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Abstract We show that the mathematical formalism of the quantum statistical model can
be interpreted as a method for approximation of classical (measure-theoretic) averages on
the infinite-dimensional phase space. The technique of approximation is based on the Taylor
expansion of functionals of classical fields. To find the order of the deviation of quantum
statistical predictions from the classical predictions, we use the time-scaling arguments. We
show that quantum randomness might be considered as the result of random fluctuations at
the Planck time-scale.
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1 Introduction

In Khrennikov [12–15] it was shown that the mathematical formalism of the quantum statis-
tical model can be interpreted as a method for approximation of averages given by classical
statistical mechanics on the infinite dimensional phase space. Such an approximation is
based on the asymptotic expansion of classical statistical averages with respect to some pa-
rameter κ . (One of the aims of this paper is to provide a reasonable physical interpretation
of this parameter.)

By representing points of the phase space by classical vector fields, ψ(x) = (q(x),p(x)),

we can interpret our prequantum theory as a field theory, prequantum classical statisti-
cal field theory—PCSFT. In the present paper we explore the probabilistic approach to the
quantum approximation of PCSFT. In Sect. 3 we show that the standard method of approx-
imation of averages by using the Taylor formula can be interpreted as approximating of
classical measure-theoretic averages by quantum averages (given by the von Neumann trace
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formula) for a finite-dimensional state-space. In Sect. 5 we generalize this method to the
infinite-dimensional case—to the Hilbert state-space.

As was already mentioned, the infinite-dimensional phase space can be represented as
the space of classical fields. The PCSFT can be interpreted as a special model with hidden
variables given by the classical random field, cf. with the well known models [1, 3, 4, 6]. The
author was also strongly influenced by works of G. ‘t Hooft [19, 20] (as well as a series of
conversations with him). The PCSFT might be considered as one of (possible) realizations
of “Einstein’s dream” about a purely classical field model of physical reality [7].

In the present paper we consider the parameter κ (the basis of the asymptotic expansion
of classical averages) as the time scaling parameter. We remark that this paper is about non-
relativistic theory. We consider only conventional non relativistic QM, see Dirac [5] or von
Neumann [22] and, consequently, non-relativistic prequantum models.

2 Classical and Quantum Statistical Models

A classical statistical model is defined in the following way:

(a) States ψ are represented by points of some set Ω (state space).
(b) Variables are represented by functions f : Ω → R belonging to some functional space

V (Ω).1

(c) Statistical states are represented by probability measures on Ω belonging to some class
S(Ω).2

(d) The average of a variable which is represented by a function f ∈ V (Ω) with respect to
a statistical state which is represented by a probability measure μ ∈ S(Ω) is given by

〈f 〉ρ ≡
∫

Ω

f (ψ)dμ(ψ). (1)

A classical statistical model is a pair M = (S(Ω),V (Ω)).
We recall that classical statistical mechanics on the phase space Ω2n gives an example

of a classical statistical model. But we shall not be interested in this example in our further
considerations. To clarify coupling between the classical and quantum statistical models, we
shall use a classical statistical model with the infinite-dimensional phase-space.

A quantum statistical model, see e.g. Holevo [8], in a complex Hilbert space Ωc is de-
scribed in the following way:

(a) Observables are represented by operators A : Ωc → Ωc belonging to the class of contin-
uous3 self-adjoint operators Ls ≡ Ls(Ωc).

(b) Statistical states are represented by density operators, see von Neumann [22] or Holevo
[8]. The class of such operators is denoted by D ≡ D(Ωc).

1The choice of a concrete functional space V (Ω) depends on various physical and mathematical factors.
2The choice of a concrete space of probability measures S(Ω) depends on various physical and mathematical
factors.
3To simplify considerations, we shall consider only observables represented by bounded operators. To ob-
tain the general quantum statistical model with observables represented by unbounded operators, we should
consider a prequantum classical statistical model based on the rigged Hilbert space: Ω+

c ⊂ Ωc ⊂ Ω−
c .
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(c) The average of an observable which is represented by the operator A ∈ Ls(Ωc) with
respect to a statistical state which is represented by the density operator D ∈ D(Ωc) is
given by von Neumann’s formula:

〈A〉D ≡ Tr DA. (2)

The quantum statistical model is the pair Nquant = (D(Ωc),Ls(Ωc)).

