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Abstract In this paper, the algebraic structure and the Poisson’s integral theory of f (R)

cosmology are presented. Firstly, the Hamilton canonical equations are derived for the sys-
tem. Secondly, the contravariant algebraic forms of f (R) cosmology are obtained. Thirdly,
the Lie algebraic structure admitted and Poisson’s integral methods are investigated for f (R)

cosmology. Further, the first integrals and solution of f (R) cosmology are given. Finally, an
example is given to illustrate the results.
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1 Introduction

Extended theories of gravity have become a sort of paradigm in modern physics since they
seem to solve several problems of standard general relativity related to cosmology, astro-
physics and quantum field theory. In recent years, modified theories of gravity constructed
by adding correction terms in the usual Einstein–Hilbert action, have opened a new window
to study the accelerated expansion of the universe. It has been shown that such correction
terms could give rise to accelerating solutions of the field equations without having to in-
voke concepts such as dark energy [1]. In a more general setting, one can use a generic
function f (R), instead of the usual Ricci scalar R as the action of Hilbert–Einstein formu-
lation. This method relaxing the hypothesis that gravitational Lagrangian has to be a linear
function of the Ricci curvature scalar R in Hilbert–Einstein formulation, one can take into
account, as a minimal extension, an effective action where the gravitational Lagrangian is
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a generic f (R) function. Such f (R) gravity theories have been extensively studied in the
literature over the past few years [2] for a review. Vakili has studied a flat FRW space–time
in the framework of the metric formalism of f (R) gravity, and have constructed an effective
Lagrangian in the minisuperspace {a,R} where a and R being the scale factor and Ricci
scalar, respectively [3].

It is well known that many methods, such as Ermakov technique [4, 5], Lutzky’s ap-
proach [6, 7], group transformation method [8–10], dynamical algebraic method [11–13],
and algebraic structure and Poisson’s method for constrained mechanical systems [14–16],
have been developed to seek invariants of mechanical and physical systems. Among these
methods, the invariants of the mechanical systems studied by using Lie group of transfor-
mation seem to have an extra advantage of a straightforward extension to the corresponding
quantum mechanics, cosmological models and f (R) cosmology [17–22]. Capozziello, Sta-
bile and Troisi searched for spherically symmetric solutions of f (R) theories of gravity via
the Noether symmetry approach. A general formalism in the metric framework is devel-
oped considering a point-like f (R) Lagrangian [23]. As mentioned above, Vakili presented
Noether symmetries of a generic f (R) classical and quantum cosmological models by uti-
lizing the behavior of the corresponding Lagrangian under the infinitesimal generators with
respect to the scale factor a and Ricci scalar R [3, 22].

In fact the algebraic structure and the Poisson’s theory have been used to study the rela-
tivistic Birkhoffian mechanics and electromechanical systems by Fu et al. [24, 25]. The al-
gebraic structures and Poisson’s theories of f (R) cosmology which have not been explored
so far. In this paper, we make an effort in this direction to obtain the algebraic structure and
Poisson’s theory of f (R) cosmology, and further study the solutions with respect to this
model. It would be of interest to employ such f (R) cosmology model in this study.

2 The Phase Space of the Model

In this section we consider a spatially flat FRW cosmology within the framework of f (R)

gravity. Since our goal is to study models which exhibit algebra structure and Poisson’s
integral approach, we do not include any matter contribution in the action. Let us start from
the (n + 1)-dimensional action (we work in units where c = 16πG = 1)

S =
∫

dn+1x
√−gf (R), (1)

where R is the scalar curvature and f (R) is an arbitrary function of R. By varying the above
action with respect to metric we obtain the equation of motion as

1

2
gμνf (R) − Rμνf

′(R) + ∇μ∇νf
′(R) − gμν�f ′(R) = 0, (2)

where a prime represents differentiation with respect to R. We assume that the geometry
of space–time is described by the flat FRW metric which seems to be consistent with the
present cosmological observations

ds2 = −dt2 + a2(t)

n∑
i=1

(dxi)2. (3)
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With this background geometry the field equations read [20]

(n − 1)P + n(n − 1)

2
P 2 = − 1

f ′

[
f ′′′Ṙ2 + (n − 1)P Ṙf ′′ + f ′′R̈ + 1

2
(f − Rf ′)

]
, (4)

