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Abstract Hořava proposed a non-relativistic renormalizable theory of gravitation, which is
reduced to general relativity (GR) in large distances (infra-red regime (IR)). It is believed
that this theory is an ultra-violet (UV) completion for the classical theory of gravitation. In
this paper, after a brief review of some fundamental features of this theory, we investigate it
for a static cylindrical symmetric solution which describes Cosmic string as a special case.
We have also investigated some possible solutions, and have seen that how the classical GR
field equations are modified for generic potential V (g). In one case there is an algebraic
constraint on the values of three coupling constants. Finally as a pioneering work we deduce
the most general cosmic string in this theory. We explicitly show that how the coupling
constants distort the mass parameter of cosmic string. We deduce an explicit function for
mass per unit length of the space-time as a function of the coupling constants. We compare
this function with another which Aryal et al. (Phys. Rev. D 34:2263, 1986) have found in
GR. Also we calculate the self-force on a massive particle near Hořava-Lifshitz straight
string and we give a typical order for the coupling constant g9. This order of magnitude
proposes a cosmological test for validity of this theory.

Keywords Cosmic string · Hořava-Lifshitz gravity · Exact solutions

1 Introduction

In January 2009, a power-counting renormalizable UV complete theory of gravity was pro-
posed by Hořava [1–3]. Quantum gravity models based on an “anisotropic scaling” of the
space and time dimensions have recently attracted significant attention [4, 5]. In partic-
ular, Hořava-Lifshitz point gravity [1] might be has desirable features, but in its original
incarnation one is forced to accept a non-zero cosmological constant of the wrong sign to
be compatible with observation [6]. There are four different versions of this theory: with
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(or without) projectability condition and with (or without) detailed balance. In first look it
seems that this non relativistic model for quantum gravity has a well defined IR limit and
it reduces to GR. But as it was first indicated by Mukohyama [38], HL theory mimics GR
plus Dark matter (a pressureless fluid). This theory has a scale invariant power spectrum
which describes inflation. This theory is strongly coupled and must be modified for escap-
ing from an unphysical extra mode. This time this theory has been improved. This theory is
renormalizable in the sense that the effective coupling constant in the UV is dimensionless.
Cosmology in Hořava theory has been studied by several authors [7–9]. Homogeneous vac-
uum solutions in this theory were got in [10]. The cosmological evolution in Hořava gravity
with scalar-field was intensively studied, and the matter bounce scenario in Hořava theory
was investigated [11].

Hořava theory has at least two important properties. The first one is it’s UV renormal-
izability, While the second one is most interesting in cosmology. The fact that the speed of
light diverges in the UV implies that exponential inflation is not necessary for solving the
horizon problem. Moreover, the short distance structure of perturbations in Hořava-Lifshitz
theory is different from standard inflation in GR. Especially, in UV limit, the scalar field
perturbation is essentially scale-invariant and it is insensitive to the expansion rate of the
universe, as it has been addressed in [6]. In Hořava theory time and space are treated in an
unequal footing, with four-dimensional general coordinations invariance emerges as an ac-
cidental symmetry in large distance. In the present form of Hořava-Lifshitz cosmology, one
combines the aforementioned modified gravitational background with a scalar field which
reproduces (dark) matter. Doing so we obtain a dark-matter universe, with the appearance
of a cosmological constant and an effective “dark radiation” term. Although these terms
are interesting cosmological artifacts of the novel features of Hořava-Lifshitz gravitational
background, they restricted the possible scenarios of Hořava-Lifshitz cosmology. Formu-
lating Hořava-Lifshitz cosmology in a way that an effective dark energy, with a varying
equation-of-state parameter, will emerge is discussed by Saridakis in [12]. Calcagni found
vacuum solutions and argue that bouncing solutions exist and avoid the big bang singular-
ity [9].1

The general renormalizable actions for the scalar field and gauge field are proposed
in [13]. They provide a possible explanation for the time delays in Gamma-Ray bursts due
to the modification of the dispersion relation. Also it has been shown that the Hořava theory
for the completion of General Relativity at UV scales can be interpreted as a gauge fixed
Tensor-Vector theory, and it can be extended to an invariant theory under the full group of
four-dimensional diffeomorphisms [14]. Charmousis et al. showed that Hořava gravity suf-
fers from strong coupling problems, with and without detailed balance, and therefore it is un-
able to reproduce General Relativity in the IR [15]. Myung and Kim studied Hořava-Lifshitz
black hole solutions and its thermodynamic properties [16]. Mukohyama presented a sim-
ple scenario to generate almost scale-invariant, super-horizon curvature perturbations [17].
Also Mukohyama and et al. pointed out that the radiation energy density in the UV epoch
is proportional to a−6 and, thus, it decays faster than where in the IR epoch or in rela-
tivistic theories. This leads to intriguing cosmological consequences such as enhancement
of baryon asymmetry and stochastic gravity waves. They might also discussed current ob-
servational constrains on the dispersion relation [18]. Topological (charged) black holes in

1Solutions with Euclidean signature are asymptotically de Sitter and in qualitative agreement with the CDT
scenario. On the other hand, inhomogeneous scalar perturbations against the classical background, generated
by quantum fluctuations of an inflationary Lifshitz field, are unable to yield a scale-invariant spectrum [9].
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Hořava-Lifshitz theory is discussed in [19]. There is a few exact solutions in Hořava the-
ory and it is a considerable problem to investigate our familiar GR objects in the context
of this new theory. Some exact solutions may be find it [100–108]. Azeyanagi et al. present
type IIB super gravity solutions which are expected to be dual in comparison with certain
Lifshitz-like fixed points with anisotropic scale invariance [47]. Mann found a class of black
hole solutions to a (3 + 1) dimensional theory gravity coupled to abelian gauge fields with
negative cosmological constant that has been proposed as a dual theory to a Lifshitz theory
describing critical phenomena in (2 + 1) dimensions [48]. Ohta and collaborations discov-
ered new solutions and discussed their properties [73, 74]. Orlando and Reffert studied the
renormalization properties of HL gravity beyond power counting arguments [63]. In fact,
their results confirm its renormalizability by certain conditions. They make use of the fact
that (super) HL gravity can be taken to the stochastic quantization of topologically massive
gravity. This argument relies on the renormalizability of the latter, which thought is even not
strictly proven and it is thought to be hold [64]. Other readable and momentous papers listed
in [65–72].