3 Mean Value of a Function of a Random Variable

Here we follow Chap. 11 of the book of Ventzel [21]. This book was the basic book for
teaching probability theory in Soviet military colleges.4 Elena Ventzel wrote her book in the
form of precise instructions of what a student should follow to solve a problem:

“In practice we have very often situations in that, although investigated function of ran-
dom arguments is not strictly linear, but it differs practically so negligibly from a linear
function that it can be approximately considered as linear. This is a consequence of the fact
that in many problems fluctuations of random variables play the role of small deviations
from the basic law. Since such deviations are relatively small, functions which are not linear
in the whole range of variation of their arguments are almost linear in a restricted range of
their random changes” [21, p. 238].

Let y = f (x). Here in general f is not linear, but it does not differ so much from linear
on some interval [mx − δ,mx + δ], where x = x(ω) is a random variable and

mx ≡ Ex =
∫

x(ω)dP(ω)

is its average. Here δ > 0 is sufficiently small. A student of a military college should ap-
proximate f by using the first order Taylor expansion at the point mx :

y(ω) ≈ f (mx) + f ′(mx)(x(ω) − mx). (3)

By taking the average of both sides the student would obtain:

my ≈ f (mx). (4)

The crucial point is that the linear term f ′(mx)(x(ω) − mx) does not give any contribu-
tion! We remark that the approximate formula (4) was first discovered by Gauss and in the
probabilistic literature it is sometimes called the Gaussian formula for averages.

Further Elena Ventzel pointed out (see [21, p. 245]): “For some problems the above
linearization procedure may be unjustified, because the method of finalization may be not
produce a sufficiently good approximation. In such cases to test the applicability of the
finalization method and to improve results there can be applied the method which is based
on preserving not only the linear term in the expansion of function, but also some terms of
higher orders.”

4I am thankful to my farther-in-law, Alexander Choustov (marine artillery officer) who pointed out this chap-
ter to me.
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A student now should preserve the first three terms in the expansion of f in the Taylor
series at the point mx :

y(ω) ≈ f (mx) + f ′(mx)(x(ω) − mx) + 1

2
f ′′(mx)(x(ω) − mx)

2. (5)

Hence

my ≈ f (mx) + σ 2
x

2
f ′′(mx), (6)

where

σ 2
x = E(x − mx)

2 =
∫

(x(ω) − mx)
2 dP(ω)

is the dispersion of the random variable x.
Let us now consider the special case of symmetric fluctuations:

mx = 0

and let us restrict considerations to functions f such that

f (0) = 0.

Then we obtain the following special form of (6):

my ≈ σ 2
x

2
f ′′(0). (7)

We emphasize again that the first derivative does not give any contribution to the average.
Thus at the some level of approximation we can calculate averages not by using the

Lebesgue integral (as we do in classical probability theory), but by finding the second deriv-
ative. Such a “calculus of probability” would match well with experiment. I hope that reader
has already found analogy with the quantum calculus of probabilities. But for a better ex-
pression of this analogy we shall also study the multi-dimensional case. Consider a system
of n random variables

x = (x1, . . . , xn).

We consider vector average:

mx = (mx1 , . . . ,mxn)

and the covariance matrix:

Dx = (Dij
x ), Dij

x = E[(xi − mxi
)(xj − mxj

)].
We now consider the random variable y(ω) = f (x1(ω), . . . , xn(ω)). By using the Taylor
expansion we would like to obtain an algorithm for approximation of the average my . We
start directly from the second order Taylor expansion valid for any function f in C3(R):

y(ω) ≈ f (mx1 , . . . ,mxn) +
n∑

i=1

∂f

∂xi

(mx1 , . . . ,mxn)(xi(ω) − mxi
)

+ 1

2

n∑
i,j=1

∂2f

∂xi∂xj

(mx1 , . . . ,mxn)(xi(ω) − mxi
)(xj (ω) − mxj

), (8)
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and hence:

my ≈ f (mx1 , . . . ,mx1) + 1

2

n∑
i,j=1

∂2f

∂xi∂xj

(mx1 , . . . ,mx1)D
ij
x . (9)

By using vector notation, we can rewrite the previous formulas as:

y(ω) ≈ f (mx) + (f ′(mx), x(ω) − mx) + 1

2
(f ′′(mx)(x(ω) − mx), x(ω) − mx). (10)

and

my ≈ f (mx) + 1

2
Tr Dxf′′(mx). (11)

Let us again consider the special case: mx = 0 and f (0) = 0. We have:

my ≈ 1

2
Tr Dxf′′(0). (12)

We now remark that the Hessian f ′′(0) is always a symmetric operator. Let us now represent
f by its second derivative at zero:

f → A = 1

2
f ′′(0).

