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Abstract The extended semantic realism (ESR) model proposes a theoretical perspective
which reinterprets quantum probabilities as conditional on detection rather than absolute
and embodies the mathematical formalism of standard (Hilbert space) quantum mechanics
(QM) in a noncontextual, hence local, framework. The assumptions needed to prove the Bell
inequality therefore hold in the ESR model, but we show that the Bell inequality must be
substituted in it by the modified Bell inequality and that the standard quantum expectation
values, when reinterpreted as proposed by the ESR model, do not violate the latter inequality.
Hence the long-standing conflict between “local realism” and QM is settled in the ESR
model. Finally we provide an elementary example of a prediction that might be used to
check whether the ESR model is correct.

Keywords Quantum mechanics · Quantum probabilities · Bell’s inequalities · Local
realism

1 Introduction

We have recently presented an improved version of the Extended Semantic Realism (ESR)
model [1] and a mathematical representation of the physical entities that occur in it, recover-
ing the mathematical apparatus of quantum mechanics (QM) as a part of our formalism [2].
We have expounded in many papers the reasons that led us to contrive this model, hence we
limit ourselves here to recall the essentials of our arguments.

As many physicists we were puzzled at the beginning of our research by the paradoxes of
QM and by the objectification problem which occurs in the quantum theory of measurement
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when a (minimal) realistic position is adopted [3]. The common root of these difficulties
can be traced back to the contextuality and nonlocality of QM, which imply nonobjectivity
of physical properties and are commonly maintained to be unavoidable features of QM
because of known “no-go” theorems (mainly the Bell–Kochen–Specker [4, 5] and the Bell
[6] theorems). We therefore carried out a critical analysis of these theorems and realized
that their proofs require a strong assumption on the range of validity of empirical quantum
laws (metatheoretical classical principle, or MCP) which is usually left implicit and yet
is problematic both from a quantum and from an epistemological point of view [7–11]. If
MCP is replaced by a weaker assumption (metatheoretical generalized principle, or MGP)
the proofs of the aforesaid theorems cannot be completed and the possibility of providing
an interpretation of QM that restores some forms of objectivity of properties cannot be
excluded. An interpretation of this kind was then worked out (Semantic Realism, or SR,
interpretation [7, 12, 13]) and some models were devised to show its consistency, among
which the ESR model [14, 15]. This model was successively developed and enriched, and it
can now be considered as an autonomous theoretical proposal that modifies and extends the
original SR interpretation, maintaining, however, its fundamental assumptions (in particular,
MGP).

Basically, the ESR model can be considered as a hidden variables (h.v.) theory for QM
which recovers noncontextuality, hence locality, embedding the mathematical formalism of
QM into a more general mathematical framework and circumventing the no-go theorems
by reinterpreting quantum probabilities as conditional on detection instead of absolute. This
new perspective has many interesting consequences that we have explored in some recent
papers [1, 2, 16, 17]. In particular, it avoids quantum paradoxes and provides some predic-
tions that do not coincide with the predictions of QM (hence it is, in principle, falsifiable).
We have also proved that, though “local realism” holds in the ESR model, the Bell-Clauser-
Horne-Shimony-Holt (BCHSH) inequality [18] must be substituted by a modified BCHSH
inequality whenever macroscopic physical properties are considered which does not imply
any conflict between local realism and the (reinterpreted) formalism of QM [1]. The under-
lying reason of this achievement is that the standard derivation of the BCHSH inequality
from local realism requires the assumption, usually left implicit, that all examples of a phys-
ical system are detected when an ideal measurement is performed, which is a variant of
MCP and does not hold in the ESR model.

We want to show in this paper that the original Bell inequality can be dealt with in a sim-
ilar way. The situation with this inequality is however more complicated because its proof
requires using a physical law (the perfect correlation law), besides local realism and MCP,
which does not occur in the case of the BCHSH inequality. After reporting the essentials of
the ESR model in Sect. 2 we therefore discuss in Sect. 3 how the modified Bell inequality
can be obtained in the ESR model, comparing its deduction with the standard deduction of
the Bell inequality in the literature. We then consider the consequences following from these
inequalities in Sect. 4, showing that in the ESR model the modified Bell inequality does not
imply a contradiction between local realism and the (reinterpreted) formalism of QM. We
add that it provides instead some predictions that can, in principle, be empirically checked
to confirm or disprove the ESR model.