Wormhole solutions to Hořava theory in vacuum are discussed in [33]. The black hole
and cosmological solutions for arbitrary cosmological constant was obtained [34]. One of
the best works on thermodynamics of Hořava space times is the paper of Wang and Wu. They
studied thermodynamics of cosmological models in the Hořava-Lifshitz theory of gravity,
and systematically investigated that the evolution of the universe filled with a perfect fluid
that has the equation of state p = wρ, where p and ρ denote, respectively, the pressure
and energy density of the fluid, and w is an arbitrary real constant [35]. Brane cosmology
in the Hořava-Witten heterotic M-theory discussed by Wu, Gong and Wang in [46]. Too
Minamitsuji classified the cosmological evolutions [36]. The timelike geodesic motion in the
Hořava-Lifshitz spacetime studied by Chen and Wang [37]. Dynamics of a component which
behaves like pressureless dust emerges as an integration constant of dynamical equations
investigated by Mukohyama [38]. Saridakis noted that Hořava-Lifshitz cosmology with an
additional scalar field leads to an effective dark energy sector [39]. The properties of strong
field gravitational lensing in the deformed Hořava-Lifshitz black hole studied by Chen and
Jing [40]. Too Yamamoto et al. studied the spectral tilt of primordial perturbations in Hořava-
Lifshitz cosmology [49].

But later, Blas et al. [75] listed inconsistencies of the Hořava-Lifshitz gravity as a com-
plete description of Quantum gravity. They addressed the consistency of Hořava’s proposal
for the theory of quantum gravity from the low-energy perspective. A peculiarity of the
new mode is that it satisfies an equation of motion that is of first order in time derivatives.
In linear level this extra mode manifests only around spatially inhomogeneous and time-
dependent backgrounds. They found two serious problems associated with this mode. First,
the mode develops very fast exponential instabilities at short distances. Second, it becomes
strongly coupled at an extremely low cutoff scale. They also discussed the projectable ver-
sion of Hořava’s proposal and argue that this version can be understood as a certain limit of
the ghost condensate model. The theory still problematic since the additional field generi-
cally forms caustics and, again, has a very low strong coupling scale. Also they clarify some
subtleties that arise in the application of the Stückelberg formalism to Hořava’s model due
to it’s non-relativistic nature.

One of the most important topological objects is the cosmic string, discussed both in
f (R) gravity and scalar field theories by the author [21–23]. Our main purpose of this short
paper is the investigation of the special cylindrically symmetric spacetimes which describes
the cosmic strings. Question that we want to answer is that “Why and when the specific
properties of the cosmic string defected by the new coupling constants in the new kind of the
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non relativistic quantum gravity?”. In this work we show that the near axis limit for a cosmic
string in the HL theory has a quantum mechanical origin. It means that we have a minimum
mass scale for the cosmic strings, which enforced us that we must limited ourselves only to
the region of the space near the location of the string.

Also we derived the general force exerted by string to a test particle and by comparing
the results from the orbit motion around the string and comparing our calculations with the
known data, we present some new order magnitudes for the coupling constants in this model
which role as the Lorentz breaking terms in the UV limit.

2 The Metric Due to an Infinite Straight String in GR

The metric due to an infinite straight cosmic string in vacuum is in its distributional form,
arguably the simplest non-empty solution of the Einstein field equations. The weak-field
version (which is virtually identical to the full solution) was first derived by Vilenkin [50].
The full metric was independently discovered by Gott [51] and Hiscock [52], who matched
a vacuum exterior solution to a simple interior solution containing fluid with the equation of
state

T t
t = T z

z = ε

(ε a constant) and then let the radius of the interior solution go to zero. The Gott’s work
followed directly from a study of the gravitational field of point particles in 2 + 1 di-
mensions [53]. A more general class of interior solutions was subsequently constructed by
Linet [54]. The Gott-Hiscock solution is constructed by first assuming a static, cylindrically-
symmetric line element with the general form:

ds2 = −e2χdt2 + e2ψ(dr2 + dz2) + e2ωdϕ2

where χ,ψ and ω are functions of “r” alone, and “r” and ϕ are standard polar coordinates
on R2. The metric is generated by solving the non vacuum Einstein equations

Gμ
ν = −8πT μ

ν

The only constraints are that the ω should be positive and that the solution should be regular
on the axis r = 0, so that eω ∼ r for small “r”s. Gott [51] and Hiscock [52] both assumed
ε to be a constant ε0. The more general situation where ε varies has been discussed by
Linet [54]. The exterior metric is the solution of the vacuum Einstein equations

Gμ
ν = 0

It was shown that the most general statics, cylindrical-symmetric vacuum line element is
which was first discovered by Tullio Levi-Civit‘a [62],

ds2 = −r2mc2dt2 + r2m(m−1)b2(dz2 + dr2) + r2(1−m)a2
0dϕ2

It is always possible to set b and c to 1 by suitable rescaling t , z and r , but for present
purposes it is more convenient to retain them as arbitrary integration constants. The interior
and exterior solutions can be matched at any nominated value r0 for r in the interior solution.
It was shown that [45]

a = 1 − 4η
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by noting that the total mass per unit length η on each surface for constant t and z in the
interior solution, it is possible to endow the interior solution with an equation of state more
general than that considered by Gott, Hiscock and Linet [51, 52, 54] while preserving the
form of the exterior metric. The mass per unit length in the interior solution is then typical
not equal to the metric parameter 1

4 (1 − a).

