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Abstract Quantum mechanical systems exhibit wave-particle duality property. This duality
property has been exploited for information processing. A duality quantum computer is a
quantum computer on the move and passing through a multi-slits. It offers quantum wave
divider and quantum wave combiner operations in addition to those allowed in an ordinary
quantum computer. It has been shown that all linear bounded operators can be realized in a
duality quantum computer, and a duality quantum computer with n qubits and d-slits can be
realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality
quantum computing mode. In this article, the main structure of duality quantum computing,
their mathematical description and applications are reviewed.

Keywords Duality computer · Duality quantum computer · Duality computing mode ·
Duality mode · Quantum divider · Quantum combiner · Duality parallelism

1 Introduction

The duality computer, or duality quantum computer exploits the wave-particle duality of
quantum systems [1]. To exhibit the particle wave duality property, one needs to let a quan-
tum computer move. Of course, it would be very difficult to imagine a huge quantum com-
puter system such as nuclear magnetic resonance facility to move and pass through a double
slits. However we do not need to build such a complicated device and it has been proven that
a moving n-qubit duality computer passing through a d-slits can be perfectly simulated by
an ordinary quantum computer with n-qubit and an additional qudit, where a qudit is sim-
ilar to a qubit but with d levels [2, 3]. Duality quantum computing in such a way is called
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duality quantum computing mode, or duality mode in a quantum computer. Thus we are
exempt completely from building a moving quantum computer and can work entirely in an
ordinary quantum computer in performing duality quantum computing. Hence, we will treat
computing with a true duality quantum computer and with the duality mode of a quantum
computer as the same. We will interchangeably use the terminologies in these two pictures
in this paper.

The duality quantum computer offers additional capability in information processing in
addition to those offered by a quantum computer. This is the duality parallelism. Duality
parallelism refers to the capability with which one can perform different gate operations
on the sub-wave functions at different slits [1]. This enables the duality computer to per-
form non-unitary gate operations. After a series of studies [1–4], it is found that the duality
quantum gate, or duality gate has the following form

Lc =
d−1∑

i=0

ciUi, (1)

where ci is a complex number and Ui is unitary, and the ci ’s satisfy

d−1∑

i=0

|ci | ≤ 1. (2)

This form of duality gate is called complex duality gate, or complex generalized quantum
gate. In the original paper [1] and in [6], the duality quantum gate is restricted to positive
real ci which is denoted by ri , and they are constrained by

∑
i ri = 1. In this case, the duality

quantum gate is called real duality gate or real generalized quantum gate, and is denoted as
Lr , and

Lr =
d−1∑

i=0

riUi . (3)

This corresponds to a physical picture of asymmetric d-slits, and ri is the probability that
the duality computer system passes through the i-th slit.

The new operations in duality computing are the quantum wave divider (QWD) operation
and quantum wave combiner (QWC) operation [1]. The quantum wave divider operation
divides the wave function into many identical parts with reduced amplitudes. The physical
picture of this division is that a quantum system passing through a d-slits, and its wave
function is divided into d sub-waves, each with the same internal wave function and differs
only in the center of mass motion characterized by the slit. The combiner operation adds
up all the sub-waves into one wave function. Though the divider operation is analogous to
quantum cloning, there is a fundamental difference between them. In quantum divider, one
divides the wave function of the same quantum system into many parts, whereas in quantum
cloning one copies the state of one quantum system onto another quantum system. The
division operation does not violate the non-cloning theorem.

Duality gates are generally non-unitary, it is natural that non-unitary evolutions, such as
those in open quantum systems should be simulated in such machines. In a wider context, it
is an important issue to study the computing capabilities of duality computing. The recent
theorem of Wang, Du and Dou [5] which limits what can not be a duality gate in a Hilbert
space with infinite degrees of freedom, is an important step toward this direction.
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There have been intensive interests in the theory of duality computer in recent years [1–
18]. Here in this review article we will briefly describe the main results. The details of the
proof are not given, interested readers can refer to the original papers.

This article is organized as follows. In Sect. 2, we describe the divider and combiner op-
erations. In Sect. 3, we briefly review duality quantum computing. In Sect. 4, we summarize
the mathematical theory of duality computer. In Sect. 5, we give a brief review of the algo-
rithms in duality computer and their implications for quantum algorithm design. Finally in
Sect. 6, we give a brief summary and present a perspective.

