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Abstract The concept of tense operators on a basic algebra is introduced. Since basic alge-
bras can serve as an axiomatization of a many-valued quantum logic (see e.g. Chajda et al.
in Algebra Univer. 60(1):63–90, 2009), these tense operators are considered to quantify time
dimension, i.e. one expresses the quantification “it is always going to be the case that” and
the other expresses “it has always been the case that”. We set up the axiomatization and basic
properties of tense operators on basic algebras and involve a certain construction of these
operators for left-monotonous basic algebras. Finally, we relate basic algebras with tense
operators with another quantum structures which are the so-called dynamic effect algebras.

Keywords Basic algebra · Tense operator · Left-monotonous basic algebra · Commutative
basic algebra · Effect algebra

Propositional logics usually do not incorporate the dimension of time. To obtain a tense
logic, we enrich a propositional logic by adding new unary operators (or connectives) which
are usually denoted by G, H , F and P . We can define F and P by means of G and H

as follows: F(x) = ¬G(¬x) and P (x) = ¬H(¬x). The semantical interpretation of these
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so-called tense operators is as follows. Consider a pair (T ;≤) where T is a non-void set
and ≤ is a partial order on T . Let x ∈ T and f (x) be a formula of our (given) propositional
logic. We say that G(f (t)) is valid if for any s ≥ t the formula f (s) is valid. Analogously,
H(f (t)) is valid if f (s) is valid for each s ≤ t . Hence, P (f (t)) is valid if there exists s ≤ t

such that f (s) is valid and F(f (t)) is valid if there exists s ≥ t such that f (s) is valid in
the given logic. Thus the unary operations G and H constitute an algebraic counterpart of
the tense operators “it is always going to be the case that” and “it has always been the case
that”.

It is worth saying that tense operators were firstly introduced for the classical propo-
sitional logic, see [6], as operators on the corresponding Boolean algebra satisfying the
axioms

(B1) G(1) = 1, H(1) = 1;
(B2) G(x ∧ y) = G(x) ∧ G(y), H(x ∧ y) = H(x) ∧ H(y);
(B3) x ≤ GP(x), x ≤ HF(x).

The axiom (B3) is equivalent (for Boolean algebras) to G(x) ∨ y = x ∨ H(y).
The concept of basic algebra was introduced in [7] as a common generalization of an

MV-algebra (an algebraic counterpart of the Łukasiewicz many-valued propositonal logic)
and an orthomodular lattice (an algebraic counterpart of the logic of quantum mechanics).
Recall that a basic algebra (see e.g. [7, 10]) is an algebra A = (A;⊕,¬,0) of type (2,1,0)

satisfying the following identities

(BA1) x ⊕ 0 = x;
(BA2) ¬¬x = x (double negation);
(BA3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x (Łukasiewicz axiom);
(BA4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = ¬0.

In a basic algebra A = (A;⊕,¬,0), we define the following term operations x → y =
¬x ⊕ y and x 	 y = ¬(¬x ⊕ ¬y).

A basic algebra A = (A;⊕,¬,0) is called commutative if it satisfies the identity x⊕y =
y ⊕ x which is equivalent to x 	 y = y 	 x, see e.g. [4] or [5].

Every basic algebra bears a natural order relation defined by x ≤ y if and only if ¬x⊕y =
1 (1 denotes ¬0). With respect to this order, (A;≤) is a bounded lattice where 0 ≤ x ≤ 1
for each x ∈ A and the lattice operations ∨ and ∧ are defined by x ∨ y = ¬(¬x ⊕ y) ⊕ y

and x ∧ y = ¬(¬x ∨¬y). The following Correspondence Theorem is known (see e.g. [7],
Theorem 8.5.7).

Proposition (a) Let L = (L;∨,∧, (a)a∈L,0,1) be a lattice with sectional antitone involu-
tions. Then the assigned algebra A(L) = (L;⊕,¬,0), where

x ⊕ y = (x0 ∨ y)y and ¬x = x0

is a basic algebra.
(b) Conversely, given a basic algebra A = (A;⊕,¬,0), we can assign a bounded lattice

with sectional antitone involutions L(A) = (A;∨,∧, (a)a∈A,0,1), where 1 = ¬0,

x ∨ y = ¬(¬x ⊕ y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y)

and for each a ∈ A, the mapping x 
→ xa = ¬x ⊕a is an antitone involution on the principal
filter [a,1], where the order is given by

x ≤ y if and only if ¬x ⊕ y = 1.
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(c) The assignments are in a one-to-one correspondence, i.e. A(L(A)) = A and
L(A(L)) = L.