3 Review of Hořava-Lifshitz Gravity with Detailed Balance Condition

Following from the ADM decomposition of the metric [32], and the Einstein equations, the
fundamental objects of interest are the fields N(t, x),Ni(t, x), gij (t, x) corresponding to the
lapse, shift and spatial metric of the ADM decomposition. In the (3 + 1)-dimensional ADM
formalism, where the metric can be written as

ds2 = −N2dt2 + gij (dxi + Nidt)(dxj + Njdt) (1)

and for a spacelike hyper surface with a fixed time, its extrinsic curvature Kij is

Kij = 1

2N
(ġij − ∇iNj − ∇jNi)

where a dot denotes a derivative with respect to “t” and covariant derivatives defined with
respect to the spatial metric gij , the action of Hořava-Lifshitz theory for z = 3 is

S =
∫

M

dtd3x
√

gN(LK − LV ) (2)

we define the space-covariant derivative on a covector vi as ∇ivj ≡ ∂ivj − �l
ij vl where �l

ij

is the spatial Christoffel symbol. The g is the determinant of the 3-metric and N = N(t) is
a dimensionless homogeneous gauge field. The kinetic term is

LK = 2

κ2
OK = 2

κ2
(KijK

ij − λK2)

Here Ni is a gauge field with scaling dimension [Ni] = z − 1.
The ‘potential’ term LV of the (3 + 1)-dimensional theory is determined by the principle

of detailed balance [3], requiring LV to follow, in a precise way, from the gradient flow
generated by a 3-dimensional action Wg . This principle was applied to gravitation with the
result that the number of possible terms in LV are drastically reduced with respect to the
broad choice available in an ‘potential’ is

LV = α6CijC
ij − α5ε

ij

l Rim∇jR
ml + α4

[
RijR

ij − 4λ − 1

4(3λ − 1)
R2

]
+ α2(R − 3�W) (3)

where in it Cij is the Cotton tensor [3] which is defined as,

Cij = εkl(i∇kR
j)

l

The kinetic term could be rewrite in terms of the de Witt metric as:

LK = 2

κ2
KijG

ijklKkl



1498 Int J Theor Phys (2011) 50: 1493–1514

where we have introduced the de Witt metric

Gijkl = 1

2
(gikgjl + gilgjk) − λgij gkl

The inverse of this metric is given by

Gijkl = 1

2
(gikgjl + gilgjk) − λ̃gij gkl

λ̃ = λ

3λ − 1

Inspired by methods which are used in quantum critical systems and non equilibrium critical
phenomena, Hořava restricts the large class of possible potentials using the principle of
detailed balance outlined above. This requires that the potential (3) takes the form

LV = κ2

8
EijGijklE

kl

Note that by constructing Eij as a functional derivative it automatically transverse within
the foliation slice, ∇iE

ij = 0. The equations of motion were obtained in [7].

4 About the Inconsistency of Hořava Gravity

The action in the ADM formalism contains only first order time derivatives, which allows
to circumvent the problems with the ghosts appearing in covariant higher order gravity the-
ories [76]. The higher derivative terms naively become irrelevant in the infrared and Hořava
was argued that the theory reduces to GR at large distances. However as Blas et al. showed,
the consistency of the above proposal is far from being clear. The main concern comes from
the fact that the introduction of a preferred foliation explicitly breaks the gauge group of
GR down to the group of space-time diffeomorphisms preserving this foliation. As already
pointed out by Hořava, this breaking is expected to introduce extra degrees of freedom com-
pared to GR. The new degrees of freedom can be persisted down to the infrared and be
leaded to various pathologies (instabilities, strong coupling) that may invalidate the theory.2

There have been several controversial claims about the properties of the extra freedom de-
grees [83]. In [77–79] the new mode was identified among the perturbations around a static
spatially homogeneous background in the presence of matter. The mode was argued to be
strongly coupled to matter in the limit when the theory is expected to approach GR, making
it hard to believe that a GR limit exists. It is worth noting that the mode found in [80] is not
propagating: it’s equation of motion does not contain time derivatives [80]. Thus it remains
unclear from this analysis whether this mode corresponds to a real degree of freedom or can
be integrated out as unphysical. The observation that the extra mode is non-propagating was
generalized in [81] to the case of cosmological backgrounds. The interpretation of this re-
sult given in [81] is that actually the Hořava gravity is free from additional freedom degrees.
Also it was claimed that the strong coupling is alleviated by the expansion of the Universe.
Finally, the non- linear Hamiltonian analysis performed in [82] shows that the phase space

2An illustration of this phenomenon is provided by theories of massive gravity where special care is needed
to make the additional degrees of freedom well-behaved [76].
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of Hořava gravity is 5-dimensional. This result is puzzling: a normal degree of freedom cor-
responds to a 2-dimensional phase space; so the result of [82] suggests that the number of
degrees of freedom in Hořava gravity is two and a half. Two of these freedom degrees are
naturally identified with the two helicities of graviton. But the physical meaning of the extra
“halfmode” is obscure.

Blas et al. showed that Hořava gravity does possess an additional light scalar mode. For a
general background the equation of motion for this mode contains time derivatives implying
that the mode is propagating. The peculiarity of Hořava gravity is that the equation for the
extra mode is first order in time derivatives. The solution still corresponds to waves with
a background dependent dispersion relation and is fixed once a single function of spatial
coordinations is determined as the initial condition in the Cauchy problem. This explains
why this mode corresponds to a single direction in the phase space. Next they addressed the
consistency of the Hořava proposal by study the infrared properties of the extra mode. They
found that its dynamics exhibits a number of bad features. First, the mode becomes singu-
lar for static or spatial homogeneous backgrounds. Namely, the mode frequency diverges
in that limit. This explains why this mode has been overlooked in the previous analysis
of perturbations in Hořava gravity. Second, for certain (background-dependent) values of
spatial momentum the mode becomes unstable. Again, the rate of the instability diverges
if one takes the static/spatially homogeneous limit for the background metric. Third, they
show that at energies above the certain scale the extra mode is strongly coupled to itself,
and not only to matter. Also they found that the strong coupling scale is background depen-
dent and goes to zero for flat-cosmological backgrounds. Hence, the model suffers from a
much more severe strong coupling problem than pointed out in, where the dependence of
the strong coupling scale on the background curvature was ignored. Because of the strong
coupling the Hořava model can be trusted only in a narrow window of very small energies,
way below the Planck scale. This implies that the Hořava model cannot be considered as
consistent theory of quantum gravity.