2 The ESR Model

To make the present paper self-consistent we report in this section the essentials of the ESR
model, together with some results that are needed in the following. More detailed treatments
can be found in [1, 2, 16].
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As anticipated in Sect. 1, the ESR model is a noncontextual h.v. theory for QM with
reinterpretation of quantum probabilities. It therefore consists of a macroscopic part, where
some physical entities occur that can be operationally defined and related with standard
physical entities of QM, a microscopic part, in which h.v. are introduced, and some assump-
tions which establish a link between the microscopic and the macroscopic part, allowing the
reinterpretation of quantum probabilities.

In the macroscopic part of the ESR model a physical system � is considered which
is characterized by the sets S and O of its macroscopic states and macroscopic general-
ized observables, respectively. Following standard procedures [19], each state S ∈ S is op-
erationally defined as a class of probabilistically equivalent preparing devices, and every
preparing device π ∈ S, when constructed and activated, performs a preparation of an in-
dividual example x of � (physical object: one briefly says that “x is in the state S” in this
case). Each generalized observable A0 ∈ O is operationally defined as a class of probabilisti-
cally equivalent measuring apparatuses, and it is obtained in the ESR model by considering
an observable A of QM with set of possible values � on the real line � and adding a further
outcome a0 ∈ � \ � (no-registration outcome of A0), so that the set of all possible values of
A0 is �0 = {a0} ∪ �.1 Hence, the set F0 of all (macroscopic) properties of � is defined by

F0 = {(A0,X)|A0 ∈ O,X ∈ B(�)}, (1)

where B(�) is the σ -algebra of all Borel subsets of �, and the subset F ⊂ F0 of all proper-
ties associated with observables of QM is defined by

F = {(A0,X)|A0 ∈ O,X ∈ B(�), a0 /∈ X}. (2)

In the microscopic part of the ESR model a set E of theoretical entities is introduced
called microscopic properties. These are the dichotomic h.v. of the model, and for every
physical object x, each f ∈ E either takes a value interpreted as “f is possessed by x”
or a value interpreted as “f is not possessed by x”. The set of all microscopic properties
possessed by x constitutes the microscopic state of x. We denote by M = (Si)i∈I the set
of all microscopic states, with I a set of indexes that we assume to be discrete, for the sake
of simplicity. It is then apparent that assigning a microscopic state Si to x is equivalent
to assigning the values of all h.v. on x, hence we find it convenient to consider Si as a
value of a global hidden variable whose values range over M in the following. Moreover, a
microscopic state can be assigned to every physical object in the macroscopic state S, and
we denote by p(Si |S) the conditional probability that such a microscopic state be Si .

Finally the link between microscopic and macroscopic entities is established by assuming
that a bijective mapping ϕ exists which associates every property f ∈ E with a property
F ∈ F .

Let us come to measurements in the ESR model. An idealized measurement of a property
F = (A0,X) on a physical object x in the state S is described as a registration performed
by means of a dichotomic registering device (which may be constructed by using one of the
apparatuses associated with A0) whose outcomes are denoted by yes and no. The measure-
ment yields outcome yes/no (equivalently, x displays/does not display F ) if the value of A0

belongs/does not belong to X. We can now use the link between microscopic and macro-
scopic properties established by ϕ to interpret the result of a measurement of a macroscopic

1We assume here, for the sake of simplicity, that �\� is non-void, which is not restrictive. Indeed, if � = �,
one can choose a bijective Borel function f : � → �′ such that �′ ⊂ � (e.g., �′ = �+) and replace A

by f (A).
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property F = (A0,X) on a physical object x. First of all, we assume that the set of all
microscopic properties of x, that is, the microscopic state Si of x, determines whether x