Let us note that if a basic algebra A is commutative then the assigned lattice L(A) is
distributive (see [7], Theorem 8.5.9).

The propositional logic corresponding to a commutative basic algebra was already de-
scribed (see [3]). Our aim is to introduce tense operators G, H , F , P on any basic algebra
in a way which corresponds to that for MV-algebras in [11]. The interpretation can be as
follows. Let A = (A;⊕,¬,0) be a given basic algebra and (T ;≤) a non-empty poset. Let
AT denotes the set of all the functions f : T → A. For f,g ∈ AT we define the operations ⊕
and ¬ componentwise and denote by 0 the constant function f with f (t) = 0 for any t ∈ T .
Of course, A(T ) = (AT ;⊕,¬,0) is a basic algebra again which is in fact a direct power of
A. Now, we can define for any formula � of the (first order) language of basic algebras that

G(�(t)) is valid if �(s) is valid for all s ≥ t

H(�(t)) is valid if �(s) is valid for all s ≤ t

P (�(t)) is valid if there exists an s < t such that �(s) is valid
F(�(t)) is valid if there exists an s > t such that �(s) is valid

We can formalize this as follows. Assume for a moment that L(A) is a complete lattice.
Define G,H,P,F as unary operators: AT → AT such that

G(�(x)) =
∧

{�(y);x ≤ y},

H(�(x)) =
∧

{�(y);y ≤ x}
and

P (�(x)) = ¬H(¬�(x)),

F (�(x)) = ¬G(¬�(x)).

One can check several interesting properties of these tense operators G,H,P,F which are
explicitly captured in the following definition.

Definition 1 Let A = (A;⊕,¬,0) be a basic algebra, let G, H be unary operations on A

satisfying

(1) G(1) = 1, H(1) = 1;
(2) G(x → y) ≤ G(x) → G(y), H(x → y) ≤ H(x) → H(y);
(3) G(x) ⊕ G(y) ≤ G(x ⊕ y), H(x) ⊕ H(y) ≤ H(x ⊕ y);
(4) G(x ∧ y) = G(x) ∧ G(y), H(x ∧ y) = H(x) ∧ H(y);
(5) x ≤ GP(x), x ≤ HF(x),

where x → y stands for y ⊕ ¬x and P (x) = ¬H(¬x),F (x) = ¬G(¬x). Then the alge-
bra (A,G,H) = (A;⊕,¬,0,G,H) will be called a tense basic algebra and G,H will be
called tense operators.

Remark One can easily check that if a basic algebra A = (A;⊕,¬,0) is a Boolean algebra
(where ⊕ is equal to ∨, ¬ is the complementation) then the tense operators G, H on A
satisfy axioms (B1), (B2), (B3) and thus our concept is sound. Moreover, if A is an MV-
algebra then G,H satisfy axioms (A0)–(A3) and (A5) for tense operators on MV-algebras
as introduced in [11].
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We are ready to list elementary properties of tense basic algebras:

Lemma 1 Let (A,G,H) be a tense basic algebra an x, y ∈ A. Then

(a) G(0) ≤ G(x) and H(0) ≤ H(x);
(b) x ≤ y implies G(x) ≤ G(y) and H(x) ≤ H(y);
(c) PG(x) ≤ x and FH(x) ≤ x;
(d) x ≤ y implies P (x) ≤ P (y), F(x) ≤ F(y).

Proof (a) Since 0 → x = 1 and, by (1), G(1) = 1 = H(1), we get 1 = G(1) = G(0 → x) ≤
G(0) → G(x) thus G(0) → G(x) = 1 which implies G(0) ≤ G(x). Analogously the second
inequality can be shown.

(b) If x ≤ y then x → y = 1 thus 1 = G(1) = G(x → y) ≤ G(x) → G(y) whence
G(x) ≤ G(y), analogously for H .