Later Charmousis et al. [80] showed that Hořava gravity suffers from strong coupling
problems, with and without detailed balance, and is therefore unable to reproduce General
Relativity in the infra-red. They considered the perturbative theory about the vacuum, yield-
ing two important results. The first considered the role of detailed balance in these models.
As the breaking terms go zero, They find that the linearized gravitational Hamiltonian con-
straint vanishes off-shell.3 By comparing field equations to their counterparts in General
Relativity, Charmousis et al. showed that the “emergent” Planck length actually diverges
in the limit of detailed balance, in contrast to the original claims of Hořava. This strong
coupling behavior means that the theory with detailed balance does not have any sort of
perturbative infra-red limit, explaining the results of Lu et al. [10]. Indeed, from the point
of view of spherical symmetric solutions one sees that the putative higher order terms in
the IR are just as important as the “lower” order terms. In summary, with detailed balance,
one can never hope to recover GR in the infra-red for the following reason: General Relativ-
ity admits an effective linearized description beyond the Schwarzschild radius of a source,
but in Hořava gravity with detailed balance, strong coupling prevents an effective linearized
description on any scale.Further discussions may be found it [98, 99].

3This means that linearized theory breaks down in this limit, just as it does for the Chern-Simons limit of
Gauss-Bonnet gravity.
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5 Thermodynamics and Dark Energy in Hořava Gravity

If we assume that the cosmological scenario of a universe governed by Hořava-Lifshitz grav-
ity, it is a natural problem to an investigation of its thermodynamic properties, and in particu-
lar of the generalized second thermodynamic law. The validity of the generalized second law
of thermodynamics in a universe governed by Hořava-Lifshitz gravity has been discussed
by Jamil et al. in [109]. They calculated the entropy time-variation for the matter fluid and,
using the modified entropy relation, that of the apparent horizon itself and found that under
detailed balance the generalized second law was generally valid for flat and closed geome-
try and it was conditionally valid for an open universe, while beyond detailed balance it was
only conditionally valid for all curvatures. They followed the exact and robust approach, that
is they used the modified entropy relation as it has been calculated in the specific context
of Hořava-Lifshitz gravity. Under the equilibrium assumption between the universe interior
and the horizon, which is expected to be valid at late cosmological times, they found that the
generalized second law is only conditionally valid. The possible violation of the generalized
second thermodynamical law in Hořava-Lifshitz cosmology could lead to various conclu-
sions. Further the dark energy was discussed by setare et al. [20]. They nicely investigated
the holographic dark energy scenario with a varying gravitational constant in a flat back-
ground in the context of Hořava-Lifshitz gravity and immediately, extracted and determined
the evolution of the dark energy density parameter. Also they discussed some non trivial
cosmological implications of this holographic model. Also they evaluated the dark energy
equation of state for low redshifts even when the model contains a time varying gravitational
constant.

6 Exact Solutions

Considering the non-static, cylindrically symmetric solutions with the metric ansatz

ds2 = −N(t)2dt2 + 1

N(t)2
[dr2 + �(r)2dz2 + �(r)2dϕ2] (4)

For simplicity we decompose the spatial metric as a conformal by another diagonal simple
form:

gij dxidxj = 1

N(t)2
γij dxidxj

γij = diag(1,�(r)2,�(r)2) (5)

This may or may not represent a cosmic string, and it may have singularities and/or event
horizons.

In synchronous time t , the Cylindrical ADM metric has Ni = 0, where �(r), �(r)

are the usual Weyl metric functions. Too in GR and only for vacuum solutions the metric
function �(r) = r and in another cases is determined from a quadrature on another metric
functions �(r) [27]. There is another general choose for metric form but since in this paper
our main goal is to investigate static cosmic strings in analogous for usual GR samples, we
limited ourselves to this simple but applicable gauge. On this background,

Kij = − Ṅ

N4
γij (6)



Int J Theor Phys (2011) 50: 1493–1514 1501

K = Ki
i = −3

Ṅ

N2
(7)

KijK
ij = 3

(
Ṅ

N2

)2

(8)

Following Sotiriou and et al. [24] we use from a general full classical action,

S =
∫

[T (K) − V (g)]√gNd3xdt (9)

where

T (K) = gK(KijKij − K2) + ξK2 (10)

This is the general kinetic term corresponds to the limit ξ → 0. Since the kinetic action is
(by definition) chosen to be dimensionless, we have set the critical exponent z = 3 to make
gK dimensionless, then provided gK is positive one can without loss of generality rescale the
time and/or space coordinates to set gK → 1. Now consider the following form for potential
term:

V (g) = g0ζ
6 + g1ζ

4R + g2ζ
2R2 + g3ζ

2RijR
ij

+ g4R
3 + g5R(RijR

ij ) + g6R
i
jR

j

k R
k
i + g7R∇2R + g8∇iRjk∇ iRjk (11)

As in [25, 26, 31] was stated, suitable factors of ζ are introduced to ensure the coupling ga

are all dimensionless. Without loss of generality we can rescale the time and space coordi-
nations to set both of the gK → 1 and g1 → −1. From normalization of the Einstein–Hilbert
term, we see that in physical units c → 1

(16πGNewton)
−1 = ζ 2

� = g0ζ
2

2

so that ζ is identified as the Planck scale. The cosmological constant is determined by the
free parameter g0, and obviously g0 ∼ 10−123. In particular, the way Sotiriou had set this up,
now we are free to choose the Newton constant and cosmological constant independently
(and so to be compatible with observation). In contrast, in the original model presented
in [3], a non-zero Newton constant requires a non-zero cosmological constant, of the wrong
sign to be compatible with cosmological observations [7, 32].