P 2 = 1

n(n − 1)f ′ [(f ′R − f ) − 2nṘPf ′′], (5)

where P = ȧ/a is the Hubble parameter and a dot represents differentiation with respect
to t . To study the algebra structure and Poisson’s approach of the minisuperspace under
consideration, we need an effective Lagrangian for the model whose variation with respect to
its dynamical variables yields the correct equations of motion. Following [3], by considering
the action described above as representing a dynamical system in which the scale factor a

and scalar curvature R play the role of independent dynamical variables, we can rewrite
action (1) as [3]

S =
∫

L(a, ȧ,R, Ṙ)dt =
∫

dt

{
anf (R) − λ

[
R − n(n − 1)

ȧ2

a2
− 2n

ä

a

]}
, (6)

where we introduce the definition of R in terms of a and its derivatives as a constraint. This
procedure allows us to remove the second order derivatives from action (6). The Lagrange
multiplier λ can be obtained by variation with respect to R, that is, λ = anf (R). Thus, we
obtain the following Lagrangian for the model [3]

L(a, ȧ,R, Ṙ) = n(n − 1)ȧ2an−2f ′ + 2nȧṘan−1f ′′ + an(f ′R − f ). (7)

The generic momenta with respect to variables a and R are

pa = ∂L

∂ȧ
= 2n(n − 1)ȧan−2f ′ + 2nan−1Ṙf ′′, (8)

pR = ∂L

∂Ṙ
= 2nan−1ȧf ′′(R). (9)

Then we have

ȧ = pR

2nan−1f ′′ , (10)

Ṙ = af ′′pa − (n − 1)pRf ′

2nanf
′′2 . (11)

The Hamiltonian corresponding to Lagrangian (7) can then be written in terms

H(a,pa,R,pR) = paȧ + pRṘ − L = apRpa

2nanf ′′ − (n − 1)f ′p2
R

4nanf ′′2
− an(f ′R − f ). (12)

Then, the Hamilton canonical equations associated with Hamiltonian (12) are obtain

ṗa = −∂H

∂a
= (n − 1)pRpa

2nanf ′′ − (n − 1)nf ′p2
R

4nan+1f ′′2
+ nan−1(f ′R − f ), (13)

ṗR = −∂H

∂R
= apapRf ′′′

2nanf ′′2
+ n(n − 1)p2

Rf ′′2 − 2f ′f ′′′

4nanf ′′3
+ nan−1f ′′R. (14)
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3 Contravariant Algebraic Form of f (R) Cosmology

Introduce contravariant vectors for the f (R) cosmology

aμ =
{

qμ, (μ = 1,2),

pμ−2, (μ = 3,4),
(15)

where a1 = a, a2 = R, a3 = pa , a4 = pR , then Hamiltonian of the f (R) cosmology can be
written in the form

H(a,p) = H(t, aμ), (16)

where a = {a,R}, p = {pa,pR}. Using the contravariant tensor

(ωμν) =
(

02×2 I2×2

−I2×2 02×2

)
=

⎛
⎜⎜⎝

0 0 I 0
0 0 0 I

−I 0 0 0
0 −I 0 0

⎞
⎟⎟⎠ . (17)

We express the (10), (11), (13) and (14) the contravariant algebraic form as

ȧμ − ωμν ∂H

∂aν
= 0, (μ, ν = 1,2,3,4). (18)

namely

ȧ2 = a1f ′′a3 − (n − 1)a4f ′

2n(a1)nf ′′2
, (19)

ȧ2 = a1f ′′a3 − (n − 1)a4f ′

2n(a1)nf ′′2
, (20)

ȧ3 = − ∂H

∂a1
= (n − 1)a3a4

2n(a1)nf ′′ − (n − 1)nf ′(a4)2

4n(a1)n+1f ′′2
+ n(a1)n−1(f ′a2 − f ), (21)

ȧ4 = − ∂H

∂a2
= a1a3a4f ′′′

2n(a1)nf ′′2
+ n(n − 1)(a4)2f ′′2 − 2f ′f ′′′

4n(a1)nf ′′3
+ n(a1)n−1f ′′a2. (22)

4 Algebraic Structure of f (R) Cosmology

Firstly, we study the algebraic structure of f (R) cosmology.
Performing full derivative of function A(a) along (18), one has

Ȧ = ∂A

∂aμ
ωμν ∂H

∂aν
(μ, ν = 1,2,3,4), (23)

the right-hand side of (23) is defined as a double-linear product A • H , i.e.