(c) By (5) we have ¬x ≤ HF(¬x) = H(¬G(x)) and hence PG(x) = ¬H(¬G(x)) ≤ x,
similarly FH(x) ≤ x.

(d) Clearly x ≤ y implies ¬y ≤ ¬x. Applying (b) we have H(¬y) ≤ H(¬x) and, conse-
quently, P (x) = ¬(H(¬x)) ≤ ¬(H(¬y)) = P (y). Analogously, the second inequality can
be shown. �

Example 1 There are two extreme examples of tense operators on a basic algebra A =
(A;⊕,¬,0):

Define G = H such that G(1) = 1 and G(x) = 0 for x �= 1. One can easily check that
(A,G,H) is a tense basic algebra.

Another example of tense operators are identical mappings, i.e. G(x) = x = H(x) for all
x ∈ A.

In the following we present non-trivial tense operators on a basic algebra:

Example 2 Let A = {o,p, q, r, s, t, v,w, j} and A = (A;⊕,¬, o) be a basic algebra whose
operations are defined as follows:

x o p q r s t v w j

¬x j w v t s r q p o

⊕ o p q r s t v w j

o o p q r s t v w j

p p q q s t t w j j

q q q q t t t j j j

r r s t s w j v w j

s s t t w j j w j j

t t t t j j j j j j

v v w j v w j v w j

w w j j w j j w j j

j j j j j j j j j j

Define the operators G, H by the table
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x o p q r s t v w j

G(x) o p q o s t o s j

H(x) o o o r s s v w j

Then (A;G,H) is a commutative tense basic algebra.

To prove our first result, we need to check several important properties of basic algebras.
A basic algebra A is called a chain basic algebra if the assigned lattice L(A) is a chain.
A basic algebra A = (A;⊕,¬,0) is called left-monotonous if x ≤ y implies z 	 x ≤ z 	 y

(which is equivalent to x ≤ y implies z ⊕ x ≤ z ⊕ y) for every x, y, z ∈ A. Let us note that
the right-monotonicity x ≤ y ⇒ x 	 z ≤ y 	 z holds in every basic algebra and hence every
commutative basic algebra is left-monotonous. However, there exist basic algebras which
are not chain basic algebras and which are not left-monotonous (and hence not commuta-
tive), see e.g. [7], Example 8.5.2. If the assigned lattice L(A) of A is complete, we speak
about a complete basic algebra.

Lemma 2 Let A = (A;⊕,¬,0) be a complete left-monotonous basic algebra and ai, bi ∈ I

for i ∈ I . Then

(i)
∧{ai → bi; i ∈ I } ≤ ∧{ai; i ∈ I } → ∧{bi; i ∈ I };

(ii)
∧{ai; i ∈ I } ⊕ ∧{bi; i ∈ I } ≤ ∧{ai ⊕ bi; i ∈ I };

(iii) If A is, moreover, a chain basic algebra and fulfils the identity x ⊕ ∧{yi; i ∈ I } =∧{x ⊕ yi; i ∈ I }, then

∧
{ai ⊕ ai; i ∈ I } =

∧
{ai; i ∈ I } ⊕

∧
{ai; i ∈ I }.

Proof (i) By [2] (Lemma 2), every basic algebra is a left residuated groupoid, i.e.

x ≤ y → z if and only if x 	 y ≤ z.

Hence, our identity (i) is equivalent to

∧
{ai → bi; i ∈ I } 	

∧
{ai; i ∈ I } ≤

∧
{bi; i ∈ I }. (i′)

Since A is left-monotonous and (x → y) 	 x = (y ⊕ ¬x) 	 x = ¬(¬(y ⊕ ¬x) ⊕ ¬x) =
¬(¬y ∨ ¬x) = ¬(¬x ∨ ¬y) = x ∧ y, we infer

∧
{ai → bi; i ∈ I } 	

∧
{ai; i ∈ I } ≤ (ai → bi) 	 ai = ai ∧ bi ≤ bi

for each i ∈ I which yields (i’) immediately.
(ii) It follows directly by the monotonicity of ⊕.
(iii) Suppose now that A is a chain basic algebra. Then ai ≤ aj or ai ≥ aj for every

i, j ∈ I , i.e.

ai ⊕ aj ≥ ai ⊕ ai or ai ⊕ aj ≥ aj ⊕ aj .