For a special choose of our metric (4) the Ricci scalar and non-vanishing components of
Ricci Tensor are:

R11 = �′′

�
+ � ′′

�
(12)

R22 = �2

(
�′′

�
+ �′

�

� ′

�

)

R33 = �2

(
� ′′

�
+ �′

�

� ′

�

)

R = 2N(t)2

(
�′′

�
+ � ′′

�
+ �′

�

� ′

�

)
(13)
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Here, a prime denotes a derivative with respect to r . By substituting (6), (7), (8) in (10) and
(12), (13) in (11) and all in (9) we obtain the following form of action:

S =
∫

dtd3xN3��

[
3(3ξ − 2)

(
Ṅ

N2

)2

− f (R) − (g3ζ
2 + g5R)H − g6W − g7B − g8Y

]

≡
∫

dtd3x� (14)

where in it,

f (R) = g0ζ
6 − ζ 4R + g2ζ

2R2 + g4R
3

H = RijR
ij = N4

[(
�′′

�
+ � ′′

�

)2

+
(

�′′

�
+ �′

�

� ′

�

)2

+
(

� ′′

�
+ �′

�

� ′

�

)2]

W = Ri
jR

j

k R
k
i = N6

[(
�′′

�
+ � ′′

�

)3

+
(

�′′

�
+ �′

�

� ′

�

)3

+
(

� ′′

�
+ �′

�

� ′

�

)3]

B = R∇2R = 4N4

(
�′′

�
+ � ′′

�
+ �′

�

� ′

�

)(
�′

�
R′ + � ′

�
R′ + R′′

)

Y = ∇iRjk∇ iRjk = N6

[((
�′′

�
+ � ′′

�

)′)2

+
[(

�2

(
�′′

�
+ �′

�

� ′

�

))′( 1

�2

(
�′′

�
+ �′

�

� ′

�

))′]
+ [� → �]

]

(15)

The extreme functions are the solutions of the Euler-Lagrange equations that are obtained
by setting the all variational derivatives of the functional with respect to each function X ≡
(�(r),�(r),N(t)) equal to zero. The Ritz variational principle affords a powerful technique
for the approximate solution of (9). The result is an upper bound on the corresponding
eigenvalue and optimal values for the parameters of (9).4 Variational Bound can also be
used to extremize general functional given appropriate trial functions. We remind that if we
consider a system with the Lagrangian with linear terms of curvature R we must recover the
GR solutions i.e., a non static cylindrical solution with cosmological constant. However It
is proper, if we make an analytic continuation of coordinations r , t , namely, we obtain the
Tian solution [28] in a special coordinations or a non static solution which is pure radiation
field generated from a flat space-time and has a Weyl tensor of type N . The metric of this
space-time is described by the Rao line element [29],

ds2 = ek(t−r)(dr2 − dt2) + r2dϕ2 + dz2 (16)

This is a special case of non static Weyl gauges which we used in witting (4). For this metrics
with null vector fields it was shown that [30] in our notations �(r) = r . The equations of
motion due to the variation of metric functions are more complicated and we do not present
them here. As a simple but physically important case we seeking only those solutions which
can be described the cosmic strings. We choose a very restricted gauge as,

�(r) = 1, N(t) = const (17)

4Variational Bound.
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In GR these constraints leads to a static cosmic string and also in metric f (R) gravity [22,
23]. The resulting metric with new parameters (ζ, g0, . . . , g8) may be so interesting. In order
to obtain the solution, let us substitute the metric ansatz (4) with constraints (17) into the
action, and then vary the function �(r). The same process was done in spherical symmetry
in [16]. This is possible because the metric ansatz shows all the allowed singlets which are
compatible with the SO(3) action on the S2 × R. The resulting reduced Lagrangian, up to
an overall scaling constant, is given by

L0 = �(r)[−f0 − (g3ζ
2 + g5R0)H0 − g6W0 − g7B0 − g8Y0] (18)

where

R0 = 2
� ′′

�

f0 = f (R0)

H0 = 1

2
R2

0

W0 = 1

4
R3

0

B0 = 2R0

(
R′

0

� ′

�
+ R′′

0

)

Y0 = R′2
0 + (�2R0)

′
(

R0

�2

)′

The functional (14) with reduced Lagrangian (18) is in the form,

S = (t2 − t1)

∫
d3�(�,� ′, . . . ,�6) (19)

where

�a = da�

dra

By using a general variational principle applied to this higher order function [25, 26] we can
write all equations of motion for metric function � ,

dL0

d�
+

6∑
a=1

(−1)a da

dra

[
∂L0

∂�a

]
= 0 (20)

Because the equation of motion contain up to eight derivative terms, it is difficult to find the
exact solutions. In order to understand the behavior of solutions in Hořava gravity we try to
solve the equations of motion in a special case. By our inspirations from GR we know that a
cosmic string has a linear functionality as � = ar +b. The constant b may be turned to zero
by changing scales along the t and z axes and choosing the zero point of the r coordinate.
Since our model essentially is not GR, we expected that an ad hoc assumption for metric
function as

� = (Ar + B)m (21)
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For a general value of A,m,B the solution to the equations of motion is consistent only
with the following cases. Considering m as a real parameter, one must note that for m = 1,
B = 0, A2 = 1 − 4η (η mass per length of string) we have a cosmic string. By considering
this constraint we find the field equation (20) with solution (21) is satisfied identically.