2 Divider, Combiner Operations

The most general form of duality quantum gates have been given [2, 3]. Though the main
mathematical properties are essential the same, the notations in previous literatures are not
unified. For the convenience of readers, we use the expressions from duality mode in this
review article. They are derived according to the duality mode in [2, 3, 11].

The divider structure describes the properties of a quantum wave divider, and it is denoted
as p = (p0, . . . , pd−1) where each pi is a complex number with a module less than 1 and∑d−1

i=0 |pi |2 = 1. Writing H⊕d
for

⊕d−1
i=0 Hi where Hi = H , i = 0, . . . , d − 1. The divider

operator Dm: H → H⊕d
is defined by

Dmψ =
d−1⊕

i=0

(piψ). (4)

This definition of the divider operator in (4) is of the most general form, and it describes
a general multi-slits. When there are d identical slits, then pi = √

1/d .
Mathematically, the combiner operation Cm can be represented as follows,

Cm(ψ0 ⊕ · · · ⊕ ψd−1) =
d−1∑

i=0

qiψi, (5)

where q = {q0, . . . , qd−1} is the combiner structure that describes the properties of a
quantum wave combiner. Each qi is a complex number with a module less than 1, and∑

i |qi |2 = 1. If the combiner structure qi = 1/
√

d , we call it a uniform combiner structure.
In the case of uniform divider and combiner structures, the combined action of divider

and combiner leaves the state unchanged, namely

Dmψ =
d⊕

i=1

√
1/dψ, (6)

Cm

d⊕

i=1

√
1/dψi =

∑

i

1/dψ = ψ. (7)

This property also hold when the divider structure and combiner structure satisfy certain
relation, which will be given in the next section.

It will be shown later in this article that the divider and combiner structure Dm and Cm

each forms a column or a row of elements in a unitary matrix respectively. For duality gates
with the form of Lr in (3), the unitary matrices that lead to the structures of Cm and Dm are
adjoint to each other.
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3 Duality Quantum Computing Mode in a Quantum Computer

A duality computer is a moving quantum computer passing through a d-slits. In Fig. 1, we
give an illustration for a duality quantum computer with 3-slits. The quantum wave starts
from the 0-th slit in leftmost wall, and then goes to the middle screen with three slits (this
is the divider operation). Between the middle screen and the rightmost screen, some unitary
operations are performed on the sub-waves from different slits. They are then collected at
the 0-slit in the rightmost screen where a detector is placed, and this is the quantum wave
combiner operation.

One can imagine that building such a moving quantum computer is extremely hard. How-
ever it has been shown that a duality computer can be simulated on an ordinary quantum
computer with just a little extra qubit resource [2, 3]. For example, an n-qubit duality quan-
tum computer with d-slits can be simulated by a quantum computer with n qubits and one
qudit. Hence, duality quantum computing can be treated as a special working mode of a
quantum computer. We are completely exempt from building a moving quantum computer.

The divider operation is simulated by a unitary operation V and the combiner operation
is simulated by another unitary operation W on an auxiliary qudit that represents a d-slits.
The quantum circuit is shown in Fig. 2, where V and W are two unitary operations on the
auxiliary qudit. Between the operations V and W , there are d auxiliary qudit controlled
operations. The sub-levels of the qudit simulate the d-slits. At first the initial state of the
quantum computer plus the qudit system is |�〉|0〉. Then we perform the unitary operation

Fig. 1 An illustrated picture for
a three-slits duality computer
simulated by a quantum
computer working in duality
mode

Fig. 2 Duality computing in a quantum computer. |�〉 is the initial state of duality quantum computer and |0〉
is the controlling qudit. The circles represent the state of the controlling qudit, the squares represent unitary
operations. Unitary operations U0, U1, . . . ,Ud−1 are activated only when the qudit holds the respective
values indicated in circles
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V on the auxiliary qudit, and this transforms the state into

|�〉|0〉 → |�〉V |0〉 =
d−1∑

i=0

Vi0|�〉|i〉. (8)