This implies
∧{ai ⊕ aj ; i, j ∈ I } ≥ ∧{ai ⊕ ai; i ∈ I }. In every basic algebra, we have

∧
{yi; i ∈ I } ⊕ x =

∧
{yi ⊕ x; i ∈ I }
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(see e.g. [1]). Hence, applying the identity x ⊕ ∧{yi; i ∈ I } = ∧{x ⊕ yi; i ∈ I }, we obtain

∧
{ai ⊕ aj ; i, j ∈ I } =

∧
{ai; i ∈ I } ⊕

∧
{ai; i ∈ I }.

Together, we conclude

∧
{ai ⊕ ai; i ∈ I } ≤

∧
{ai; i ∈ I } ⊕

∧
{ai; i ∈ I }.

In account of (ii), we obtain (iii). �

Adapting the terminology of [11], a frame is a couple (T ,R), where T is a non-void
set and R is a binary relation on T , i.e. R ⊆ T × T . In what follows, we assume that R is
non-empty. Let A = (A;⊕,¬,0) be a basic algebra. By AT is meant the direct power of A,
i.e. the base set of AT is the set of all functions from T to A and the operations ⊕,¬ are
defined pointwise.

Theorem 1 Let A = (A;⊕,¬,0) be a complete left-monotonous basic algebra and (T ,R)

a frame with R reflexive. Define the operators G∗,H ∗ on AT as follows:

G∗(p)(x) = ∧{p(y);xRy}
H ∗(p)(x) = ∧{p(y);yRx}.

Then G∗,H ∗ are tense operators on AT such that G∗(0) = 0 and H ∗(0) = 0.

Proof It is easy to see that G∗,H ∗ satisfy condition (1) of Definition 1.
To prove (2) for G∗, we need to show

∧
{p(y);xRy} →

∧
{q(y);xRy} ≥

∧
{p(y) → q(y);xRy}

which follows by (i) of Lemma 2. Analogously, the inequality for H ∗ can be shown.
To prove (3), we apply (ii) of Lemma 2 in the same way. For (4) we use the definition of

the infimum in a complete lattice.
It remains to prove (5). As R is reflexive, we compute for any x, y ∈ A with xRy

(¬H ∗(¬p))(y) = ¬
∧

{¬p(z); zRy} =
∨

{p(z); zRy} ≥ p(x),

thus

G∗(¬H ∗(¬p))(x) =
∧

{(¬H ∗(¬p))(y);xRy} ≥ p(x).

Since 0(x) = 0 for each x ∈ T , it is evident that
∧{0(y);xRy} = 0 = ∧{0(y);yRx} and

hence G∗(0) = 0 = H ∗(0). �

Let A = (A;⊕,¬,0) be a basic algebra and (T ,R) a frame with reflexive relation R.
The tense operators G∗,H ∗ defined in Theorem 1 will be called natural tense operators
on AT . One can mention that natural tense operators satisfy G(0) = 0 = H(0).

It is known (see e.g. [6] or [11]) that if (A,G,H) is a tense Boolean algebra then there
exists a frame (T ,R) such that (A,G,H) can be isomorphically embedded into a tense
Boolean algebra (LT ,G∗,H ∗), where L is a two-element Boolean algebra. An analogous
result for MV-algebras (where L should be an MV-chain) is not known. Let us remark that if
A = LT , where L is a chain basic algebra and (A,G,H) is a tense basic algebra then there
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Fig. 1 The induced lattice of A from Example 3

need not exist a binary relation R on T such that (A,G,H) is isomorphic to (LT ,G∗,H ∗),
see the following

Example 3 Let A be the basic algebra of Example 2 and let G,H be defined as follows:

x o p q r s t v w j

H(x) = G(x) o o q o o q v v j

Then A is the direct product of two copies of a 3-element chain basic algebra L where
0 < a < 1, see Fig. 1.