6.1 Solutions with g8 = 0, g7 = 0, B = 0

In this case by substituting (21) in field equation (20) we obtain

mi = −3,4, i = 1,2

Consequently we can set B = 0 in metric function (21). Thus the most general solution for
(4) is one of the two possible functions

�(r) = (Ar)mi (22)

Thus,

ds2 = −dt2 + dr2 + dz2 + (Ar)2mi dϕ2 (23)

In this case there is an arbitrarily in choosing another coupling coefficients (g2 . . . g6). The
Ricci scalar is given by

R = 2
mi(mi − 1)

r2
(24)

The solution has a curvature singularity at r = 0 for general mi �= 0,1. The only non zero
component of the Riemann Tensor is:

Rrzrz = (Ar)2mm(m − 1)

r2

The a singularity structure of the solution (23) is apparent from its Kretschmann scalar:

R = (Ar)4mm2(m − 1)2

r4

then the Kretschmann scalar has a naked singularity at r = 0. In GR, the cosmological
horizon(s) for cylindrically symmetric spacetimes is discussed in detail by Wang [110].

6.2 Solutions with g8 = 0, g7 = 0, g2 = 0, B �= 0

In this case as the previous section, substituting a general form of (21) in (20) leads to the
similar values for m. It is particular interest to investigate the m = −3 solution, in which
case, the coupling coefficients (g3 . . . g6) constrained to g6 = 2g5 + 4g4. This is one of the
good results of this paper. We obtained a restriction on some constants of the model. In this
case the general solution can be written as

ds2 = −dt2 + dr2 + dz2 + (Ar + B)2mi dϕ2 (25)

The solution has a curvature singularity at r = −B
A

for general B < 0. We mention here
that the cases m = 0,1 is satisfied field equations without any limitation. Specially the case
m = 1 is so interesting. Since it represents the usual familiar line element of a static cosmic
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string. In this case there is an arbitrarily in choosing another coupling coefficients (g2 . . . g6).
The Ricci scalar is given by

R = 2A2 mi(mi − 1)

(Ar + B)2
(26)

The solution has a curvature singularity at r = −B
A

for general mi �= 0,1. The only non zero
component of the Riemann Tensor is:

Rrzrz = m(m − 1)(Ar + B)2m−2A2

The singularity structure of the solution (25) is apparent from its Kretschmann scalar:

R = (m(m − 1))2(Ar + B)4m−4A4

then the Kretschmann scalar has a naked singularity at r = −B
A

.

6.3 Solutions with g8 = 0, g7 = 0, g4 + 1
2g5 + 1

4 g6 = 0, g2 + 1
2g3 = 0

The Lagrangian (18) in this case has only three independent coupling constants and reduces
to the following form:

L0 = ζ 4(−g0� + 2ζ 2� ′′) (27)

the field equation (20) will be

g0 = 0 (28)

This term has a significant physical meaning. If we refer to the previous relations between
parameters of model we observe that if this condition holds, the cosmological constant must
be vanished. Thus this model describes a non classical (for appearance of a second order
derivatives of matter field in action) system with no potential term. Indded the action (19)
may be integrated to obtain:

S = 4ζ 6π(t2 − t1)l

∫
dr� ′′r2 (29)

where in it we assumed that the cylindrical coordinations z is bounded in interval (0, l). If we
carry out a part by part integration on the radial part of this integral and by assumption that
our Potential function ψ may be bounded and posses suitable boundary conditions (a well
posses function) entirely away from the origin of radial coordinations r = 0 to infinity. Note
that the action (29) can be written as

S = 8ζ 6π(t2 − t1)l

∫
dr�r + B

where B is a surface term, which must be chosen so that the action has an extreme under
variations of the fields with appropriate boundary conditions. One demands that the fields
approach the classical solutions at infinity. Varying the action, we find the boundary term

δB = −(t2 − t1)N0δM
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The boundary term B is the conserved charge associated to the improper gauge transforma-
tions produced by time evolution. Here M and N0 are conjugate pairs. Therefore when one
varies M , N0 must be fixed. Thus the boundary term should be in the form

B = −(t2 − t1)N0M + B0

where B0 is an arbitrary constant, which should be fixed by some physical considerations;
for example, in topological black hole case with arbitrary constant scalar curvature horizon.
Mass vanishes when black hole’s horizon goes to zero [19]. For details, see [43]. We will
not go further in detail. The dynamics of the metric function in this case is not determined
without more mathematical features of variational calculus which is found in any textbook
in this field as which is discussed in [25, 26].

7 The Real Cosmic String

Now let we impose the next constraints,

g8 = 0, g7 = 0, g4 + 1

2
g5 + 1

4
g6 = 0, g2 + 1

2
g3 �= 0 (30)

From the action, we can obtain the equation of motion as

−g0ζ
6 + 2g9R − 6g9

d2R2

dr2
= 0 (31)

where R = 2 � ′′
�

is the Ricci scalar. The function R(r) can be obtained as

R(r) = β + 1

C2
sn(Ar,D)2 (32)

where the Jacobi elliptic functions sn is in turn defined in terms of the amplitude function
JacobiAM [41, 42]

sn(z, k) ≡ JacobiSN(z, k) = sin(JacobiAM(z, k))

and

φ = JacobiAM

(∫ φ

0

dφ

(1 − k2 sin(θ)2)1/2
, k

)
, φ ∈ (−3/2,3/2)

where in (32)

C = ξeiθ = 0.19 + 0.73i (33)

D = ηeiρ = 0.86 + 0.50i (34)

A = ±
√

β

15

1

2ξ
eiθ (35)

β3 = 15

2
α (36)

α = g0ζ
6

6g9
, g9 = g4 + 1

2
g5 + 1

4
g6 (37)
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As in [24] is proved that the ζ = Mpl , g0 = 2�

M2
pl

. For metric (4) with (17) the Ricci scalar

is

R(r) = 2
� ′′

�
(38)

The general solution for (38) with (32) is so complicated. Instead of doing that, we focused
ourselves only to the near axis r ≈ 0 behavior of (31). It is adequate to define a very impor-
tant physical radial scale

r0 = 5.670

Mpl

(
g9

g0

) 1
6

(39)

With this length scale the meaning of near axis limit is thinkable as the following ex-
pression

r � r0 (40)