Note that the coefficient in each slit is now Vi0 which is the matrix element of the unitary
matrix V . In general, Vi0 is a complex number. Note that |Vi0| ≤ 1 and

∑d−1
i=0 |Vi0|2 = 1 are

the constraint on the coefficients. This V is a generalized quantum division operation, and

pi = Vi0, (9)

is the divider structure.
Then performing the auxiliary qudit controlled operations on the quantum computer, one

has the following state

d−1∑

i=0

Vi0Ui |�〉|i〉. (10)

This simulates the simultaneous operations on the sub-waves at different slits.
To combine the wave functions, one performs the unitary operation W , and the result of

this operation is
∑

i

Vi0Ui |�〉W |i〉. (11)

Because the detector is placed at slit 0, therefore we focus ourselves only on the wave func-
tion when the qudit is in state |0〉. The wave function at the upper slit, namely slit 0, is
now

∑

i

W0iVi0Ui |�〉|0〉 =
∑

i

(W0iVi0)Ui |�〉|0〉, (12)

hence ci = W0iVi0 is the coefficients in the duality gate in (1).
It should be noted that W is a generalized combiner operation and

qi = W0i , (13)

is the combiner structure in (5). Physically, this corresponds to a multiple asymmetric slits
with some unitary lenses at each slit so that they modify the phases of the wave function at
each slit. This is the generalized quantum combiner operation.

For a special case where W = V †, we recover to real generalized quantum gate because
ri = V

†
0iVi0 = |Vi0|2 which is real and positive, and satisfies

∑

i

ri =
∑

i

|Vi0|2 = 1, (14)

which is the case corresponding to Lr in (2).
In general ci = W0iVi0 is a complex number and is the product of two unitary matrix

elements. The sum of ci ’s is
∑

i

ci =
∑

i

W0iVi0 = (WV )00. (15)
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The value of (WV )00 is just that of an element of a unitary matrix, and hence has the con-
straint |(WV )00| ≤ 1. Hence the most general form of duality gates allowable by the laws of
quantum mechanics is

d−1∑

i=0

ciUi, (16)

where ci are complex numbers with module less or equal to 1, and with the constraint
|∑i ci | ≤ 1 and can be written as the product of elements of two unitary matrices, namely
ci = W0iVi0.

It has been shown recently by Cao et al. [10] that it is necessary and sufficient to decom-
pose a generalized quantum gate in the form in (16) in terms of two unitary operators V and
W in (15) if the coefficients satisfies

∑

i

|ci | ≤ 1. (17)

They have given the explicit form of the decomposition, which is crucial in duality quantum
algorithm design and related studies.

4 Mathematical Theory of Duality Quantum Computing

The mathematical theory of duality computer has been the subject of many recent studies.
The mathematical descriptions can be found in [1–10]. Concise mathematical expressions
together with the studies of the properties of divider and combiner, and duality gates are
given.

4.1 Properties of Generalized Quantum Gates and Related Operators

Here we briefly summarize the results, and no proof will be given. Interested readers can
read the original papers for their proof. In order to keep uniformity, we have used symbols
that are different from their original papers. However, the mathematical theory of the divider
and combiner operations are restricted to a real structure, namely p = {p0,p1, . . . , pd−1} has
each pi real and positive, and the combiner structure is also a special case of the uniform
structure. The following results are from [6] and the corresponding operators are labeled
with a subscript p.

Lemma 4.1 The operator Dp is a linear isometry.

Lemma 4.2 The operator Cp with identical combiner structure is a linear isometry and
Cp = D†

p .

Note that the combiner with uniform structure is the special case of the general combiner
operator.

Theorem 4.3 The identity IH is an extreme point of G(H), where G(H) is the set of real
generalized quantum gates on H .

Every unitary operator is in G(H) and IH ∈ G(H). This is to say that
∑

i piUi = IH if
and only if Ui = IH for all i.
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Corollary 4.4 The extreme points of G(H) are precisely the unitary operators in H.

Theorem 4.3 and Corollary 4.4 together tell us that the ordinary quantum computer is
included in the duality computer.