∂A

∂aμ
ωμν ∂H

∂aν
= A • H, (24)

which satisfies the right-hand assignment law

A • (B + C) = A • B + A • C, (25)
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left-hand assignment law

(A + B) • C = A • C + B • C, (26)

and scalar law

(αA) • B = A • (αB) = α(A • B). (27)

so (18) possesses the compatible algebraic structure.
Expanding (18) yields

∂A

∂aμ
ωμν ∂H

∂aν
= ∂A

∂qk

∂H

∂pk

− ∂A

∂pk

∂H

∂qk
, (28)

which is the classical Poisson’s bracket (A,B), i.e. (A,B) = A • B . It is well known that
Poisson’s bracket possesses the anti-symmetrical property

A ◦ B + B ◦ A = 0, (29)

and satisfies Jacobi identical equation

A ◦ (B ◦ C) + B ◦ (C ◦ A) + C ◦ (A ◦ B) = 0. (30)

Equations (29) and (30) are also called Lie algebra axiom, then one has

Theorem Equations of motion of f (R) cosmology possess the compatible algebraic struc-
ture as well as the Lie algebraic structure.

5 Poisson’s Theory of f (R) Cosmology

We have known that the theoretical foundation of Poission’s integral method being equa-
tions of motion of systems possess Lie algebraic structure [21]. The f (R) cosmology (23)
possesses Lie algebraic structure, then the Poisson’s integral methods of conservative holo-
nomic dynamical systems can all be used in the system. Then we have

Proposition 1 The necessary and sufficient condition on which I (aμ, t) (μ = 1, . . . , n+m)

is first integral of the f (R) cosmology model (23) is that the I (aμ, t) satisfies

∂I

∂t
+ (I,H) = 0, (31)

expanding (31) one has

∂I

∂t
+ I • H = ∂I

∂t
+ ∂I

∂aμ
ωμν ∂H

∂aν
= ∂I

∂t
+ ∂I

∂a1
ȧ1 + ∂I

∂a2
ȧ2 + ∂I

∂a3
ȧ3 + ∂I

∂a4
ȧ4

= ∂I

∂t
+ ∂I

∂a1

a4

2n(a1)n−1f ′′ + ∂I

∂a2

a1f ′′a3 − (n − 1)a4f ′

2n(a1)nf ′′2

+ ∂I

∂a3

{
(n − 1)a3a4

2n(a1)nf ′′ − (n − 1)nf ′(a4)2

4n(a1)n+1f ′′2
+ n(a1)n−1(f ′a2 − f )

}
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+ ∂I

∂a4

{
a1a3a4f ′′′

2n(a1)nf ′′2
+ n(n − 1)(a4)2f ′′2 − 2f ′f ′′′

4n(a1)nf ′′3
+ n(a1)n−1f ′′a2

}

= 0 (32)

this is a one-order linear homogeneous partial differential equation which the characteristic
equation is

dt

1
= 2n(a1)n−1f ′′da1

a4
= 2n(a1)nf ′′2da2

a1f ′′a3 − (n − 1)a4f ′

= da3

(n−1)a3a4

2n(a1)nf ′′ − (n−1)nf ′(a4)2

4n(a1)n+1f ′′2 + n(a1)n−1(f ′a2 − f )

= da4

a1a3a4f ′′′
2n(a1)nf ′′2 + n(n−1)(a4)2f ′′2−2f ′f ′′′

4n(a1)nf
′′3 + n(a1)n−1f ′′a2

, (33)

where, we taking f (R) cosmology as [3]

f (R) = R
3
2 = (a2)

3
2 , (34)

the characteristic equation is written in the form

dt

1
= 3(a1)n−1da1

2(a2)
1
2 a4

= 3n(a1)nda2

2a1a3(a2)
1
2 − 4(n − 1)a4(a2)

3
2

= da3

2(n−1)a3a4(a2)
1
2

3n(a1)n
− 2

3
(n−1)(a2)

3
2 (a4)2

(a1)n+1 + 3
2 n(a1)n−1(a2)

