

|ϕ〉12. After Alice’s encoding with one of the four operators {I, σX, iσY , σZ}, the state |ϕ〉12

undergoes one of the following transformations,

(I ⊗ I )|ϕ〉12 = 1√
C2

γ |00〉12 + 1√
C2

δ|11〉12 = |φ1〉12,

(σX ⊗ I )|ϕ〉12 = 1√
C2

γ |10〉12 + 1√
C2

δ|01〉12 = |φ2〉12,

(iσY ⊗ I )|ϕ〉12 = − 1√
C2

γ |10〉12 + 1√
C2

δ|01〉12 = |φ3〉12,

(σZ ⊗ I )|ϕ〉12 = 1√
C2

γ |00〉12 − 1√
C2

δ|11〉12 = |φ4〉12.

(11)

In this case, the POVM set may be expressed as

M ′
1 = 1

2

(
γ 2/δ2 γ /δ

γ /δ 1

)
, M ′

2 = 1

2

(
γ 2/δ2 −γ /δ

−γ /δ 1

)
,

M ′
3 =

(
(δ2 − γ 2)/δ2 0

0 0

)
,

(12)
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and Bob can discriminate |φ1〉12 from |φ4〉12 ( or |φ2〉12 from |φ3〉12) with absolute success
probability 2γ 2/C2 and

I 1
− = 1

2
× 1

2
C2 ×

(
1 + 2γ 2

C2

)
= 1

4

(
δ2 + 3γ 2

)
(13)

bits of information are transmitted.
Synthesizing all measurement cases, the average amount of information transmitted from

Alice to Bob is a summation of the absolute success probability in the two POVM measure-
ment and can be expressed as

I 1 = 2 × (
I 1
+ + I 1

−
) = 2(1 − 2 sin θ3 sin θ4 cos θ3 cos θ4). (14)

From (14), we see that the average amount of information is only dependent on the measured
angles θ3 and θ4. Therefore, it is helpful for David and Cliff to control the average amount of
information transmitted from Alice to Bob by adjusting the measurement angles θ3 and θ4.

3 Probabilistic Dense Coding Via Entanglement Concentration

Now we discuss the second scheme. Like the above scheme, we first suppose that David’s
measurement result is |+〉4 and Cliff’s measurement gives |+〉3. In this case, the state of
qubits 1 and 2 collapses to |ψ〉12. After receiving the measurement results, Alice shares the
general entangled state |ψ〉12 with Bob who need not know it. Now Alice takes a new way
to realize dense coding with the non-maximally entangled state by introducing an auxiliary
qubit with original state |0〉aux. She first performs a unitary transformation

U1 =

⎛

⎜
⎜
⎝

β/α 0
√

1 − β2/α2 0
0 −1 0 0√

1 − β2/α2 0 −β/α 0
0 0 0 1

⎞

⎟
⎟
⎠ (15)

on the auxiliary qubit and qubit 1 under the basis {|0〉aux|0〉1, |0〉aux|1〉1, |1〉aux|0〉1, |1〉aux|1〉1}.
The two-qubit unitary matrix U1 and single-qubit identity operation I2, that is U1 ⊗I2, trans-
forms the state |0〉aux ⊗ |ψ〉12 to

|ψ〉aux12 =
√

2

C1
β|0〉aux

[
1√
2
(|00〉12 + |11〉12)

]
+

√(
α2 − β2

)
/C1|1〉aux|11〉12. (16)

Then Alice performs a von Neumann measurement on the auxiliary qubit under the basis
{|0〉aux, |1〉aux}. If she obtains |0〉aux , qubits 1 and 2 are maximally entangled. Alice now
performs one of the four unitary transformations {I, σX, iσY , σZ} on qubit 1 and sends it
to Bob. By performing a Bell-basis measurement, Bob knows he has two qubits in one
of the four Bell states resulted from Alice’s transformation, so 2 bits of information are
transmitted. If Alice obtains |1〉aux, qubits 1 and 2 are unentangled. Bob can extract only 1
bit of information. Thus, an average number of

I 2
+ = 1

2
× 1

2
C1 ×

[
2

C1
β2 × 2 + α2 − β2

C1
× 1

]
= 1

4

(
α2 + 3β2

)
, (17)

bits of information is transmitted from Alice to Bob.
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If Cliff’s measurement result is |−〉3, Alice’s unitary transformation on the auxiliary qubit
and qubit 1 should be changed as

U
′
2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 γ /δ

√
1 − γ 2/δ2 0

0
√

1 − γ 2/δ2 −γ /δ 0
0 0 0 1

⎞

⎟
⎟
⎠ , (18)

under the basis {|0〉aux|0〉1, |0〉aux|1〉1, |1〉aux|0〉1, |1〉aux|1〉1}. Under the operation of U
′
2 ⊗ I2,

the state |0〉aux ⊗ |ϕ〉12 is transformed as

|ϕ〉aux12 =
√

2

C2
γ |0〉aux

[
1√
2
(|00〉12 + |11〉12)

]
+

√(
δ2 − γ 2

)
/C2|1〉aux|11〉12. (19)

Then Alice performs a von Neumann measurement on the auxiliary qubit under the basis
{|0〉aux, |1〉aux}. If Alice gets the result |1〉aux, the state of qubits 1 and 2 is unentangled, and
1 bit information can be transmitted. If the measured result |0〉aux, the state of qubits 1 and
2 is maximally entangled, and 2 bits information can be transmitted. In the case, therefore,
Alice can transmit

I 2
− = 1

2
× 1

2
C1 ×

[
2

C1
γ 2 × 2 + δ2 − γ 2

C1
× 1

]
= 1

4

(
δ2 + 3γ 2

)
, (20)

bits of information on average. The average amount of information transmitted from Alice
to Bob adds up to

I 2 = 2 × (
I 2
+ + I 2

−
) = 2(1 − 2 sin θ3 sin θ4 cos θ3 cos θ4), (21)

which is also a function of the measurement angles θ3 and θ4.
Comparing (14) with (21), we find that the results are same. Therefore, the two schemes

are equivalent for dense coding via local measurements. That is to say, the results are unique.

4 Summary

In summary, two schemes, introducing generalized measurement and entanglement con-
centration respectively, of realizing dense coding are investigated by using a cluster state
via local measurements, where Alice sends the information to Bob, while Cliff and David
serves as quantum erasure by the local measurements. It is shown that the results for the
average amounts of information are unique from the different two schemes.

Under the different measurement angles, the average amount of information transmitted
from Alice to Bob is different. Therefore, one can obtain more information about the trans-
mission. This is helpful for Cliff and David to choose some useful measurements for higher
success probability.

It is shown that the success probability depends on the measurement angles θ3 and θ4.
This implies that Cliff and David can control the average amount of information transmitted
from Alice to Bob by adjusting measurement angles.
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