is detected when F is measured (if we want to construct a deterministic ESR model) or,
more generally, the probability that x be detected (if we want to construct a probabilistic
ESR model). Then we assume that a measurement of F provides actual information about
the microscopic properties possessed by x according to the following scheme. Let F ∈ F ,
hence a0 /∈ X. If the yes outcome is obtained, the microscopic property f = ϕ−1(F ) is pos-
sessed by x. If instead the no outcome is obtained, one knows that the value of A0 belongs to
�\X but one cannot conclude that x does not possess f , for x could have been non-detected
because a0 ∈ � \ X. Similarly, let F ∈ F0 \ F , hence a0 /∈ � \ X. If the no outcome is ob-
tained, the microscopic property f c = ϕ−1(F c), with Fc = (A0,� \ X) ∈ F , is possessed
by x. If instead the yes outcome is obtained, one knows that the value of A0 belongs to X

but one cannot conclude that x does not possess f c , for x could have been non-detected
because a0 ∈ X.2

By using the definitions and assumptions resumed above one gets that, whenever F =
(A0,X) ∈ F , the overall probability pt

S(F ) that a physical object x in the state S display F

is given by

pt
S(F ) = pd

S(F )pS(F ). (3)

The symbol pd
S(F ) in (3) denotes the probability that x be detected whenever it is in the

state S (detection probability) and F is measured, which is not necessarily fixed for a given
A0 but it may depend on the property F , hence on the Borel set X. Since the measurement
is idealized, pd

S(F ) does not depend instead on the features of the apparatus measuring
F or on the environment. The symbol pS(F ) in (3) denotes the probability that x display
F when it is detected. Then, the basic assumption of the ESR model states that, if S is
a pure state, the probability pS(F ) can be evaluated by using the same rules that yield the
probability of F in the state S according to QM. Because of this assumption one can recover
the formalism of QM in the framework of the ESR model, but the standard interpretation
of quantum probabilities is modified. Indeed, according to the ESR model, if S is pure the
quantum rules yield the probability that a physical object x display the property F whenever
it is selected in the subset of all objects in the state S that are detected (hence a probability
that is conditional on detection), not the probability that x display the property F whenever
it is selected in the set of all objects in the state S (absolute probability).3

One can now provide different expressions for the overall probability pt
S(F ) that a phys-

ical object x in the state S display a property F = (A0,X) ∈ F0 \ F by introducing the
reasonable assumption that pd

S(F c) = pd
S(F̃ ), with F̃ = (A0,X \ {a0}) ∈ F , as follows.

pt
S(F ) = 1 − pd

S(F c)pS(F
c) = 1 − pd

S(F̃ )(1 − pS(F̃ )) = 1 − pd
S(F̃ ) + pt

S(F̃ ). (4)

Let us come to the mathematical representation of generalized observables. Let A0 ∈
O be obtained from the observable A of QM represented by the self-adjoint operator ̂A.

2It is apparent that the assumption that ϕ maps E bijectively onto F and not onto F0 plays a crucial role
in the description of the measurement process and, in some sense, characterizes the ESR model. Indeed it
implies that, for every measurement of a macroscopic property F on a physical object x, the outcome no (if
F ∈ F ) or yes (if F ∈ F0 \ F ) does not provide information about the microscopic property possessed by x,
which allows us to reinterpret standard quantum probabilities as conditional on detection rather than absolute,
as we show in the following.
3Note that the ESR model would coincide with QM if the detection probability pd

S
(F ) were equal to 1 for

every pure state S and physical property F . We show in Sect. 4 that such a coincidence cannot occur.
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Then A0 can be represented by the family of commutative positive operator valued (POV)
measures [2, 16]

{

T
̂A

ψ : X ∈ B(�) −→ T
̂A

ψ (X) ∈ B(H)
}

|ψ〉∈V
, (5)

where B(H) is the set of all bounded operators on H and V is the set of all unit vectors
of H . The mapping T

̂A
ψ is defined by

T
̂A

ψ (X) =
{∫

X
pd

ψ(̂A,λ)dP
̂A
λ if a0 /∈ X,

I − ∫

�\X pd
ψ(̂A,λ)dP

̂A
λ if a0 ∈ X,

(6)

where P
̂A is the spectral projection valued (PV) measure associated with ̂A and pd

ψ(̂A,λ)

is such that, for every |ψ〉 ∈ V , 〈ψ |pd
ψ(̂A,λ)

dP
̂A
λ

dλ
|ψ〉 is a measurable function on �. By

using this representation one can evaluate the probability pt
S((A0,X)) that the outcome of

an idealized measurement of A0 on a physical object x in the pure state S represented by the
unit vector |ψ〉 lie in the Borel set X, or, equivalently, the probability that a measurement of
a property F = (A0,X) ∈ F0 yield the yes outcome. One gets

pt
S((A0,X)) = 〈ψ |T ̂A

ψ (X)|ψ〉. (7)

The representation in (5) also suggests one to introduce the following generalized projection
postulate.