3
2

= da4

a3a4

3n(a1)n−1(a2)
1
2

+ (n−1)(a4)2(a2)
1
2

(a1)n
+ 3

4n(a1)n−1(a2)
1
2

. (35)

Equation (35) is called the Poisson’s condition of the first integral for f (R) cosmology.
In (35),

3(a1)n−1da1

2(a2)
1
2

= 3n(a1)nda2

2a1a3(a2)
1
2 − 4(n − 1)a4(a2)

3
2

then, we can obtain the first integral

I1 = a2(a1)
4(n−1)a4

n − a3

4(n − 1)a4
(a1)

4(n−1)a4+n
n = C1. (36)

Equation (35) result in

3(a1)n−1da1

2(a2)
1
2

= da3

2(n−1)a3a4(a2)
1
2

3n(a1)n
− 2

3
(n−1)(a2)

3
2 (a4)2

(a1)n+1 + 3
2 n(a1)n−1(a2)

3
2

,
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then one has

I2 = a3(a1)−(n−1)a4 + (n − 1)a2(a4)2 1

(n − 1)a4 − 1
(a1)−(n−1)a4−1

− 9a2

4(n − 1)a4 + 2n − 1
(a1)−(n−1)a4+2n−1 = C2. (37)

We eliminating a3 by first integrals (36) and (37) lead to

4(a1)1−(n−1)a4
C1 = (a1)

−4
n

(
4(a1)−(n−1)d+5a2 − 9(a1)1−(n−1)a4+ 4

n − 4(n−1)a4
n +2n

(n − 1)a4
a2

− 36(a1)1−(n−1)a4+ 4
n − 4(n−1)a4

n +2n

1 − 4(n − 1)a4 − 2n
a2 − 18(a1)1−(n−1)a4+ 4

n − 4(n−1)a4
n +2n

(1 − 4(n − 1)a4 − 2n)a4
a2

− (a1)1+(n−1)a4+ 4
n − 4(n−1)a4

n +2n

1 − (n − 1)a4
a2a4 − (a1)2+ 4

n − 4(n−1)a4
n

(n − 1)a4
C2

)
. (38)

In (35),

da1

1
= da4

a3a4

na2 + 3(n−1)(a4)2

2a1 + 9
8n(a1)2n−2

,

namely

da4

da1
− a3a4

na2
− 3(n − 1)(a4)2

2a1
= 9

8
n(a1)2n−2, (39)

which can be expressed as a Riccati equation. It is very known that we to obtain generic solu-
tion is difficult from Riccati equation. Now, we given the following several special solutions
of (39):
when n = 1, the (38) can be written as

da4

da1
− a3

a2
a4 = 9

8
, (40)

then, one has

I3 =
(

a4 + 9a3

8a2

)
e

− a3

a2 a1 = C3. (41)

When n = 2, the (38) can be expressed as

da4

da1
− a3a4

2a2
− 3(a4)2

2a1
= 9

4
(a1)2, (42)

which has the series solution

I4 = a4 − 3

4
(a1)3 − 3a3

16a2
(a1)4 − (a3)2

160(a2)2
(a1)5 −

[
(a3)3

1920(a2)3
+ 9

64

]
(a1)6 + · · ·

= C4. (43)

Similar, when n = 3,4,5, . . . , we can obtain the first integrals Ii (i = 3,4,5, . . .).
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From (35), one has

dt

1
= 3(a1)n−1da1

2(a2)
1
2 a4

. (44)

Using first integrals (38), the a4 can be written in the form

a4 = a4(a1, a2,C1,C2). (45)

On the other hand, we give the following propositions:

Proposition 2 For the Hamiltonian of the f (R) cosmology does not depend explicitly on
time t , then the Hamiltonian of system is first integral, i.e.

I5 = H = apRpa

2nanf ′′ − (n − 1)f ′p2
R

4nanf ′′2
− an(f ′R − f )

= 8a1a2a3a4

9n(a1)n
− 2(n − 1)(a2)

3
2 (a4)2

3n(a1)n
− 3

2
(a1)n

(
(a2)

3
2 − (a2)

1
2
) = C5, (46)

where C5 is an arbitrary constant.

