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Abstract We present a new quantum protocol for comparing the equal information with
the help of a semi-honest third party (TP). Different from previous protocols, we utilize
the four-particle χ -type states as the information carriers. Various kinds of outside attacks
and participant attacks are discussed in detail. One party cannot learn the other’s private
information. The TP cannot learn any information about the private information, even about
the comparison result or the length of secret inputs.
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1 Introduction

With the development of quantum mechanics, quantum information has attracted a lot of
attention and many protocols of quantum information have been developed for quantum key
distribution (QKD) [1–7], quantum secret sharing (QSS) [8–11], quantum secure direction
communication (QSDC) [12–17], quantum teleportation (QT) [18, 19], and so on. Now, se-
cure multiparty computation (SMC) has been discussed in the quantum field. Many special
SMC problems have been solved in quantum setting, for instance, secure multiparty quan-
tum summation [20, 21], quantum protocol for anonymous voting and surveying [22, 23],
quantum protocol for millionaire problem [24], etc.

The problem for private comparison of equality or socialist millionaires’ problem [25] is
an important special SMC problem, in which two millionaires want to know whether they
happen to be equally rich without disclosing any information about their riches to each other.
It’s an extended problem of the millionaire’s problem. The millionaire’s problem introduced
by Yao [26, 27] was the origin of SMC. The problem for private comparison of equality was
well-studied based on classical cryptography [28–31], but they cannot withstand powerful
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quantum computers. Recently, Yang et al. [32] proposed an efficient quantum private com-
parison protocol based on the decoy photon and two-photon entangled Einstein–Podolsky–
Rosen (EPR) pairs. Yang’s protocol included a dishonest TP. Then, Chen et al. [33] pro-
posed a new protocol for dealing with the private comparison of equal information based
on the triplet entangled states Greenberger–Horne–Zeilinger (GHZ). This protocol included
a semi-honest TP. Then, Liu et al. [34] proposed a new protocol for dealing with the pri-
vate comparison of equal information based on the triplet W states and the single-particle
measurement. This protocol included a semi-honest TP.

Enlightened by the works of [32–34], we proposed a new protocol for dealing with the
private comparison of equal information based on χ -type genuine four-particle entangled
state [35], which is a new state. The χ -type state is different from four-particle GHZ or
W state under stochastic local operations and classical communication (SLOCC), and op-
timally violates a new Bell inequality [36]. Employed it, a two-particle arbitrary state can
be teleported. Moreover, it is not reducible to two EPR pairs. So it may be a genuine four-
particle entangled state similar to an EPR state. Based on its peculiar construction, it can
realize some special communication functions, whereas the four-particle GHZ or W states
may be incapable of realizing. In this paper, using χ -type state to solve the problem for pri-
vate comparison of equality is a new application of χ -type state. Similar to some previous
protocols [32–34], our protocol includes a semi-honest third party, i.e., TP. The role of TP
is to execute the protocol loyally and record all the results of its intermediate computations.
But the TP cannot learn anything about the private information, even about the comparison
result or the length of secret inputs. And we also use the idea of the block transmission
method to send qubits in a batch by batch way in our protocol, which was proposed in [12].

The structure of this paper is as follows: we propose an efficient quantum private com-
parison for equal information protocol in Sect. 2 and we analyze the security of this protocol
in Sect. 3. A brief discussion and the concluding summary are given in Sect. 4.

2 The Quantum Private Comparison of Equal Information

Before describing this protocol, similar to [35–38], let us define sixteen χ -type states as
follows:

|χ00〉abcd =
√

2

4
(|0000〉 − |0101〉 + |0011〉 + |0110〉

+ |1001〉 + |1010〉 + |1100〉 − |1111〉)abcd

= 1

2
(|φ+〉|00〉 + |φ−〉|11〉 − |ψ−〉|01〉 + |ψ+〉|10〉)

= 1

2
(|00〉|φ+〉 + |11〉|φ−〉 − |01〉|ψ−〉 + |10〉|ψ+〉),

(1)

where |ψ±〉 = 1√
2
(|01〉|10〉), |φ±〉 = 1√

2
(|00〉 ± |11〉).