GPP Let S be a pure state represented by the unit vector |ψ〉, and let a nondestructive
idealized measurement of a macroscopic property F = (A0,X) ∈ F0 be performed on a
physical object x in the state S.

Let the measurement yield the yes outcome. Then, the state SF of x after the measurement
is a pure state represented by the unit vector

|ψF 〉 = T
̂A

ψ (X)|ψ〉
√

〈ψ |T ̂A†
ψ (X)T

̂A
ψ (X)|ψ〉

. (8)

Let the measurement yield the no outcome. Then, the state S ′
F of x after the measurement is

a pure state represented by the unit vector

|ψ ′
F 〉 = T

̂A
ψ (� \ X)|ψ〉

√

〈ψ |T ̂A†
ψ (� \ X)T

̂A
ψ (� \ X)|ψ〉

. (9)

The above results, that hold for pure states only, have been recently extended to mix-
tures [2]. However, we do not need this extension for our present purposes. It is instead
expedient to resume some consequences of (5)–(9) in the special case of discrete general-
ized observables and composite systems. Let us therefore consider a discrete observable A

of QM represented by the self-adjoint operator ̂A, let {a1, a2, . . .} be the set of all its pos-
sible outcomes, let A0 be a generalized observable obtained from A, with set of possible
outcomes {a0} ∪ {a1, a2, . . .}, and let us consider the property Fn = (A0, {an}). By briefly
setting pd

S(Fn) = pd
ψn(

̂A) one gets from (7)

pt
S(Fn) =

{

pd
ψn(

̂A)〈ψ |P ̂A
n |ψ〉 if n 
= 0,

∑

m∈N
(1 − pd

ψm(̂A))〈ψ |P ̂A
m |ψ〉 if n = 0.

(10)
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Furthermore, let Sn be the pure state of x after a nondestructive idealized measurement
of A0 yielding the outcome an. Then Sn is represented by the unit vector

|ψn〉 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P
̂A
n |ψ〉√

‖P ̂A
n |ψ〉‖2

if n 
= 0,

∑

m∈N(1−pd
ψm(̂A))P

̂A
m |ψ〉

√

∑

m∈N(1−pd
ψm(̂A))2‖P ̂A

m |ψ〉‖2
if n = 0

(11)

because of GPP.
Let us consider another discrete observable B of QM represented by the self-adjoint op-

erator ̂B with set of possible outcomes {b1, b2, . . .}, and let B0 be a generalized observable
obtained from B , with set of possible outcomes {b0} ∪ {b1, b2, . . .}. Let us assume that non-
destructive idealized measurements of A0 and B0 are performed. By using GPP we can cal-
culate the probability pt

S(an, bp) (with n,p ∈ N0) of obtaining the pair of outcomes (an, bp)

when firstly measuring A0 and then B0 on a physical object x in the state S represented by
the unit vector |ψ〉. Whenever n 
= 0 
= p we get

pt
S(an, bp) = pd

ψn(
̂A)pd

ψnp(̂B)〈ψ |P ̂A
n P

̂B
p P

̂A
n |ψ〉. (12)

where |ψn〉 is given by (11).
Let now � be a composite system made up of two subsystems �1 and �2, associated

with the Hilbert spaces H1 and H2, respectively, in QM, so that � is associated with the
Hilbert space H = H1 ⊗ H2, and let the discrete observables A and B considered above be
identified with observables A(1) of �1 and B(2) of �2, respectively. Whenever simultane-
ous measurements of the generalized observables A0(1) and B0(2) obtained from A(1) and
B(2), respectively, are performed on a physical object x (individual example of the whole
system �) in a pure state S such that �1 and �2 are spatially separated, the noncontextuality
of the ESR model implies that the transformation of S induced by a measurement of A0(1)

must not affect the detection probability associated with the measurement of B0(2). If S is
represented by the unit vector |	〉, one gets in this case

pd
	np(̂B(2)) = pd

	p(̂B(2)). (13)

Hence, (12) yields

pt
S(an, bp) = pd

	n(
̂A(1))pd

	p(̂B(2))〈	|P ̂A(1)
n P

̂B(2)
p |	〉, (14)

because P
̂A(1)
n and P

̂B(2)
p commute.