Now, substituting (45) and (46) into (44), we can obtain the first integral

I5 = I5(a
1, a2,C1,C2,C5, t), (47)

where Ci (i = 1,2,5.6) are arbitrary constants.
Using (36), (37), (46) and (47), we obtain the following solution of f (R) cosmology:

a1 = a = a(t,C1,C2,C5,C6), (48)

a2 = R = R(t,C1,C2,C5,C6), (49)

a3 = pa = pa(t,C1,C2,C5,C6), (50)

a = pR = pR(t,C1,C2,C5,C6). (51)

Proposition 3 If the system of f (R) cosmology (18) possesses two first integrals I1(a
μ, t)

and I2(a
μ, t) having not involution, their Poisson’s bracket (I1, I2) is also the first integral

of the system.

Proof Supposing that the system of f (R) cosmology (18) possesses two first integrals hav-
ing not involution

I1(a
μ, t) = c1, I2(a

μ, t) = c2 (μ = 1,2,3,4), (52)

which satisfy Poisson’s conditions

∂I1

∂t
+ (I1,H) = 0,

∂I2

∂t
+ (I2,H) = 0. (53)

Performing the following operation

∂

∂t
(I1, I2) =

(
∂I1

∂t
, I2

)
+

(
I1,

∂I2

∂t

)
+ ∂I1

∂aμ

∂ωμν

∂t

∂I2

∂t
, (54)
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in respect that

∂ωμν

∂t
= 0,

then (53) becomes

∂

∂t
(I1, I2) =

(
∂I1

∂t
, I2

)
+

(
∂I2

∂t
, I1

)
. (55)

Using Lie algebraic axioms (29), (30) leads to

((I1, I2),H) = −((I2,H), I1) − ((H, I1), I2) = (I1, (I2,H)) + ((I1,H), I2). (56)

Combining (54) and (56) and considering (53) yields

∂

∂t
(I1, I2) + ((I1, I2),H) =

((
∂I1

∂t

)
+ (I1,H), I2

)
+

(
I1,

∂I2

∂t
+ (I2,H)

)
= 0, (57)

then (I1, I2) being also a first integral of the system of f (R) cosmology (18). �

Proposition 4 If the system of f (R) cosmology (18), which possesses a first integral
I (aμ, t) containing t , and Hamiltonian does not depend explicitly on t , then ∂I

∂t
, ∂2I

∂t2 , . . . ,
are also first integrals of the system.

Proof By partially differentiating (37) with respect to t , we obtain

∂

∂t

∂I

∂t
+

(
∂I

∂t
,H

)
+

(
I,

∂H

∂t

)
= 0,

where H does not depending explicitly on t , and

∂

∂t

∂I

∂t
+

(
∂I

∂t
,H

)
= 0, (58)

where ∂I
∂t

is a first integral of (18). Similarly, one can prove that ∂2I

∂t2 , ∂3I

∂t3 , . . . , are also the
first integrals of the system.

For example, for the system of f (R) cosmology (18), the first integral (47) obvious

containing t and the Hamiltonian does not one, then ∂I5
∂t

,
∂2I5
∂2t

, . . . are also the first integrals
of the system. �

Proposition 5 If the system of f (R) cosmology (18), which possesses a first integral
I (aμ, t) containing aρ , and Hamiltonian H does not depend explicitly on aρ , then
∂I
∂aρ , ∂2I

∂aρ2 , . . . , are also first integrals of the system.

Proof By partially differentiating (37) with respect to aρ , we have

∂

∂aρ

∂I

∂t
+

(
∂I

∂aρ
,H

)
+

(
I,

∂H

∂aρ

)
= 0,

where H does not depend explicitly on aρ , and

∂

∂t

∂I

∂aρ
+

(
∂I

∂aρ
,H

)
= 0, (59)
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therefore ∂I
∂aρ is a first integral of the (18). Similarly we can prove that ∂2I

∂aρ2 , ∂3I

∂aρ3 , . . . , are
also first integrals of the system.