The other fifteen χ -type states can be obtained by the following way:

|χij 〉abcd = σ i
aσ

j
c |χ00〉abcd (i, j = 0,1,2,3). (2)

Where, σ i belongs to one of four Pauli operators: σ 0 = I = |0〉〈0| + |1〉〈1|, σ 1 = σx =
|0〉〈1| + |1〉〈0|, σ 2 = σy = |0〉〈1| − |1〉〈0|, σ 3 = σz = |0〉〈0| − |1〉〈1|.

For simplicity, we consider that there are two parties, Alice and Bob. Alice has
a private information X, Bob has a private information Y . The binary representations
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of X and Y in F2N are (x0, x1, . . . , xN−1) and (y0, y1, . . . , yN−1), where xi, yi ∈ {0,1};
X = ∑N−1

i=0 xi2i , Y = ∑N−1
i=0 yi2i ; 2N−1 ≤ max{x, y} ≤ 2N . They want to determine whether

their private information X and Y are equal with a help of the semi-honest third party Calvin,
but except the result Bob learns nothing about X and Alice learns nothing about Y .

Supposed that two parties, Alice and Bob, use a QKD protocol to establish three common
secret keys KA,KB,KAB , two parties, Alice and Calvin, use a QKD protocol to establish a
common secret key KAC and two parties, Bob and Calvin, use a QKD protocol to establish
a common secret key KBC

The protocol for quantum private comparison of equal information is described as fol-
low:

(1) Alice (Bob) divides her(his) binary representation of X(Y ) into �N
4 � groups GA

1 ,GA
2 , . . . ,

GA

� N
4 �(G

B
1 ,GB

2 , . . . ,GB

� N
4 �). Each group GA

i (GB
i ) (i = 1, . . . , �N

4 �) includes four binary

bits in X(Y ). If N mod 4 = n (n 	= 0), Alice (Bob) adds n 0 into the last group
GA

� N
4 �(G

B

� N
4 �).

(2) Alice prepares a group of four-particle χ -type states |χ00〉abcd . Whereafter, she arranges
these χ -type states into one sequence

[P a1
1 ,P b1

1 ,P c1
1 ,P d1

1 ,P a1
2 ,P b1

2 ,P c1
2 ,P d1

2 , . . . ,P
a� N

4 �
2� N

4 � ,P
b� N

4 �
2� N

4 � ,P
c� N

4 �
2� N

4 � ,P
d� N

4 �
2� N

4 � ] (3)

(hereafter called sequence SA), where the a, b, c, d represent four particles in one χ -
type state and the subscripts 1,2,3, . . . ,2�N

4 � indicate the χ -type state in the sequence.
Alice prepares another group of χ -type states |χ00〉abcd . She arranges these χ -type

states into one sequence

[P a′
1 ,P b′

1 ,P c′
1 ,P d ′

1 ,P a′
2 ,P b′

2 ,P c′
2 ,P d ′

2 , . . . ,P a′
L ,P b′

L ,P c′
L ,P d ′

L ] (4)

(hereafter called checking sequence S
′
A), where the a, b, c, d represent four particles

in one χ -type state and the subscripts 1,2,3, . . . ,L indicate the χ -type state in the
sequence. The checking sequence S

′
A is used to check the security of quantum channel.

Alice inserts the χ -type states of S
′
A into SA and records the insert positions sequence

Sq. This new sequence is denoted by S
′′
A.