We can now define the expectation value E(A0(1),B0(2)) of the product of the general-
ized observables A0(1) and B0(2) in the state S as follows,

E(A0(1),B0(2)) =
∑

n,p∈N

anbppt
S(an, bp) +

∑

n∈N

anb0p
t
S(an, b0)

+
∑

p∈N

a0bppt
S(a0, bp) + a0b0p

t
S(a0, b0). (15)
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By using (15) and restricting to generalized observables such that a0 = 0 = b0 (hence, for
every n,p ∈ N, an 
= 0 
= bp)4 we get from (14)

E(A0(1),B0(2)) =
∑

n,p∈N

anbppd
	n(

̂A(1))pd
	p(̂B(2))〈	|P ̂A(1)

n P
̂B(2)
p |	〉. (16)

3 The Modified Bell Inequality

We have seen in Sect. 1 that the ESR model can be considered as a new kind of noncontex-
tual hidden variables theory with reinterpretation of quantum probabilities as conditional on
detection. When the ESR model is deterministic, the following statements hold in it.

R: the values of all observables of a physical system in a given state are predetermined
for any measurement context,

LOC: if measurements are made at places remote from one another on parts of a physical
system which no longer interact, the specific features of one of the measurements do
not influence the results obtained with the others.

The join of R and LOC is often called local realism in the literature.5 By assuming
local realism Bell derived his famous inequality [6] and many similar inequalities have been
obtained afterwards. As we have anticipated in Sect. 1, we have recently proved [1, 2] that, if
one describes the physical situation that led Clauser, Horne, Shimony and Holt to obtain their
BCHSH inequality [18] from the point of view of the ESR model, one obtains a modified
BCHSH inequality. We intend to show in this section that an analogous conclusion can be
drawn if one takes into account the original Bell inequality.

Let us summarize the Bell argument. Let � be a composite physical system made up of
two far away subsystems �1 and �2, let A(a) and B(b) be dichotomic observables of �1

and �2, respectively, depending on the experimentally adjustable parameters a and b and
taking either value −1 or +1. Because of R and LOC, the expectation value of the product
of A(a) and B(b) in a state S is given by

E(A(a),B(b)) =
∫




dρA(λ,a)B(λ,b), (17)

where λ is a deterministic hidden variable whose values range over a measurable space

 when measurements on different examples of � in the state S are considered, ρ is a
probability measure over 
, A(λ,a) and B(λ,b) are values of A(a) and B(b), respectively.
If one assumes now that S is such that the perfect correlation (PC) law holds for every
physical object in the state S, that is, for (almost) every value of the hidden variable λ,

A(λ,a) = −B(λ,a), (18)

4Note that, for every generalized observable A0, with a0 
= 0, one can construct a new observable whose
no-registration outcome is 0. Indeed, one can select a Borel function χ on � which is bijective on �0 and
such that χ(a0) = 0, and consider the generalized observable χ(A0) obtained from χ(A) by adjoining the
outcome 0 and putting, for every λ ∈ �, pd

ψ(χ(̂A),λ) = pd
ψ (̂A,χ−1(λ)).