Let HL = GL be defined on L as follows: GL(1) = 1, GL(a) = GL(0) = 0. Then clearly
GL,HL are tense operators on L and hence G = GL ×GL, H = HL ×HL are tense operators
on A = L × L as well. It is an exercise to check that there does not exist a binary relation on
T = {1,2} such that G and H are natural tense operators with respect to the frame (T ,R).

On the other hand, if G,H are tense operators defined on A as given in Example 2 then
they are natural and induced by the frame (T ,≤) where T = {1,2} and ≤ is the natural order
on the set {1,2}.

By (5) and (c) of Lemma 1 it follows, that P,G as well as F,H form a Galois connection
on A, i.e.

x ≤ G(y) iff P (x) ≤ y

and

x ≤ H(y) iff F(x) ≤ y.

Consequently, we have
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Theorem 2 Let A = (A;⊕,¬,0) be a basic algebra and G,H its tense operators. Then G

and H preserve arbitrary infima, whenever they exist.

Theorem 3 If (A,G,H) is a tense basic algebra then it satisfies

G(x) 	 G(y) ≤ G(x 	 y) and H(x) 	 H(y) ≤ H(x 	 y).

Proof According to the left-residuation property we have x ≤ y → (x 	 y), thus by (b) of
Lemma 1 and (2) of Definition 1 we obtain

G(x) ≤ G(y → (x 	 y)) ≤ G(y) → G(x 	 y).

Finally, applying left residuation property once more we conclude G(x)	G(y) ≤ G(x	y).
Analogously the inequality for the tense operator H can be shown. �

Corollary 1 If (A,G,H) is a tense basic algebra then

F(x ⊕ y) ≤ F(x) ⊕ F(y) and P (x ⊕ y) ≤ P (x) ⊕ P (y).

Proof By Theorem 3 we have G(¬x)	G(¬y) ≤ G(¬x 	¬y) thus F(x ⊕y) = ¬G(¬(x ⊕
y)) = ¬G(¬x 	 ¬y) ≤ ¬(G(¬x) 	 G(¬y)) = ¬G(¬x) ⊕ ¬G(¬y) = F(x) ⊕ F(y) and
analogously for P . �

By the proposition, to every basic algebra A = (A;⊕,¬,0) there is assigned a lattice
L(A) = (A;∨,∧, (a)a∈A,0,1) with sectional antitone involutions and, conversely, to every
lattice L = (L;∨,∧, (a)a∈L,0,1) with sectional antitone involutions there is assigned a ba-
sic algebra A(L) = (L;⊕,¬,0). There is a natural question under which conditions given
on tense operators G and H on L(A) the resulting algebra will be a tense basic algebra.

Theorem 4 Let (A,G,H) be a tense basic algebra and L(A) = (A;∨,∧, (a)a∈L,0,1) the
assigned lattice with sectional antitone involutions. Then G and H satisfy the following
conditions

G((x ∨ y)y) ≤ (G(x) ∨ G(y))G(y)

H((x ∨ y)y) ≤ (H(x) ∨ H(y))H(y)
(L1)

(¬G(x) ∨ G(y))G(y) ≤ G((¬x ∨ y)y)

(¬H(x) ∨ H(y))H(y) ≤ H((¬x ∨ y)y)
(L2)

If L = (L;∨,∧, (a)a∈L,0,1) is a lattice with sectional antitone involutions and G,H :
L → L are mappings satisfying (1), (4), (5), (L1) and (L2) then the assigned algebra A =
(A;⊕,¬,0) endowed by the operators G,H is a tense basic algebra.

Proof Since (x ∨ y)y = x → y and (¬x ∨ y)y = x ⊕ y, it is easy to verify (L1) and (L2) for
any tense basic algebra (A,G,H). Also conversely, if (1), (4), (5) (L1) and (L2) are satisfied
then it is straightforward to verify (2) and (3) of Definition 1. �

Definition 2 A tense basic algebra (A,G,H) is called a strict tense basic algebra if it
satisfies

(1◦) G(0) = 0, H(0) = 0;
(2◦) G(x ⊕ x) = G(x) ⊕ G(x), H(x ⊕ x) = H(x) ⊕ H(x).
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Lemma 3 Let C = (C;⊕,¬,0) be a complete commutative chain basic algebra and (T ,R)

a frame. Let G∗,H ∗ be the natural tense operators on CT . Then (CT ,G,H) is a strict tense
basic algebra.