Alice takes a, b particles from each χ -type state in S
′′
A to form an ordered sequence

[P a1
1 ,P b1

1 , . . . ,P a′
1 ,P b′

1 , . . . ,P ah
k ,P bh

k , . . . ,P a′
j ,P b′

j , . . . ,P a′
L ,P b′

L , . . . ,P
a� N

4 �
2� N

4 � ,P
b� N

4 �
2� N

4 � ],
(5)

which is called Sab′′
A

The remaining partner c, d particles form another ordered sequence

[P c1
1 ,P d1

1 , . . . ,P c′
1 ,P d ′

1 , . . . ,P ch
k ,P dh

k , . . . ,P c′
j ,P d ′

j , . . . ,P c′
L ,P d ′

L , . . . ,P
c� N

4 �
2� N

4 � ,P
d� N

4 �
2� N

4 � ],
(6)

which is called Scd ′′
A .

Alice sends Scd ′′
A to Bob and remains Sab′′

A herself.

(3) After receiving Scd ′′
A , Alice sends Sq to Bob. According to Sq, Bob performs measure-

ments on the particles P c′
i , P d ′

i (i = 1,2, . . . ,L) using the basis {|0〉, |1〉} or Bell-basis
{|φ±〉, |ψ±〉} randomly. Finishing measurement, Bob tells Alice his measurement results
and his measurement bases.
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After receiving Bob’s measurement results and his measurement bases, Alice per-
forms the measurement according to Sq using the appropriate bases. If Bob’s measure-
ment basis is {|0〉, |1〉}, Alice selects Bell-basis; If Bob’s measurement basis is Bell-
basis, Alice selects {|0〉, |1〉}. Alice can then evaluate the error rate during the trans-
mission of sequence Scd ′′

A according to their measurement results. The measurement
outcomes should be correlative perfectly according to (1). If the error rate exceeds the
threshold they preset, they abort the scheme. Otherwise, they continue to the next step.

(4) Alice and Bob discard the χ -type states which is used to check eavesdropping. Then
they divide remaining χ -type states into some groups. There are two χ -type states
including four particles in each group. The group owned by Alice (Bob) is denoted
by (P ah

k ,P bh
k ,P ah

k+1,P
bh
k+1)((P

ch
k ,P dh

k ,P ch
k+1,P

dh
k+1)), where k = 1,3, . . . ,2�N

4 � − 1;h =
1,2, . . . , �N

4 �. Both Alice and Bob make χ -type state measurements on four particles in
their hands. Obviously, this is the entanglement swapping of χ -type state and the states
of particles (a, b, c, d, a, b, c, d) can be denoted as follows:

|χ00〉abab|χ00〉cdcd = 1

4
(|χ00〉abab|χ00〉cdcd + |χ01〉abab|χ12〉cdcd

+ |χ02〉abab|χ11〉cdcd + |χ03〉abab|χ03〉cdcd

+ |χ10〉abab|χ10〉cdcd + |χ11〉abab|χ02〉cdcd

+ |χ12〉abab|χ01〉cdcd + |χ13〉abab|χ13〉cdcd

+ |χ20〉abab|χ33〉cdcd + |χ21〉abab|χ21〉cdcd

+ |χ22〉abab|χ22〉cdcd + |χ23〉abab|χ30〉cdcd

+ |χ30〉abab|χ23〉cdcd + |χ31〉abab|χ31〉cdcd

+ |χ32〉abab|χ32〉cdcd + |χ33〉abab|χ20〉cdcd).

(7)

(5) The measurement result of (P ah
k ,P bh

k ,P ah
k+1,P

bh
k+1)((P

ch
k ,P dh

k ,P ch
k+1,P

dh
k+1)) is

|χiA
h

jA
h 〉abab(|χiB

h
jB
h 〉cdcd), where iA

h , jA
h , iB

h , jB
h = 0,1,2,3;h = 1,2, . . . , �N

4 �. The bi-
nary representation of iA

h jA
h (iB

h jB
h ) is denoted by GA′

h = (rAh
1 rAh

2 rAh
3 rAh

4 ) (GB ′
h =

(rBh
1 rBh

2 rBh
3 rBh

4 )), where h = 1,2, . . . , �N
4 �.