5Norsen has recently criticized this name, for local realism does not comply with any definition of realism in
the philosophical literature [20]. We maintain it here because its use is widespread.
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then one gets from (17)

E(A(a),B(b)) = −
∫




dρA(λ,a)A(λ,b) (19)

hence, easily, the Bell inequality

|E(A(a),B(b)) − E(A(a),B(c))| ≤ 1 + E(A(b),B(c)). (20)

Let us come to the ESR model. It is important to note that the proof of (20) requires
the assumption, usually left implicit, that all physical objects that are prepared are detected
when ideal measurements are performed. This condition does not hold in the ESR model,
where the dichotomic observables A(a), B(b), A(b) and B(c) must be substituted by the
trichotomic generalized observables A0(a), B0(b), A0(b) and B0(c), respectively, in each
of which a no-registration outcome is adjoined to the outcomes +1 and −1. Hence, the
reasonings leading to (20) must be modified if the perspective introduced by the ESR model
is adopted. To this aim let us agree to consider only trichotomic observables whose no-
registration outcomes coincide with 0 (which is not restrictive, see footnote 4). Then we
recall from Sect. 2 that the range of values of the global hidden variable introduced in the
ESR model is the set M of all microscopic states. Hence the expectation value in (17)
must be substituted by the expectation value of the product of the trichotomic generalized
observables A0(a) and B0(b)

E(A0(a),B0(b)) =
∑

i∈I

p(Si |S)A0(S
i,a)B0(S

i,b), (21)

where A0(S
i,a) and B0(S

i,b) denote the values of A0(a) and B0(b), respectively, when the
hidden variable takes value Si (which implies that we must consider an ESR model which is
deterministic in the sense explained in Sect. 2). We can now modify the procedures outlined
above, as follows.

First of all, let us assume that the PC law holds for every physical object in a microscopic
state Si such that p(Si |S) 
= 0, A(Si,a) 
= 0 
= B(Si,a), so that we have in this case

A0(S
i,a) = −B0(S

i,a). (22)

By using (22) we obtain from (21)

E(A0(a),B0(b)) = −
∑

i∈I

p(Si |S)A0(S
i,a)A0(S

i,b), (23)

hence we get

|E(A0(a),B0(b)) − E(A0(a),B0(c))| =
∣

∣

∣

∣

∑

i∈I

p(Si |S)A0(S
i,a)(A0(S

i,b) − A0(S
i, c))

∣

∣

∣

∣

≤
∑

i∈I

p(Si |S)|A0(S
i,a)||A0(S

i,b) − A0(S
i, c)|.

(24)

Let us then observe that the following equation holds

|A0(S
i,b) − A0(S

i, c)| = |A0(S
i,m)||1 − A0(S

i,m)A0(S
i,n)| (25)
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where m 
= n, m = b if A0(S
i,b) = ±1 and A0(S

i, c) = 0, m = c if A0(S
i, c) = ±1 and

A0(S
i,b) = 0, m = b or, indifferently, m = c if A0(S

i,b) and A0(S
i, c) are both 0 or ±1.

Moreover we have

|A0(S
i,a)A0(S

i,m)| ≤ 1, (26)

1 − A0(S
i,m)A0(S

i,n) ≥ 0, (27)

and
∑

i∈I

p(Si |S) = 1. (28)

Hence we get

∑

i∈I

p(Si |S)|A0(S
i,a)||A0(S

i,b) − A0(S
i, c))|

=
∑

i∈I

p(Si |S)|A0(S
i,a)A0(S

i,m)||1 − A0(S
i,m)A0(S

i,n))|

≤
∑

i∈I

p(Si |S)(1 − A0(S
i,m)A0(S

i,n))

≤ 1 −
∑

i∈I

p(Si |S)A0(S
i,m)A0(S

i,n). (29)

By using (21) and (24) we obtain from (29) the modified Bell inequality

|E(A0(a),B0(b)) − E(A0(a),B0(c))| ≤ 1 + E(A0(b),B0(c)), (30)

that replaces (20) in the ESR model.

4 Physical Interpretation

We intend to compare in this section the orthodox position about the Bell inequality with
the interpretation of the modified Bell inequality in the conceptual framework of the ESR
model. To this end, let us firstly resume the standard view.

Let �1 and �2 be spin- 1
2 particles and let S be the singlet spin state represented by the

unit vector |η〉 = 1√
2
(|+,−〉−|−,+〉) (for the sake of simplicity we omit a factor �

2 here and
in the following). Let A(a) be the quantum observable “spin of �1 along the direction a”
represented by the self-adjoint operator σa(1), and let B(b) be the quantum observable “spin
of �2 along the direction b” represented by the self-adjoint operator σb(2). One can calculate
the expectation value in (17) according to QM and get

E(A(a),B(b)) = 〈η|σa(1)σb(2)|η〉 = −a · b. (31)

Whenever a = b one obtains from (17) and (31)

E(A(a),B(a)) =
∫




dρA(λ,a)B(λ,a) = −1. (32)
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It follows that, for every λ ∈ 
 (to be precise, for every λ ∈ 
 \ 
0, with 
0 such that
∫


0
dρ = 0), A(λ,a) = −B(λ,a), that is, the PC law holds. But, then, a contradiction occurs.