Proof Since C is commutative, it satisfies the identity x ⊕ ∧{yi; i ∈ I } = ∧{x ⊕ yi; i ∈ I }.
Consequently, applying (iii) of Lemma 2, G∗,H ∗ fulfil (2◦). Clearly, every natural tense
operators satisfy G∗(0) = 0 = H ∗(0). �

Let A = (A;⊕,¬,0) be a basic algebra and G,H tense operators on A. Let T �= ∅ be a
set. Consider the operators GT and HT on the direct power AT defined by GT (f ) := G ◦ f

and HT (f ) := H ◦ f for all f ∈ AT . It is evident that GT ,HT are again tense operators
on AT . However the converse does not hold in general.

Moreover, we can show that the construction of operators G∗,H ∗ in Theorem 1 is possi-
ble only under the assumption that A is left-monotonous.
Example 4 Consider the four-element basic algebra A = (A;⊕,¬,0) where A = {0, a, b,1}
and the operations are determined by the tables

⊕ 0 a b 1

0 0 a b 1
a a 1 b 1
b b a 1 1
1 1 1 1 1

x 0 a b 1

¬x 1 a b 0

Let (T ,R) be a frame such that T = {1,2,3} and let R denote the natural order on T , i.e.
1 ≤ 2 ≤ 3. Then G∗ and H ∗ are determined by the table:

x G∗(x) H∗(x)

(000) (000) (000)

(00a) (00a) (000)

(00b) (00b) (000)

(001) (001) (000)

(0a0) (000) (000)

(0aa) (0aa) (000)

(0ab) (00b) (000)

(0a1) (0a1) (000)

(0b0) (000) (000)

(0ba) (00a) (000)

(0bb) (0bb) (000)

(0b1) (0b1) (000)

(010) (000) (000)

(01a) (0aa) (000)

(01b) (0bb) (000)

(011) (011) (000)

(a00) (000) (a00)

(a0a) (00a) (a00)

(a0b) (00b) (a00)

(a01) (001) (a00)

(aa0) (000) (aa0)

(aaa) (aaa) (aaa)

x G∗(x) H∗(x)

(aab) (00b) (aa0)

(aa1) (aa1) (aaa)

(ab0) (000) (a00)

(aba) (00a) (a00)

(abb) (0bb) (a00)

(ab1) (0b1) (a00)

(a10) (000) (aa0)

(a1a) (aaa) (aaa)

(a1b) (0bb) (aa0)

(a11) (a11) (aaa)

(b00) (000) (b00)

(b0a) (00a) (b00)

(b0b) (00b) (b00)

(b01) (001) (b00)

(ba0) (000) (b00)

(baa) (0aa) (b00)

(bab) (00b) (b00)

(ba1) (0a1) (b00)

(bb0) (000) (bb0)

(bba) (00a) (bb0)

(bbb) (bbb) (bbb)

x G∗(x) H∗(x)

(bb1) (bb1) (bbb)

(b10) (000) (bb0)

(b1a) (0aa) (bb0)

(b1b) (bbb) (bbb)

(b11) (b11) (bbb)

(100) (000) (100)

(10a) (00a) (100)

(10b) (00b) (100)

(101) (001) (100)

(1a0) (000) (1a0)

(1aa) (aaa) (1aa)

(1ab) (00b) (1a0)

(1a1) (aa1) (1aa)

(1b0) (000) (1b0)

(1ba) (00a) (1b0)

(1bb) (bbb) (1bb)

(1b1) (bb1) (1bb)

(110) (000) (110)

(11a) (aaa) (11a)

(11b) (bbb) (11b)

(111) (111) (111)

One can easily see that e.g.

G∗((aaa)) ⊕ G∗((aba)) = (aaa) ⊕ (00a) = (aa1)
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but

G∗((aaa)) ⊕ (aba)) = G∗(1b1) = (bb1).

Since the elements (aa1) and (bb1) are incomparable, axiom (3) of Definition 1 is violated.
Of course, the algebra A = (A;⊕,¬,0) is not left-monotonous since e.g. 0 ≤ a but b ⊕ 0 =
b � a = b ⊕ a.