Denoting B(H) by the set of bounded linear operators on H and let R
+G(H) be the

positive cone generated by G(H). That is

R
+G(H) = {αA : A ∈ G(H), α ≥ 0}. (18)

Theorem 4.5 If dim H < ∞, then B(H) = R
+G(H).

This theorem tells us that the duality computer is able to perform any operator in a Hilbert
spaces H. It will be interesting to study the computability of duality computer in terms of
this theorem. However, the theorem by Wang, Du and Dou [5] has given explicitly what can
not be a generalized quantum gate when the dimension is infinite. That will be reviewed
shortly.

Corollary 4.6 If dim H < ∞, then A ∈ B(H) is normal if and only if A = α
∑

i piUi where
α ≥ 0, pi > 0,

∑
i pi = 1 and Ui are unitary operators that mutually commute.

Before going further, we briefly introduce some terminology. This part is from [5] of
Wang, Du and Dou. Let H and K be separable complex Hilbert spaces and let H, K denote
all the bounded linear operators from H to K. If H = K, B(H, H) is abbreviated by B(H).
An operator A ∈ B(H, K) is said to be a contraction if ‖A‖ ≤ 1. The set of all contractions
in B(H, K) is denoted by B(H, K)∞. An operator A ∈ B(H) is said to be a positive operator
if (Ax,x) ≥ 0 for x ∈ H. An operator P ∈ B(H) is said to be an orthogonal projection if
P = P † = P 2. An operator A ∈ B(H) is said to be semi-Fredholm if the range R(A) of A

is closed and at least one of dim N (A) and dim N (A†) is finite. In this case, the Fredholm
index of A is defined by indA = dim N (A) − dim N (A†), where dim N (K) denotes the
dimension of the null-space N (K) of an operator K ∈ B(H). An operator E is said to be a
partial isometry if E is unitary as an operator from R(E†) onto R(E). The following results
are due to Wang, Du and Dou [5].

Theorem 4.7 If A ∈ B(H)1 is a finite-rank perturbation of a semi-Fredholm partial isome-
try with indA �= 0, then A is not a generalized quantum gate.

This is a significant result, since it has told us explicitly that what can not be a generalized
quantum gate. It clearly forbids some type of operations that a duality computing admits.
This theorem has paved the way for further study on the computability of duality computing.
To prove the Wang-Du-Dou theorem, the following lemmas are required.

Theorem 4.8 Denote EV (X) = V XV † if V ∈ B(H) is an isometry. Then EV ∈ Ext[Q(H)].

To understand this theorem, some terminology needs be introduced. Denote
A = (A1, . . . ,Ad), where Ai , 1 ≤ i ≤ d , are arbitrary operators in B(H) satisfying∑d

i=1 A
†
i Ai = I . A quantum operation deduced by A is a bounded linear operator EA defined

on B(H) by

EA(X) =
d∑

i=1

AiXA
†
i , X ∈ B(H). (19)
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The set of all quantum operations on H is denoted by Q(H). If the Ai , 1 ≤ i ≤ d , are
positive operators satisfying

∑d

i=1 A2
i = I , then EA is called a positive quantum opera-

tion, the set of all positive quantum operations is denoted by Qpos(H). If Pi , 1 ≤ i ≤ d ,
are orthogonal projections satisfying

∑d

i=1 Pi = I , then EP is called a projective quan-
tum operation, the set of all projective quantum operations is denoted by Qpro(H). If Ui ,
1 ≤ i ≤ d , are unitary operators in B(H) and

∑d

i=1 pi = 1 with pi > 0, the quantum opera-
tion EU (X) = ∑d

i=1 piUiXU
†
i is said to be a unitary quantum operation.

Lemma 4.9 Let p = (p1, . . . , pd) be a probability distribution and let Ai , 1 ≤ i ≤ d , be
contractions. If I = ∑

i=1 piAi , then Ai = I for 1 ≤ i ≤ d .

Lemma 4.10 Let A be a contraction and let A as an operator from H = H∞ ⊕ H∈ into
H = K ∞ ⊕ H∈ have the operator matrix

A =
(

A11 A12

A21 A22

)
. (20)

If A11 is a unitary from H∞ onto K ∞, then A12 = 0 and A21 = 0.

Corollary 4.11 A non-unitary isometry is not a generalized quantum gate.