In fact one gets from (20), using (31),

| − a · b + a · c| ≤ 1 − b · c, (33)

which does not hold if a · b = −
√

2
2 , a · c =

√
2

2 and b · c = 0.
The seemingly unavoidable conclusion is that the assumptions from which the inequality

is deduced, that is R, LOC and PC, are not consistent with QM. Since PC cannot contradict
QM because it is a law of this theory, R or LOC or both must be at odds with QM, which
implies that local realism must be rejected (one usually also shows that “not R” implies “not
LOC” if QM is assumed, hence one concludes that QM necessarily is a nonlocal theory).

The conflict between R and LOC, on one side, and QM, on the other side, has been a
conundrum for physicists for a long time. In principle, one can contrive experimental tests
to check whether the Bell inequality or the predictions of QM are correct. Most physicists
then maintain that the experimental data that have been obtained [21–24] show that local
realism is violated and confirm QM.6

Let us come to the modified Bell inequality. We firstly note that one can suitably particu-
larize (16) and substitute it into (30). The resulting equation, however, is still too general and
complicate for our present purposes. Therefore, let us denote by OR the set of trichotomic
generalized observables such that, for every A0 ∈ OR , the detection probability in a given
state depends on A0 but not on its specific value, let us assume that OR is non-void, and let
us consider only observables in OR . Hence we can drop the dependence on n and p of the
detection probabilities that appear in (16). Moreover the generalized observables that we are
considering can take only values +1, 0, −1. Thus we get from (16)

E(A0(a),B0(b)) = pd
	(̂A(a))pd

	(̂B(b))[〈	|P ̂A(a)

1 P
̂B(b)

1 |	〉 − 〈	|P ̂A(a)

1 P
̂B(b)

−1 |	〉
− 〈	|P ̂A(a)

−1 P
̂B(b)

1 |	〉 + 〈	|P ̂A(a)

−1 P
̂B(b)

−1 |	〉]
= pd

	(̂A(a))pd
	(̂B(b))〈̂A(a)̂B(b)〉	. (34)

According to the ESR model, the term 〈̂A(a)̂B(b)〉	 is interpreted as a conditional expec-
tation value, that is, as the expectation value of the product of the trichotomic observables
A0(a) and B0(b) whenever only detected objects are taken into account, and formally co-
incides with the quantum expectation value, in the pure state S represented by the unit
vector |	〉, of the product of the quantum observables A(a) and B(b) from which A0(a)

6The experimental tests that have been performed do not refer to the Bell inequality but, rather, to similar
inequalities, as the BCHSH inequality (which can be proven without using the PC law). Real measurements,
however, are not ideal, hence empirical tests actually check derived inequalities, obtained by adding further
assumptions (e.g., fair sampling) to R and LOC [21–24]. The reliability of these assumptions is disputed by
many authors, who therefore uphold that the empirical data showing that the derived inequalities are violated
do not prove that R and LOC do not hold [25–32]. In particular, some authors show that violations can be
predicted in quantum physics, or in quantum states in which they would not occur if ideal measurements
were performed, as a consequence of thresholds in real measurements that imply violations of fair sampling
[33–35]. These violations, however, have nothing to do with the modification of the Bell inequality intro-
duced by the ESR model. The latter indeed holds in the case of idealized measurements and depends on h.v.
associated with the physical object that is measured, not on contingent features of the measuring apparatuses
(we refer to [1, 2] for a more detailed analysis of this topic and comparison with the perspective introduced
by the ESR model).
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and B0(b), respectively, are obtained. Since similar equations hold if we consider A0(a) and
B0(c) or A0(b) and B0(c), we obtain from (30) and (34)

|pd
	(̂A(a))pd

	(̂B(b))〈̂A(a)̂B(b)〉	 − pd
	(̂A(a))pd

	(̂B(c))〈̂A(a)̂B(c)〉	 |
≤ 1 + pd

	(̂A(b))pd
	(̂B(c))〈̂A(b)̂B(c)〉	. (35)