When ({1,2,3},≤) is a frame then clearly G∗(p)(3) can be considered as a true value of
a given proposition in the future of p and H ∗(p)(1) as the same in the past.

This can be shown in the following

Example 5 Let A = (A;⊕,¬,0) be a basic algebra where A = {0, a,1} is a chain the oper-
ations of which are given by the following tables:

⊕ 0 a 1

0 0 a 1
a a 1 1
1 1 1 1

x 0 a 1

¬x 1 a 0

Since A is left-monotonous, our construction of G∗,H ∗ gives tense operators on A.
Let T = {1,2,3} and R be the natural order 1 ≤ 2 ≤ 3 on T . Then G∗,H ∗ are as follows

x G∗(x) H ∗(x)

(000) (000) (000)

(00a) (00a) (000)

(001) (001) (000)

(0a0) (000) (000)

(0aa) (0aa) (000)

(0a1) (0a1) (000)

(010) (000) (000)

(01a) (0aa) (000)

(011) (011) (000)

x G∗(x) H ∗(x)

(a00) (000) (a00)

(a0a) (00a) (a00)

(a01) (001) (a00)

(aa0) (000) (aa0)

(aaa) (aaa) (aaa)

(aa1) (aa1) (aaa)

(a10) (000) (aa0)

(a1a) (aaa) (aaa)

(a11) (a11) (aaa)

x G∗(x) H ∗(x)

(100) (000) (100)

(10a) (00a) (100)

(101) (001) (100)

(1a0) (000) (1a0)

(1aa) (aaa) (1aa)

(1a1) (aa1) (1aa)

(110) (000) (110)

(11a) (aaa) (11a)

(111) (111) (111)

One can easily see that for each element x ∈ AT we have H ∗(x)(1) = x(1) and
G∗(x)(3) = x(3) and hence the operators H ∗ or G∗ describe the past or the future state of
the proposition x. Moreover, it is evident that neither H ∗ nor G∗ can be expressed compo-
nentwise, i.e. as H ∗ = H1 × H2 × H3, G∗ = G1 × G2 × G3 for some tense operators Gi,Hi

on A (i = 1,2,3) since e.g. for i = 2 we would have G2(a) = G∗(aa0)(2) = (000)(2) = 0
but G2(a) = G∗(aa1)(2) = (aa1)(2) = a, a contradiction.

The concept of tense operators was already introduced for lattice effect algebras by
the second and fourth author in [9]. Let us recall that an effect algebra is a system
E = (E;+,0,1) where + is a partial binary operation on E, 0 and 1 are distinguished
elements of E and E satisfies the axioms

(E1) x + y is defined if and only if y + x is defined and then x + y = y + x.
(E2) x + (y + z) is defined if and only if (x + y) + z is defined and then x + (y + z) =

(x + y) + z.
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(E3) For each x ∈ E there exists a unique element y ∈ E such that x + y = 1; this element
y is called the supplement of x and it is denoted by x ′.

(E4) If x + 1 is defined then x = 0.

Let us recall that on every effect algebra E the induced order is defined by

x ≤ y if z + x = y for some z ∈ E.

It can be shown that x + y is defined iff x ≤ y ′.
If (E;≤) is a lattice, E is called a lattice effect algebra.
The following concept was introduced in [9]. Let E = (E;+,0,1) be a lattice effect

algebra. A triple (E ;G,H) is called a dynamic effect algebra if G,H are mappings of E

into itself such that

(T1) G(1) = 1 = H(1).
(T2) G(x ∧ y) = G(x) ∧ G(y), H(x ∧ y) = H(x) ∧ H(y).
(T3) If x+y is defined then G(x)+G(y) and H(x)+H(y) are defined and G(x)+G(y) ≤

G(x + y), H(x) + H(y) ≤ H(x + y).
(T4) G(x ′) ≤ G(x)′, H(x ′) ≤ H(x)′.
(T5) x ≤ GP(x), x ≤ HF(x) where P (x) = H(x ′)′ and F(x) = G(x ′)′.

Here G(x)′ or H(x)′ is an abbreviation for (G(x))′ or (H(x))′, respectively.
These G,H are called tense operators of E .
Since every lattice effect algebra can be converted into a total algebra which is a basic

algebra, see [8], we are interested in the question how the tense operators of these algebras
are related.