In the Hamiltonian of (12) including all aρ , then the f (R) cosmology (12) have not the
first integrals of ∂I

∂aρ , ∂2I

∂aρ2 , . . . . �

6 An Example

In this section we consider a spatially flat FRW cosmology within the framework of f (R)

gravity. Since our aim is to the first integral which exhibit Poisson’s method, one does not in-
clude any matter contribution in the action. Let us tart from a string-dilaton four-dimensional
effective action, neglecting the torsion terms and other scalar fields except the dilation ϕ,
is [26]

S =
∫

d4x
√−ge−ϕ[(R + 4gμνϕμϕν − 2
(R))], (60)

this action is nothing else than a particular case of the most general action, then we have

R = 2e−ϕ, f (R) = 1

8
R2 = 1

2
e−2ϕ, V (R) = e−2ϕV (ϕ). (61)

In a FRW flat metric, action (60) gives rise to a Lagrangian density,

L = e−2ϕ(3ȧ2a − 6ȧa2ϕ̇ + 2a3ϕ̇2 − a3V (ϕ)). (62)

We find that a particular form of V (ϕ) for the existence of a Noether symmetry is [26]

V (ϕ) = e(−5±√
3)ϕ. (63)

We introduce the generic momenta with respect to variables a and ϕ as

Pa = ∂L

∂ȧ
= e−2ϕ[6aȧ − 6a2ϕ̇], Pϕ = ∂L

∂ϕ̇
= e−2ϕ[−6ȧa2 + 4a3ϕ̇] (64)

then, one has

ȧ = −e2ϕ 2aPa + 3Pϕ

6a2
, ϕ̇ = −e2ϕ aPa + Pϕ

2a3
. (65)

The Hamiltonian corresponding to Lagrangian (62) can then be written in terms

H = Paȧ + Pϕϕ̇ − e−2ϕ(3ȧ2a − 6ȧa2ϕ̇ + 2a3ϕ̇2 − e(−1±√
3)ϕa3)

= −e2ϕ
2aP 2

a + 6aPaPϕ + 3P 2
ϕ

12a3
+ a3e(−3±√

3)ϕ. (66)

Let

a1 = a, a2 = ϕ, a3 = pa, a4 = pR, (67)

then Hamiltonian of the f (R) cosmology can be written in the form

H = −e2a2
2a2

1a
2
3 + 6a1a3a4 + 3a2

4

12a3
1

+ a3
1e

(−3±√
3)a2 . (68)
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We express the equations of motion for systems the contravariant algebraic form as

⎛
⎜⎜⎝

ȧ1

ȧ2

ȧ3

ȧ4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−e2a2
2a2

1a3 + 3a1a4

6a3
1

−e2a2
a1a3 + a4

2a3
1

−e2a2
a1a3a4 + a2

4

2a4
1

− 3a2
1e

(−3±√
3)a2

e2a2
2a2

1a
2
3 + 6a1a3a4 + 3a2

4

12a3
1

− (−3 ± √
3)a3

1e
(−3±√

3)a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (69)

i.e.

ȧ1 = −e2a2
2a2

1a3 + 3a1a4

6a3
1

, (70)

ȧ2 = −e2a2
a1a3 + a4

2a3
1

, (71)

ȧ3 = −e2a2
a1a3a4 + a2

4

2a4
1

− 3a2
1e

(−3±√
3)a2 , (72)

ȧ4 = e2a2
2a2

1a
2
3 + 6a1a3a4 + 3a2

4

12a3
1

− (−3 ± √
3)a3

1e
(−3±√

3)a2 . (73)

We can prove that the Lagrangian (62) of f (ϕ) cosmology possesses Lie algebraic struc-
ture, then the Poisson’s integral methods of conservative holonomic dynamical systems can
all be used in the system.

The necessary and sufficient condition on which I (aμ, t) (μ = 1, . . . , n + m) is first
integral of the f (R) cosmology model (23) is that the I (aμ, t) satisfies

∂I

∂t
+ I • H = ∂I

∂t
+ ∂I

∂aμ
ωμν ∂H

∂aν
= ∂I

∂t
+ ∂I

∂a1
ȧ1 + ∂I

∂a2
ȧ2 + ∂I

∂a3
ȧ3 + ∂I

∂a4
ȧ4

= ∂I

∂t
+ ∂I

∂a1

(
−e2a2

2a2
1a3 + 3a1a4

6a3
1

)
+ ∂I

∂a2

(
−e2a2

a1a3 + a4

2a3
1

)

+ ∂I

∂a3

(
−e2a2

a1a3a4 + a2
4

2a4
1

− 3a2
1e

(−3±√
3)a2

)

+ ∂I

∂a4

(
e2a2

2a2
1a

2
3 + 6a1a3a4 + 3a2

4

12a3
1

− (−3 ± √
3)a3

1e
(−3±√

3)a2

)