Corollary 4.12 If dim H = ∞, then G(H) �= B(H)∞ .

Lemma 4.13 If A ∈ B(H) with ‖A‖ < 1 − 2
d

for some d > 2, there are unitary operators
U1, U2, . . . ,Ud such that

A = 1

n
(U1 + U2 + · · · + Ud). (21)

Theorem 4.14 B(H)◦
∞ ⊂ G(H).

This theorem tells us that if A ∈ B(H)∞ is not a generalized quantum gate, then A should
be in the spherical surface of the unit ball B(H)∞ .

Let R
+G(H) be the positive cone generalized by G(H). That is

R
+G(H) = {αA : A ∈ G(H), α ≥ 0}. (22)

Theorem 4.15 When dim H = ∞, B(H) = R
+G(H).

Conjecture 4.16 B(H)∞/G(H) is the set of all finite-rank perturbations of semi-Fredholm
partial isometries such that the index does not equal to 0.

Lemma 4.17 Let A ∈ B(H). If, for each vector x ∈ H, there exists a complex number λx

such that Ax = λxx, then there exists a complex number λ such that A = λI .

Lemma 4.18 If X = ∑d

i=1 AiXA
†
i for each operator X ∈ B(H), then Ai = λiI , where λi ∈

C and 1 ≤ i ≤ d .

Corollary 4.19 A quantum operation deduced by a unitary is an extreme point of Q(H).
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Theorem 4.20 Let A = (A1, . . . ,Ad) and P = (P1, . . . ,Pd ′), where Aj , Pi ∈ B(H),∑d

j=1 A
†
jAj = I ,

∑d ′
i=1 P

†
i Pi = I , 1 ≤ i ≤ d ′, are orthogonal projections. If EP = EA , then

there exists an d × d ′ complex matrix M = (λji)d×d ′ with M†M = Id ′×d ′ and

Aj =
d ′∑

i=1

λjiPi, (23)

where Id ′×d ′ denotes the d ′ × d ′ identity matrix.

Corollary 4.21 Under the assumption as in Theorem 4.20, additional d ′ = d , then the ma-
trix M is an d ′ × d ′ unitary.

4.2 Properties of Complex Generalized Quantum Gates and Related Operators

The properties of complex generalized quantum gates have been extensively studied by Cao
et al. and they have extended many of the results for real general quantum gates into com-
plex generalized quantum gates [4, 10]. Here we briefly state their results. The results are
from [10].

Let H be a Hilbert space over the field C of all complex numbers, U(H) be the set
of all unitary operators on H and RAGQG(H) be the set of all generalized quantum gates∑d−1

k=0 pkUk , where pk ∈ R+, Uk ∈ U(H),
∑d−1

k=0 pk = 1, d = 1,2, . . . .

Theorem 4.22

(1) RAGQG(H) = [0,1]GQG(H) ⊃ U(H);
(2) The set GQG(H) and RAGQG(H) are absolutely convex subsets of

B(H)1 = {T ∈ B(H) : ‖T ‖ ≤ 1}. (24)

(3) GQG(H) ⊃ {T ∈ B(H) : T ∗ = T ,‖T ‖ ≤ 1} ∪ {T ∈ B(H) : ‖T ‖ < 1}.
(4) B(H) = R+RAGQG(H) = R+GQG(H), and GQG(H) is a multiplicative semigroup.
(5) When dimH < ∞, we have

B(H)1 = GQG(H) = RAGQG(H). (25)

Remark 4.23 When dimH = ∞, we have

RAGQG(H) �= B(H)1.

Lemma 4.24 Let

Uk ∈ U(H), ck ∈ C/{0} (k = 0,1,2, . . . , d − 1)

and
∑d−1

k=0 |ck| ≤ 1. Then
∑d1

k=0 ckUk = IH if and only if
∑d−1

k=0 |ck| = 1 and Uk = e−i arg ck IH

(0 ≤ k ≤ d − 1).

Theorem 4.25 The identity IH is an extreme point of RAGQG(H).

Remark 4.26
∑d−1

k=0 ckUk = IH with
∑d−1

k=0 |ck| = 1 does not imply Uk = IH (k = 0,1,2, . . . ,

d − 1).
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Theorem 4.27 The set Ext(RAGQG(H)) of all extreme points of RAGQG(H) is U(H), i.e.,
Ext(RAGQG(H)) = U(H).