Not that in this limit we do not tend to the origin. In this good reasonable physical ap-
proximation the differential equation (38) (albeit after expansion by series (31) in terms
of r

r0
) can be solved easily. The solution is written in terms of Whittaker functions M,W

[41, 42],

�(r) = 1√
r

[
c1WhittakerM

(
−βr0

4

√
2,

1

4
,
√

2
r2

r0

)

+ c2WhittakerW

(
−βr0

4

√
2,

1

4
,
√

2
r2

r0

)]
(41)

once again we impose the near axis limit on (41). The result up to order one is simple5

�(r) = ar + b (42)

a ≡
(√

2

r0

)3/4(
c1 − 2

√
πc2

�( 1
4 + βr0

√
2

4 )

)
(43)

b ≡
√

π(
√

2
r0

)1/4c2

�( 3
4 + βr0

√
2

4 )
(44)

Again, c1, c2 are integration constants and c2 could be set to zero. Similar to the case of
GR, we find the metric of a cosmic string

ds2 = −dt2 + dr2 + dz2 + (ar)2dϕ2 (45)

The metric (45) is locally flat and can be brought to a Minkowski form in any region not
surrounding the string. This implies that the presence of the string has no effect on physical
process in such a region. In particular, a test particle which is initially at rest relative to the
string will remain at rest and will not experience any gravitational force. Although the space
around the string is locally fiat its global structure is different from that of Euclidean space.

5�(s) = ∫ ∞
0 e−t t s−1dt .
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The parameter a in (45) can be expressed in terms of mass per unit length of spacetime
η [44, 45],

a = 1 − 4η (46)

The mass per unit length of spacetime η is found to be

η = 0.25 − 0.54109c1(Mpl)
1
2

(
�

g4 + 1
2g5 + 1

4g6

) 1
8

(47)

Clearly η < 0.25 is for all positive values of c1. Now we compare this function with another
one which was found by Aryal et al. [61]. They constructed a solution which describes
two Schwarzschild black holes held apart by a system of cosmic strings, by generalizing a
solution, due to Bach and Weyl. Their metric is vacuum at all points away from the axis
r = 0 and describes two black holes with masses m1 and m2 located on the z axis, and
so separated by a z-coordination distance 2d . The black holes are held in place by conical
singularities along the different axial segments. The effective mass per unit length η of any
of the conical segments depends only on the limitation of the value of the metric function
on the axis. For all positive values of m1, m2 and d . In the original Bach-Weyl solution the
mass per unit length ηext of the exterior segments was assumed to be zero and this forces
ηint < 0 and the interior Bach-Weyl segment are normally characterized as a ‘strut’ rather
than a string. However in (46), all segments will have non-negative masses per unit length if

c1 > 0.46203(Mpl)
− 1

2

(
�

g4 + 1
2g5 + 1

4g6

)− 1
8

In the particular case

c1 = 0.46203(Mpl)
− 1

2

(
�

g4 + 1
2g5 + 1

4g6

)− 1
8

the interior segment vanishes.
It should be also noted that the parameter η appearing in this derivation plays two essen-

tial independent roles:
One as a measurement of the strength of the gravitational field in the exterior metric and a

second one as the integrated mass per unit length of the interior solution. In GR it is possible
to endow the interior solution with an equation of state more general than that considered by
Gott, Hiscock and Linet [51, 52, 54] while we preserve the form of the exterior metric. The
mass per unit length in the interior solution is not typically equal to the metric parameter
1
4 (1 − a). For this reason the symbol η reflects a geometric property of the exterior metric
which only will be referred as the gravitational mass per unit length of the spacetime.

The metric (45) with (46), (47) describes Minkowski spacetime with a wedge of angular
extent that �ϕ = 8πη has removed from each of the constant surfaces t and z. The apex
of each wedge lies on the axial plane r = 0, and the sides of the wedge are glued together
by forming what is sometimes referred as conical spacetime. The fact that the metric (45) is
locally Minkowskian implies that the Riemann tensor is zero everywhere outside the axial
plane, and therefore when a test particle moving through the metric would experience no
tidal forces. In particular, such a particle would not be accelerated towards the string. There-
for a local observer should be unable to distinguish a preferred velocity in the z-direction;
where any gravitational force in the radial direction would destroy this symmetry. When
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it is combined with the other symmetries of the metric, this property forbids gravitational
acceleration in any direction. Incidentally, Mark Hindmarsh and Andrew Wray [55] shown,
by detailed analysis of the geodesics in a general Levi-Civita spacetime, that gravitational
lensing with a well-defined angular separation between the images is possibly only in the
specialized string case m = 0. When � = 0, η goes back to 0.25, the effect of higher deriv-
ative terms disappear. As one want, General Relativity is not recovered because the extra
freedom degrees which are presented in the full theory all are not decouple. On the contrary,
one of those freedom degrees becomes strongly coupled, and one recovers General Relativ-
ity with an additional strongly coupled scalar. It is difficult to see how this would correspond
to a better choice since we move away from testable regions of GR. Therefore, evidence of
this mass function absent in classical local tests of general relativity which it’s implement
may be weak and moving slowly sources. In Hořava gravity we have seen that we have no
reliable linearized theory to work with due to strong coupling of an extra scalar degree of
freedom. Even if it was tractable, it seems unlikely that a non-linear analysis could recover
the successes of the General Relativity for cosmic strings in this case. One can then easily
be seen that three of the coupling constants gi , i = 4,5,6 cannot be set to zero. Thus, in
general, there are cases where what appears should be violation of a symmetry is just a new
choice of mass function for cosmic string. The same happens with Hořava theory. It looks
that it violates four-dimensional covariance but this is just because it is written in a specific
gauge, specified by the ADM frame, which can be used just because of the four-dimensional
covariance of the theory (and the corresponding constraints).