= 0, (74)

the characteristic equation is written in the form

dt

1
= − 6a3

1da1

e2a2(2a2
1a3 + 3a1a4)

= − 2a3
1da2

e2a2(a1a3 + a4)

= − 2a4
1da3

e2a2(a1a3a4 + a2
4) + 6a6

1e
(−3±√

3)a2
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= 12a3
1da4

e2a2(2a2
1a

2
3 + 6a1a3a4 + 3a2

4) − 12(−3 ± √
3)a6

1e
(−3±√

3)a2
. (75)

Equation (75) result in

3(a1a3 + a4)da1

(2a2
1a3 + 3a1a4)

= da2

1
(76)

then we obtain the first integral

I1 = 3

4
ln(2a2

1a3 + 3a1a4) + a4

4
lna1 − a4

4
ln(2a1a3 + 3a4) − a2

= 1

4
ln(2a2

1a3 + 3a1a4)
3

(
a1

2a1a3 + 3a4

)a4

− a2 = C1. (77)

From (75) one has

− 2a3
1da2

e2a2(a1a3 + a4)
= − 2a4

1da3

e2a2(a1a3a4 + a2
4) + 6a6

1e
(−3±√

3)a2
, (78)

which is been expressed as

da3

da2
= a4

a1
+ 6a5

1

a4(1 + a1
a4

a3)
e(−5±√

3)a2 , (79)

we let a1a3 < a4, and expanding 1
1+ a1

a4
a3

.= 1 − a1
a4

a3 in series, then (79) is written as

da3

da2
+ 6a6

1

a2
4

a3e(−5±√
3)a2 = a2

4 + 6a6
1

a1a4
(80)

which has solution

a3 = e
− 6a6

1
a2
4 (−5±√

3)
e(−5±√

3)a2
[

a2
4(a

2
4 + 6a6

1)

6a7
1a4

e

6a6
1

a2
4 (−5±√

3)
e(−5±√

3)a2

+ I2

]
, (81)

i.e.

I2 = a3e

6a6
1

a2
4 (−5±√

3)
e(−5±√

3)a2

− a2
4(a

2
4 + 6a6

1)

6a7
1a4

= a3e
(

6a6
1

a2
4 (−5±√

3)
+ 6a6

1
a2
4

a2) − a2
4(a

2
4 + 6a6

1)

6a7
1a4

= C2.

(82)
In (75)

− da2

(a1a3 + a4)
= 6da4

(2a2
1a

2
3 + 6a1a3a4 + 3a2

4) − 12(−3 ± √
3)a6

1e
(−5±√

3)a2
, (83)

then one has

da4

da2
= −a3

3
− a4

2
− a1a3

6(1 + a1a3
a4

)
+ a6

1(−3 ± √
3)e(−5±√

3)a2

a4(1 + a1a3
a4

)
(84)
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which is a nonlinear differential equation. It is very known that we to obtain a first integral
I3 is difficult from this equation.

In (75)

dt

1
= − 6a2

1da1

e2a2(2a1a3 + 3a4)
. (85)

On the other hand, for the Hamiltonian of the f (ϕ) cosmology does not depend explicitly
on time t , then the Hamiltonian of system is first integral, i.e.

I4 = H = −e2a2
2a2

1a
2
3 + 6a1a3a4 + 3a2

4

12a3
1

+ a3
1e

(−3±√
3)a2 = C4. (86)

Using first integrals (77), (82) and (86), the a4 and a3 can be written in the forms

a3 = a3(a1,C1,C2,C4), a4 = a4(a1,C1,C2,C4), (87)

substituting (87) into (85), we can obtain the first integral

I5 = I5(a
1,C1,C2,C4, t). (88)

Using first integrals (77), (82), (86) and (88), we obtain the following solution of f (ϕ)

cosmology

a1 = a = a(C1,C2,C4,C5, t),

a2 = ϕ = ϕ(C1,C2,C4,C5, t),

a3 = Pa = Pa(C1,C2,C4,C5, t),

a4 = Pϕ = Pϕ(C1,C2,C4,C5, t),

(89)

where Pa and Pφ are given by (64).

7 Conclusion

The algebraic structure and the Poisson’s theory to f (R) cosmology are studied in this paper.
The results here present significant approaches to seeking for first integrals and solution in
f (R) cosmology.
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