If |χiA
h

jA
h 〉abab = |χ00〉abab or |χ03〉abab or |χ10〉abab or |χ13〉abab or |χ21〉abab or

|χ22〉abab or |χ31〉abab or |χ32〉abab , Alice sets RAB
h = (RABh

1 RABh
2 RABh

3 RABh
4 ) = (0000);

Otherwise Alice sets RAB
h = (RABh

1 RABh
2 RABh

3 RABh
4 ) = (0111).

Alice calculates RA
h = GA

h ⊕ GA′
h ⊕ RAB

h = RAh
1 RAh

2 RAh
3 RAh

4 ; Bob calculates RB
h =

GB
h ⊕ GB ′

h = RBh
1 RBh

2 RBh
3 RBh

4 , where the symbol ⊕ denotes the bitwise XOR opera-
tion.

Alice (Bob) chooses L random quads RA′
1 ,RA′

2 , . . . ,RA′
L (RB ′

1 ,RB ′
2 , . . . ,RB ′

L ), where
RA′

h = (RAh′
1 RAh′

2 RAh′
3 RAh′

4 )(RB ′
h = (RBh′

1 RBh′
2 RBh′

3 RBh′
4 )) and RAh′

1 , RAh′
2 ,RAh′

3 ,RAh′
4 ,

RBh′
1 ,RBh′

2 ,RBh′
3 ,RBh′

4 ∈ {0,1}, h = 1, . . . ,L. Alice (Bob) uses quantum-one-time pad
and KA(KB) to encrypt RA′

1 ,RA′
2 , . . . ,RA′

L (RB ′
1 ,RB ′

2 , . . . ,RB ′
L ) and sends the result

EKA
(RA′

1 ,RA′
2 , . . . ,RA′

L )(EKB
(RB ′

1 ,RB ′
2 , . . . ,RB ′

L )) to Bob. Alice (Bob) uses KA(KB) to
decrypt EKB

(RB ′
1 ,RB ′

2 , . . . ,RB ′
L )(EKA

(RA′
1 ,RA′

2 , . . . ,RA′
L )) and gets RB ′

1 ,RB ′
2 , . . . ,RB ′

L

(RA′
1 ,RA′

2 , . . . ,RA′
L ).
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Alice inserts RA′
h (h = 1, . . . ,L) into the sequence RA

1 ,RA
2 , . . . ,RA

� N
4 � and gets a new

(�N
4 �+L)-length quads sequence denoted by RA′′

1 ,RA′′
2 , . . . ,RA′′

� N
4 �+L

. Alice also records

the insert positions sequence Sq and insert several 0 into Sq to form a new sequence
Sq′. Alice uses quantum-one-time pad and KAB to encrypt Sq′ and sends the result
EKAB

(Sq ′) to Bob.
Bob uses KAB to decrypt EKAB

(Sq ′), deletes the 0 which is inserted in Sq′ and gets
Sq. Bob inserts RB ′

h (h = 1, . . . ,L) into the sequence RB
1 ,RB

2 , . . . ,RB

� N
4 � according to Sq

and gets a new (�N
4 � + L)-length quads sequence denoted by RB ′′

1 ,RB ′′
2 , . . . ,RB ′′

� N
4 �+L

.

Alice (Bob) uses quantum-one-time pad and KAC(KBC) to encrypt the new quads se-
quence RA′′

1 ,RA′′
2 , . . . ,RA′′

� N
4 �+L

(RB ′′
1 ,RB ′′

2 , . . . ,RB ′′
� N

4 �+L
) and gets EKAC

(RA′′
h )(EKBC

(RB ′′
h )),

where h = 1,2, . . . , �N
4 � + L. Alice (Bob) sends EKAC

(RA′′
h )(EKBC

(RB ′′
h )) (h =

1,2, . . . , �N
4 � + L) to the third party, Calvin.