8 About the Existence of Non-static Cylindrical Solutions

The cylindrical symmetric strings are not the single class of cosmic strings. As was shown
by several authors, in GR there are both local and global non static cosmic strings in the
context of Lyra geometry [84], static and non-static plane symmetric cosmic strings in Lyra
manifold [85–88], non static self gravitating fluids [89] and non static cylindrical vacuum
solutions [90]. Lyra [84] proposed a modification of Riemannian geometry by introducing a
gauge function in to the structure less manifold, as a result of which the cosmological con-
stant arises naturally from the geometry. Several authors have studied cosmological models
based on this manifold with a constant gauge vector in the time direction. Non-static plane
symmetric cosmic string model is quite similar to the non-static plane symmetric Zeldovich
model p = ρ obtained by Reddy and Innaiah [91] and Reddy [92] in general relativity. This
model reduces to empty space-time discussed by Bera [93] in general relativity. In Lyra
geometry there is a global string, the energy momentum tensor components are calculated
from the action density for a complex scalar field ψ along with a typical potential. But find-
ing these classes of solutions in Hořava gravity are most complicated and we can not present
them here. But as good problems for further considerations we can treat them in future plan.

9 The Self-Force on a Massive Particle Near a Hořava-Lifshitz Straight String

Observational constraints in HL theory have been discussed by several authors [94–97]. In
the last sections we examined some possible constraints on the parameters by calculating
the self force in the field of a cosmic string which was obtained in the previous section. In
GR we know that a charged particle at rest in the spacetime experiences a repulsive self-
force [56], while fluctuations of the quantum vacuum near a straight string have a non-zero
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stress-energy tensor and can induce a range of interesting effects [57–59]. In the weak-field
approximation, the gravitational field due to a particle of mass “m” at rest at a distance
“a” from a straight string is the most convenient which is calculated by transforming to the
Minkowski form (45) of the metric and for fixing the coordinations so that the particle lies
at z = 0 and ϕ = ϕ0 = π(1 − 4η). Now we want to generate a meaningful expression for
the self-force on the particle. The formula for the gravitational self-force was first derived
by Dmitri Gal’tsov in [60], although the electrostatic case, which is formally identical, was
analyzed by Bernard Linet four years earlier [56]. By following Gal’tsov, it is instructive to
write the self-force in the form

−→
F = −Gm2η

a2
f (η)r̂ (48)

where

f (η) = 1

4πη

∫ ∞

0

[
sinh(πu/ϕ0)π/ϕ0

cosh(πu/ϕ0) − 1
− sinh(u)

cosh(u) − 1

]
du

sinh( u
2 )

(49)

10 The Value of the Coupling Constants g4,g5,g6 Obtained from Analysis of Bound
Circular Orbits

In GR, the fact that the self-force
−→
F is central has given rise to the common misapprehension

that bound circular orbits exist for massive particles in the neighborhood of a straight cosmic
string. It is true that if (47) should be continue to hold for a moving particle, then circular
orbits would exist with the standard Newtonian dependence of the orbital speed

vcirc =
√

Gmηf (η)

a
(50)

Thus, for example [45], a body with m = 7 × 1022 kg (roughly equal to the mass of the
Moon) could orbit a GUT string with η = 10−6 at a distance a = 4 × 108 m (the mean
Earth-Moon distance) if vcirc ≈ 0.1 ms−1, which is about 1/10000 th of the Moon’s actual
orbital speed around the Earth. Substituting this approximated value of η in (47) we obtain

g9 ≈ 481.55927(c2
1Mpl)

4� (51)

Remember that c1 is fixed by invoke quantum theory of gravity. The relation (51) is fun-
damentally important. It is related between quantum gravity and the cosmological observa-
tions.

11 Conclusion

In conclusion, we found cylindrical symmetric solutions with arbitrary scalar curvature in
Hořava-Lifshitz theory, by generalizing the static cylindrical symmetric solutions in GR. We
found that there exist solutions only in special choose of the coupling constants. One of the
solutions has a near axis behavior as cosmic string. For this solution we can define a finite
mass per unit length spacetime. Such an explicit term occurs in the occasion of considering
quantum corrections to cosmic string line element. In our mass per unit length expression,
there is a undetermined constant c1. To fix the constant c1, one has to invoke quantum theory
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of gravity. The self-force on a massive particle near a Hořava-Lifshitz straight string is re
calculated. By analyzing bound circular orbits we derived a new value for the coupling con-
stants of Hořava theory which seems that there is a new observational method for estimating
the validity of the Hořava model in the context of cosmology.
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1439 (2010). arXiv:0905.2786 [hep-th]

38. Mukohyama, S.: Dark matter as integration constant in Hořava-Lifshitz gravity. Phys. Rev. D 80,
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B 679, 504 (2009). arXiv:0905.0751 [hep-th]
75. Blas,a, D., Pujol’asb, O., Sibiryakova, S.: On the extra mode and inconsistency of Hořava gravity. JHEP
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83. Li, M., Pang, Y.: A trouble with Hořava-Lifshitz gravity. JHEP 0908, 015 (2009). arXiv:0905.2751
84. Lyra, G.: Math. Z. 54, 52 (1951)
85. Reddy, D.R.K.: J. Phys. A. Math. Gen. 10, 55 (1977)
86. Reddy, D.R.K.: Aust. J. Phys. 30, 109 (1977)
87. Reddy, D.R.K.: Astrophys. Space Sci. 286, 365 (2003)
88. Reddy, D.R.K.: Astrophys. Space Sci. 286, 359 (2003)
89. Roy, S.R., Narain, S.: Indian J. Pure Appl. Math. 14(1), 96–107 (1983)
90. Misra, M., Radhakrishna, L.: Proc. Nat. Inst. Sci. India, A 28(4), 632–645 (1962)
91. Reddy, D.R.K., Innaiah, P.: Prve. Einstein Found. Intern. 2, 9 (1985)
92. Reddy, D.R.K.: Astrophys. Space Sci. 140, 161 (1988)
93. Bera, K.: J. Phys. A 2, 138 (1969)
94. Dutta, S., Saridakis, E.N.: Observational constraints on Hořava-Lifshitz cosmology. Version published
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