5 Fixed-Point Duality Quantum Search Algorithms

The unsorted database search problem is a benchmark for computing [19]. To find a marked
item from an unsorted database of N items, a classical computer requires O(N) steps.
A quantum computer requires O(

√
N) steps using the Grover algorithm [20] or an improved

algorithm with 100% successful rate [21]. By introducing classical parallelism, the problem
can be further speeded up modestly. Using the Brüschweiler algorithm [22], O(lnN) steps
is required to find the marked state. Using the Xiao-Long algorithm, one needs only a single
query to find the marked state [23]. However this speedup is achieved at the cost of more
computing resources. Namely now there are O(N) quantum computers working in parallel.
In general with N2 quantum computers working in parallel, the number of queries required
to find the marked state is O(

√
N/N2) in a parallelized quantum computing [24]. Though

these algorithms achieve speedup by using more resources, they are still useful in ensemble
quantum computers such as liquid nuclear magnetic resonance [25].

Two fixed-point search algorithms, the N1 and N4 algorithms, are presented here. The
N1 algorithm was given in [1] and [2]. It finds a marked state from an unsorted database with
N items in O(N) steps. This algorithm does not speed up compared to classical algorithms,
because it uses the same amount of queries as that in the classical search algorithm. However,
it uses much less qubit resource, log2 N as compared to N log2 N in classical computing.
Furthermore, it is faster than the fixed search algorithm given recently by Grover [26] and
Li et al. [27]. In these fixed-point search algorithm, the number of queries is O(3log2 N). The
N4 algorithm uses only N/4 steps and it is the fastest fixed-point search algorithm up to
date.

5.1 The N1 Duality Quantum Search Algorithm

The N1 duality search algorithm [2] is as follows.
(1) Prepare the state of the duality computer in the equally distributed state,

|ψ0〉 =
√

1

N
(|0〉 + · · · + |τ 〉 + · · · + |N − 1〉), (26)

where τ is the marked item we are searching for;
(2) Let the duality computer go through QWD, so that it divides the wave into two sub-

waves

|ψu〉 = 1

2
√

N
(|0〉 + · · · + |τ 〉 + · · · + |N − 1〉), (27)

|ψd〉 = 1

2
√

N
(|0〉 + · · · + |τ 〉 + · · · + |N − 1〉). (28)

(3) Apply the query to the lower-path sub-wave, reverse the coefficients of all basis states
|i〉 except the marked state |τ 〉, the lower sub-wave becomes

|ψd〉′ = 1

2
√

N
(−|0〉 + · · · + |τ 〉 − · · · − |N − 1〉). (29)
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No operation is applied to the upper-path sub-wave, it remains in state as in (27);
(4) Combine the sub-waves at the QWC, and the wave becomes

|ψf 〉 =
√

1

N
|τ 〉; (30)

(5) Make a read-out measurement, with probability 1/N , a result of the measurement will
be obtained, and the measured result is the solution τ . However with probability (N −1)/N ,
there will be no result. If there is no result to the measurement, repeat the process again.
After O(N) times, there will be a result to the measurements, and the result is the marked
state τ .

The query can be implemented using O(log2 N) number of qubits. As the size of the
database N increases, the difficulty in constructing the query increases only logarithmically.

5.2 The N4 Duality Quantum Search Algorithm

Recently a novel duality quantum algorithm, the N4 algorithm [18], was designed. It finds a
marked state in a fixed manner in N/4 steps. This is the fastest fixed-point search algorithm
up to date.