(6) After using KAC,KBC to decrypt EKAC
(RA′′

h ),EKBC
(RB ′′

h ) and getting RA′′
h ,RB ′′

h , where
h = 1,2, . . . , �N

4 � + L.
Calvin calculates

R
′ =

� N
4 �∑

h=1

{(RAh′′
1 ⊕ RBh′′

1 )+(RAh′′
2 ⊕ RBh′′

2 )

+ (RAh′′
3 ⊕ RBh′′

3 ) + (RAh′′
4 ⊕ RBh′′

4 )} (8)

Calvin sends R
′

to Alice and Bob.
(7) After receiving R

′
,RA′

h ,RB ′
h (h = 1, . . . ,L), Alice and Bob calculate

R = R
′ −

L∑

h=1

{(RAh′
1 ⊕ RBh′

1 )+(RAh′
2 ⊕ RBh′

2 ) + (RAh′
3 ⊕ RBh′

3 ) + (RAh′
4 ⊕ RBh′

4 )} (9)

If R = 0, Alice and Bob get X = Y ; otherwise X 	= Y .

3 Analysis

3.1 Correctness

In this section, we show that the output of our protocol is correct. Alice has a private in-
formation X, Bob has a private information Y . The binary representations of X and Y in
F2N are (x0, x1, . . . , xN−1), (y0, y1, . . . , yN−1), where xi, yi ∈ {0,1}; X = ∑N−1

i=0 xi2i , Y =
∑N−1

i=0 yi2i ; 2N−1 ≤ max{x, y} ≤ 2N . Alice and Bob divide their binary representations of X

and Y into �N
4 � groups, GA

1 , . . . ,GA

� N
4 � and GB

1 , . . . ,GB

� N
4 �.

For h = 1 to �N
4 �, Alice and Bob use two χ -type states [P ah

k ,P bh
k ,P ch

k ,P dh
k ,P ah

k+1,P
bh
k+1,

P ch
k+1,P

dh
k+1] to compare whether GA

h ,GB
h are equal. For simplicity, two cases of GA

h ,GB
h ’s

values are shown in Table 1 and other cases can use the same way to get. We denotes Alice’s
measurement outcome of P ah

k ,P bh
k ,P ah

k+1,

P bh
k+1 as MA

h and Bob’s measurement outcome of P ch
k ,P dh

k ,P ch
k+1,P

dh
k+1 as MB

h . The repre-
sents of MA

h ,MB
h are denoted as GA′

h ,GB ′
h . The results of GA

h ⊕ GA′
h ,GB

h ⊕ GB ′
h are denoted

as RA
h ,RB

h , which are send to Calvin. The represent of auxiliary data is denoted as RAB
h ,
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Table 1 Two cases of GA
h