A basic algebra A = (A;⊕,¬,0) satisfying the quasiidentity

x ≤ ¬y and x ⊕ y ≤ ¬z ⇒ x ⊕ (z ⊕ y) = (x ⊕ y) ⊕ z

is called an effect basic algebra [8]. We define 1 = ¬0 and

x + y = x ⊕ y if x ≤ ¬y

and otherwise x +y is not defined. Then E (A) = (A;+,0,1) is a lattice effect algebra called
the lattice effect algebra induced by A.

Also conversely, for a lattice effect algebra E = (E;+,0,1) we can define ¬x = x ′ and

x ⊕ y = (x ∧ y ′) + y.

Then ⊕ is a total operation on E and A(E) = (E;⊕,¬,0) is an effect basic algebra called
the effect basic algebra corresponding to E . For details of these constructions, the reader
is referred to [8]. Now we can answer our question as follows.

Lemma 4 Let A = (A;⊕,¬,0) be an effect basic algebra and G,H tense operators on A.
Let E (A) be the induced effect algebra. If G(0) = 0 = H(0) then (E (A);G,H) is a dynamic
effect algebra.

Proof Assume G(0) = 0 = H(0). It is evident that G,H satisfy axioms (T1), (T2) and (T5).
We are going to verify (T4). We have

G(x ′) = G(¬x) = G(x → 0) ≤ G(x) → G(0) = G(x) → 0 = G(x)′

and, analogously, H(x ′) ≤ H(x)′.
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To prove (T3), assume x + y is defined, i.e. x ≤ y ′. Then x + y = x ⊕ y and by (3) of
Definition 1, G(x) ⊕ G(y) ≤ G(x ⊕ y) = G(x + y). It suffices to show that G(x) + G(y)

is defined. Since G is monotone by (b) of Lemma 1, applying (T4) we conclude G(x) ≤
G(y ′) ≤ G(y)′. This proves that G(x) ⊕ G(y) is defined. The second part of (T3) can be
verified in a similar way.

Thus G,H are tense operators on E (A). �

To show the converse, we have to introduce the following inequalities:

(G(x ′) ∧ G(y)′) + G(y) ≤ G((x ′ ∧ y ′) + y) ≤ (G(x)′ ∧ G(y)′) + G(y)

(H(x ′) ∧ H(y)′) + H(y) ≤ H((x ′ ∧ y ′) + y) ≤ (H(x)′ ∧ H(y)′) + H(y).
(L3)

Theorem 5 Let (E ;G,H) be a dynamic effect algebra and A(E) the corresponding effect
basic algebra. Then G,H are tense operators on A(E) if and only if condition (L3) holds
in (E ;G,H).

Proof Assume (L3) holds in (E ;G,H). Then for x ⊕y = (x ∧y ′)+y and ¬x = x ′ we have
x → y = ¬x ⊕ y = (x ′ ∧ y ′) + y and, due to (L3), we compute

G(x) ⊕ G(y) = (G(x) ∧ G(y)′) + G(y) ≤ G((x ∧ y ′) + y) = G(x ⊕ y)

G(x → y) = G((x ′ ∧ y ′) + y) ≤ (G(x)′ ∧ G(y)′) + G(y) = G(x) → G(y)

and, analogously, we obtain H(x) ⊕ H(y) ≤ H(x ⊕ y) and H(x → y) ≤ H(x) → H(y)

proving axioms (2) and (3) of Definition 1. The other axioms are evident and hence G,H

are tense operators on the basic algebra A(E).
Conversely, assume that (E ;G,H) is a dynamic effect algebra and that G,H are simul-

taneously tense operators on the corresponding effect basic algebra A(E). Then

G((x ′ ∧ y ′) + y) = G(x → y) ≤ G(x) → G(y) = (G(x)′ ∧ G(y)′) + G(y)

and

(G(x ′) ∧ G(y)′) + G(y) = G(x ′) ⊕ G(y) ≤ G(x ′ ⊕ y) = G((x ′ ∧ y ′) + y).

Analogously we can prove (L3) for the operator H . �
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