The N4-algorithm starts from a direct product state of the database and auxiliary qubit

|ψini〉 = |0〉 ⊗ |ψ0〉. (31)

Initially, the auxiliary qubit is in |0〉 state, and the database is prepared in the evenly distrib-
uted state

|ψ0〉 = 1√
N

N−1∑

i=0

|i〉 = 1√
N

(|0〉 + · · · + |τ 〉 + · · · + |N − 1〉), (32)

where |τ 〉 is the marked state that is being searched.
Here, we analyze one cycle of the search process. It contains five steps, namely
Step 1. Perform the unitary operation of query

Uτ = I − 2|τ 〉〈τ | (33)

on the database to reverse the coefficient of the marked state |τ 〉, we get state

|ψτ 〉 = |ψ0〉 − 2√
N

|τ 〉. (34)

Step 2. Construct a unitary operation

V =
⎡

⎢⎣

√
N

2N−4

√
N−4

2N−4√
N−4

2N−4 −
√

N
2N−4

⎤

⎥⎦ (35)

for the auxiliary qubit as the QWD gate. Let the duality computer go through QWD, and the
whole wave function is divided into two sub-wave functions

|ψ〉 = |ψu〉 + |ψd〉, (36)
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where

|ψu〉 =
√

N

2N − 4
|0〉 ⊗

(
|ψ0〉 − 2√

N
|τ 〉

)
, (37)

and

|ψd〉 =
√

N − 4

2N − 4
|1〉 ⊗

(
|ψ0〉 − 2√

N
|τ 〉

)
. (38)

Step 3. Applying the following gate operation on the upper slit, where the auxiliary qubit
is in |0〉 state,

Us = 2|ψ0〉〈ψ0| − I, (39)

we get

|ψ ′
u〉 =

√
N

2N − 4
|0〉 ⊗

(
N − 4

N
|ψ0〉 + 2√

N
|τ 〉

)
. (40)

By reversing all coefficients of the sub-wave functions on the lower slit which corresponds
to the auxiliary qubit in |1〉 state, we get

|ψ ′
d〉 =

√
N − 4

2N − 4
|1〉 ⊗

(
−|ψ0〉 + 2√

N
|τ 〉

)
. (41)

Step 4. Perform V + on the auxiliary qubit which acts as the QWC gate. Upon this, the
whole wave function becomes

|ψf 〉 = 2√
N

|0〉|τ 〉 +
√

N − 4

N
|1〉|ψ0〉. (42)

Step 5. Make a read-out measurement to the auxiliary qubit. It is easy to see the marked
item |τ 〉 will be found with certainty when we get |0〉 state. If the measurement result is |1〉
state, we can flip the auxiliary qubit to |0〉 state by a σx unitary operation, and then do the
search process again until the marked state is obtained. The probability for obtaining the
marked state is 4/N . By detailed calculation, the expectation of the query numbers is found
to be N/4. It is faster than Grover’s fixed-point quantum algorithm [26], and the duality
quantum N1-algorithm [1].

Because it allows all linear bounded operators, duality quantum computing may provide
a bridge between classical computing and quantum computing. For example, some classi-
cal factorization algorithms can be translated into duality computing algorithm [15]. Though
some of these “translated” algorithms may not gain speed-up in terms of the number of steps,
it is still interesting because they use much less qubit resource as compared to computing in
a classical computer. It is anticipated that most of the classical algorithms can be translated
into quantum algorithms through the duality mode. This is very important because if quan-
tum computers are constructed in the future, then one can perform both quantum algorithms
and classical algorithms simultaneously on the same quantum computer. This is better than
having one quantum computer and one classical computer at the same time and switching
the working between the two computers constantly.
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6 Summary and Perspectives

We have reviewed briefly the duality quantum computing. In a duality computer, quantum
wave can be divided and recombined. Different computing gate operations can be performed
at the different paths, a property that called the duality parallelism. This enables us to per-
form computation using not only products of unitary operations, but also linear combinations
of unitary operations, which is called the duality gates or the generalized quantum gates.
This provides duality parallelism which may outperform quantum parallelism in quantum
computer.

The duality computer can be simulated by a quantum computer with just an extra qudit
that labels the slits of the duality computer. The divider and combiner operations are two
crucial elements of operations in duality computing and they are realized in a quantum
computer by controlled operations.

It is likely that the duality computer can be used as a bridge to transform classical algo-
rithms in to quantum computing algorithms. Though they may not gain speedup, they have
used much less qubit resource.

Open questions remain in duality computing. One important question is what is the com-
puting power of a duality computer. What can be or can not be done in a duality computer.
What is the implication of general quantum gate for the computability in computer science?
The simulation of open quantum systems is also an interesting issue.
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