,GB
h

’s values

GA
h

GB
h

MA
h

MB
h

GA′
h

GB′
h

RA
h

RB
h

RAB
h

Rh

0000 0000 |χ00〉abab |χ00〉cdcd 0000 0000 0000 ⊕ 0000 0000 ⊕ 0000 0000 0

|χ01〉abab |χ12〉cdcd 0001 0110 0000 ⊕ 0001 0000 ⊕ 0110 0111 0

|χ02〉abab |χ11〉cdcd 0010 0101 0000 ⊕ 0010 0000 ⊕ 0101 0111 0

|χ03〉abab |χ03〉cdcd 0011 0011 0000 ⊕ 0011 0000 ⊕ 0011 0000 0

|χ10〉abab |χ10〉cdcd 0100 0100 0000 ⊕ 0100 0000 ⊕ 0100 0000 0

|χ11〉abab |χ02〉cdcd 0101 0010 0000 ⊕ 0101 0000 ⊕ 0010 0111 0

|χ12〉abab |χ01〉cdcd 0110 0001 0000 ⊕ 0110 0000 ⊕ 0001 0111 0

|χ13〉abab |χ13〉cdcd 0111 0111 0000 ⊕ 0111 0000 ⊕ 0111 0000 0

|χ20〉abab |χ33〉cdcd 1000 1111 0000 ⊕ 1000 0000 ⊕ 1111 0111 0

|χ21〉abab |χ21〉cdcd 1001 1001 0000 ⊕ 1001 0000 ⊕ 1001 0000 0

|χ22〉abab |χ22〉cdcd 1010 1010 0000 ⊕ 1010 0000 ⊕ 1010 0000 0

|χ23〉abab |χ30〉cdcd 1011 1100 0000 ⊕ 1011 0000 ⊕ 1100 0111 0

|χ30〉abab |χ23〉cdcd 1100 1011 0000 ⊕ 1100 0000 ⊕ 1011 0111 0

|χ31〉abab |χ31〉cdcd 1101 1101 0000 ⊕ 1101 0000 ⊕ 1101 0000 0

|χ32〉abab |χ32〉cdcd 1110 1110 0000 ⊕ 1110 0000 ⊕ 1110 0000 0

|χ33〉abab |χ20〉cdcd 1111 1000 0000 ⊕ 1111 0000 ⊕ 1000 0111 0

0011 1100 |χ00〉abab |χ00〉cdcd 0000 0000 0011 ⊕ 0000 1100 ⊕ 0000 0000 4

|χ01〉abab |χ12〉cdcd 0001 0110 0011 ⊕ 0001 1100 ⊕ 0110 0111 4

|χ02〉abab |χ11〉cdcd 0010 0101 1100 ⊕ 0010 0011 ⊕ 0101 0111 4

|χ03〉abab |χ03〉cdcd 0011 0011 0011 ⊕ 0011 1100 ⊕ 0011 0000 4

|χ10〉abab |χ10〉cdcd 0100 0100 0011 ⊕ 0100 1100 ⊕ 0100 0000 4

|χ11〉abab |χ02〉cdcd 0101 0010 0011 ⊕ 0101 1100 ⊕ 0010 0111 4

|χ12〉abab |χ01〉cdcd 0110 0001 0011 ⊕ 0110 1100 ⊕ 0001 0111 4

|χ13〉abab |χ13〉cdcd 0111 0111 0011 ⊕ 0111 1100 ⊕ 0111 0000 4

|χ20〉abab |χ33〉cdcd 1000 1111 0011 ⊕ 1000 1100 ⊕ 1111 0111 4

|χ21〉abab |χ21〉cdcd 1001 1001 0011 ⊕ 1001 1100 ⊕ 1001 0000 4

|χ22〉abab |χ22〉cdcd 1010 1010 0011 ⊕ 1010 1100 ⊕ 1010 0000 4

|χ23〉abab |χ30〉cdcd 1011 1100 0011 ⊕ 1011 1100 ⊕ 1100 0111 4

|χ30〉abab |χ23〉cdcd 1100 1011 0011 ⊕ 1100 1100 ⊕ 1011 0111 4

|χ31〉abab |χ31〉cdcd 1101 1101 0000 ⊕ 1101 0000 ⊕ 1101 0000 4

|χ32〉abab |χ32〉cdcd 1110 1110 0011 ⊕ 1110 1100 ⊕ 1110 0000 4

|χ33〉abab |χ20〉cdcd 1111 1000 0011 ⊕ 1111 1100 ⊕ 1000 0111 4

which is also send to Calvin. After doing Rh = ∑4
i=1 RAh

i ⊕ RBh
i ⊕ RABh

i , Calvin gets the
result of the comparison between GA

h ,GB
h . If Rh = 0, then GA

h = GB
h ; otherwise GA

h 	= GB
h .

We have to point out that in order not to leak the comparing result of X,Y to Calvin, Alice
and Bob inserts some random into their sequences of RA′

h ,RB ′
h ,RAB ′

h (h = 1,2, . . . , �N
4 �).

After eliminating the effect of these random quads, Alice and Bob can get the result R =
∑� N

4 �
h=1 (

∑4
i=1 RAh

i ⊕ RBh
i ⊕ RABh

i ). If R = 0, Alice and Bob gets X = Y ; otherwise X 	= Y .

3.2 Security

Firstly, we show that the outside attack is invalid to our protocol. Secondly, we show that the
two dishonest parties, Alice and Bob, can not get any information about the private informa-



Int J Theor Phys (2012) 51:69–77 75

tion of each other and the semi-honest third party, Calvin, can not get any information about
the private information of Alice and Bob, even about the length of X,Y or the comparison
result of X,Y .