Equation (35) contains four detection probabilities and three conditional expectation val-
ues. The expectation values can be calculated by using the rules of QM because of the basic
assumption in Sect. 2, and formally coincide with expectation values of QM. If one puts
them into (35) the inequality does not imply, a priori, any contradiction, but must be inter-
preted as a condition that has to be fulfilled by the detection probabilities in the ESR model.
We have as yet no theory allowing us to calculate the values of those probabilities, but should
one be able to perform actual measurements that are close to idealized measurements, they
could be determined experimentally and then inserted into (35). Two possibilities occur.

(i) There exist pure states and observables such that the conditional expectation values
violate (35). In this case the ESR model (hence R and LOC) is called into question.

(ii) For every choice of pure states and observables the conditional expectation values fit in
with (35). In this case the ESR model is supported by the experimental data.

The above alternatives show explicitly that the ESR model is, in principle, falsifiable, as
we have stated in Sect. 1.7

To illustrate our conclusions let A(a) and B(b) be the spin observables introduced above,
so that A0(a) and B0(b), respectively, are the generalized observables obtained from them,
assume that both A0(a) and B0(b) belong to OR for any choice of the parameters a and b,
and let S be the singlet state represented by |η〉. By applying GPP we then obtain that the
PC law holds for every physical object in a microstate Si such that p(Si |S) 
= 0, A0(S

i,a) 
=
0 
= B0(S

i,a).8 Therefore we can use the second equality in (31) and obtain from (35)

| − pd
η (σa(1))pd

η (σb(2))a · b + pd
η (σa(1))pd

η (σc(2))a · c| ≤ 1 − pd
η (σb(1))pd

η (σc(2))b · c.
(36)

If �1 and �2 move freely in opposite directions and a,b, c lie in the plane that is orthogonal
to the momenta, the rotational invariance of |η〉 and the choice of the observables suggest
that the four detection probabilities in (36) have the same value, say pη . Hence we get from
(36) in this case

p2
η ≤ 1

| − a · b + a · c| + b · c
. (37)

7We stress the words “in principle”. Actual experiments may be very difficult to perform (see footnote 6). In
our case further difficulties occur, because one has to count the physical objects that are actually prepared in
the pure state S, even if they are not detected by the measurement of F , to determine pd

S
(F ). Furthermore,

one must contrive a way to distinguish empirically pd
S
(F ) from the lack of efficiency of any actual measuring

device.
8Note that the projection postulate has not been applied to obtain the PC law in the orthodox approach to
the Bell inequality reported above. This postulate is indeed problematic in QM because of nonobjectivity of
physical properties (Sect. 1), hence it is reasonable to avoid using it as far as possible in QM. This problem
does not occur in the ESR model, where all physical properties are objective, hence we can deduce the PC
law directly from GPP.
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Since pη does not depend on a, b, c, (37) implies that p2
η has an upper bound that coincides

with the minimum value of the term on the right, which is 2/3. Hence we get

pη ≤
√

2

3
≈ 0.8165. (38)

Equation (38) implies that no spin measurement on 1 or 2, even if idealized, can have a de-
tection efficiency greater than 0.8165. Should a real measurement have a bigger efficiency
the join of the ESR model together with the additional assumptions that we have introduced
to attain (38) would be falsified (but, of course, one should still decide whether this falsi-
fication refers to the ESR model, to the additional assumptions, or both). If not, one can
consider this result as a clue that the ESR model is correct.9

Finally, we observe that the example above shows that special cases of violation of (35)
occur if the values of all detection probabilities in it coincide with 1. This implies that the
detection probability pd

S(F ) in (3) cannot be equal to 1 for every pure state S and physical
property F . Therefore the ESR model cannot coincide with QM (see footnote 3) and neces-
sarily yields some predictions that are different from the predictions of QM and other pre-
dictions that coincide with those of QM only if the latter are suitably reinterpreted (Sect. 2).
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