3.2.1 Outside Attack

We analyze the possibility of the outside eavesdropper to get information about X and Y in
every step of protocol.

In step 1, 3, 4, 7, there is not any information to transfer. In step 2, the outside eaves-
dropper can attack the quantum channel when Alice and Bob share a group of four-particle
χ -type states. These four-particle χ -type states are not leaked to an unauthorized user. It
was shown in [37, 38] that outside eavesdropper’s several kinds of attacks, such as the
intercept-resend attack, the measure-resend attack, the entangle-measure attack,were de-
tected with nonzero probability during the security checking process and the protocol was
secure with a noise quantum channel. In step 5, Alice and Bob send the new quads sequences
RA′′

h ,RB ′′
h ,RAB ′′

h (h = 1,2, . . . , �N
4 � + L) to the third party, Calvin, using the quantum-one-

time pad. The outside eavesdropper cannot eavesdrop anything. In step 6, Calvin sends R
′

to Alice and Bob. Because there is a part of random in R
′
, outside eavesdropper cannot get

the comparing result. So in every step of our protocol, the outside eavesdropper cannot get
any information X and Y .

3.2.2 Participant Attack

The term “participant attack”, which emphasizes that the attacks from dishonest users are
generally more powerful and should be paid more attention to, is first proposed by Gao et al.
in Ref. [39] and has attracted much attention in the cryptanalysis of quantum cryptography
[40–45]. We analyze the possibility of the three participants to get information about X and
Y in our protocol. Because the role of Alice is same as that of Bob, we firstly analyze the
case that Alice wants to learn Bob’s private information Y . Secondly, we analyze the case
that the third party, Calvin, wants to learn the private information X,Y .

Case 1: Alice wants to learn Bob’s private information Y .
Alice can only infer Bob’s private information from the measurement result MA

h of
P ah

k ,P bh
k ,P ah

k+1,P
bh
k+1 which are in Alice’s hand and RB

h which is send from Bob to Calvin.
P ah

k ,P bh
k ,P ah

k+1,P
bh
k+1 are the two particles of two χ -type states. According to the (7), Alice

can infer the measurement result MB
h of P ch

k ,P dh
k ,P ch

k+1,P
dh
k+1 which are in Bob’s hand. Be-

cause these measurement results have the same probability which is shown in Table 1, Alice
cannot infer any information about Bob’s private information GB

h from the measurement
outcome of MB

h . RB
h is send using the quantum-one-time pad from Bob to Calvin and Alice

also cannot eavesdrop any information about RB
h . So she cannot get any information about

Bob’s private information.
We can use the same method to analyze that Bob cannot learn any information about

Alice’s private information X.
Case 2: Calvin wants to learn the private information X,Y .
Calvin can only infer private information X,Y from RA′′

h ,RB ′′
h ,RAB ′′

h . Because Alice and
Bob insert some confusion random, Calvin cannot find out which number is related to X,Y

in RA′′
h ,RB ′′

h ,RAB ′′
h . So Calvin cannot learn the private information X,Y , even about the

comparison result of GA
h ,GB

h and the length of X,Y .
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3.3 Discussion and Conclusions

We present a quantum protocol which can be used to solve private comparison problem. Our
protocol is based on the χ -type states. It’s a new application of the χ -type states. With the
help of a semi-honest TP, two parties can know whether the private information X and Y

are equal or not. The security of the protocol relies on the laws of quantum mechanics. And
various kinds of outside attacks and participant attacks are discussed. The advantage of our
protocol is that it can preserve the privacy of X and Y . Alice and Bob cannot learn private
information own by each other. And the semi-honest TP also cannot learn any information
about the private information X,Y .

In our further works, the quantum private comparison protocol can be studied without the
help of the third party and the two-party protocol can be extend to the case of multi-party.
The quantum protocols for the millionaire’s problem and multi-party sorting problem can
be also studied.
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