Then we see that, at some level of approximation, instead of operation with Lebesgue inte-
grals, one can use linear algebra:

my ≈ Tr DxA. (13)

4 Classical Statistical Model with Infinite-Dimensional Phase Space

We choose the space

Ω = Q × P,

where Q = P = H and H is the infinite-dimensional real (separable) Hilbert space. We
consider Ω as the real Hilbert space with the scalar product

(ψ1,ψ2) = (q1, q2) + (p1,p2)

for ψi = (qi,pi). We denote by J the symplectic operator on Ω

J =
(

0 1
−1 0

)

making Ω a phase space. Let us consider the class Lsymp(Ω) of bounded R-linear operators
A : Ω → Ω which commute with the symplectic operator: A J = J A. This is a sub-algebra
of the algebra of bounded linear operators L(Ω) We also consider the space of Lsymp,s (Ω)

consisting of self-adjoint operators.
By using the operator J we can introduce on the phase space Ω a complex structure.

A real vector ψ with the coordinates q,p is represented by the complex vector q + ip. We
shall denote it by the same symbol ψ . We denote Ω endowed with this complex structure
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by Ωc : Ωc ≡ Q⊕ iP . This is a complex linear space. The operation of multiplication by the
complex scalar i is well defined. The map ψ → iψ is the complex image of the operator −J .
We shall use the complex space Ωc later.

At the moment consider Ω as a real linear space and consider its complexification ΩC =
Ω ⊕ iΩ .

Let us consider the functional space Vsymp(Ω) consisting of functions f : Ω → R such
that:

(a) the zero vector is preserved:

f (0) = 0;
(b) f is J -invariant: f (Jψ) = f (ψ);
(c) f can be extended to the analytic function f : ΩC → C having exponential growth:

|f (ψ)| ≤ cf erf ‖ψ‖ for some cf , rf ≥ 0 and for all ψ ∈ ΩC.

The following mathematical result plays the fundamental role in establishing the corre-
spondence between classical and quantum averages:

Proposition 1 Let f be a smooth J -invariant function. Then

f ′′(0) ∈ Lsymp,s (Ω).

We now consider the complex realization Ωc of the phase space and the corresponding
complex scalar product 〈·, ·〉. We remark that the class of operators Lsymp(Ω) is mapped
onto the class of C-linear operators L(Ωc). Thus consideration of operators of the class
Lsymp(Ω) in the real model is equivalent to consideration of operators of the class L(Ωc)

in the complex model. Our viewpoint of the complex structure of QM is very pragmatical.
This is nothing else than the complex representation of the phase space structure.

We call classical statistical mechanics on the phase space Ω with variables of the class
Vsymp(Ω) and statistical states given by Gaussian measures with covariance operators be-
longing Lsymp,s (Ω) prequantum classical statistical field theory, PCSFT.

5 Time-Scaling of Random Fluctuations

Let wD
s , s ≥ 0, be the Ω-valued Wiener process5 corresponding to the trace class (self-

adjoint) operator D ≥ 0 with Tr D = 1. As usual, we interpret s as a time parameter. Tra-
jectories s → wD

s (ω) of the Wiener process describes stochastic dynamics in the Hilbert
space.

The ordinary Wiener process taking values in R3 describes the Brownian motion. As we
know, Einstein and Smoluchowski observed that by the kinetic theory of fluids the mole-
cules of water move at random. Therefore, a small particle in water would receive a random
number of impacts of random strength and from random directions in any short period of
time. This random bombardment by the molecules of the fluid would cause a sufficiently
small particle to move in exactly the way described by Brown. In our model the role of
a particle is played by a classical field ψ = (q,p). It is assumed that this field moves in

5The reader who is not familiar with theory of infinite-dimensional stochastic processes can either study some
literature, e.g. Daletski and Fomin [2] (see Khrennikov [9–11] for related results) or just consider the finite
dimensional phase space Ω2n = R2n.
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a random background field, cf. SED and stochastic mechanics models—De la Pena and
Cetto [6], Nelson [16] or Davidson [3]. Hence a trajectory s → wD

s (ω) can be interpreted as
the results of “collissions” of the field ψ with the random background field. The time scale
s under consideration can be called a prequantum time scale. Here by “quantum time scale”
we mean the time scale of quantum observations, see Sect. 6. Thus our meaning of the term
“quantum time scale” should be distinguished from a rather common use the terminology
“quantum time scale” for the Planck time scale. We shall consider the Planck time scale as
one of possible candidates to be chosen as the prequantum time scale, see Sect. 6.

We also assume that the covariance operator D determining the Wiener process belongs
to the class Lsymp(Ω). Thus we have:

E[〈φ,wD
s 〉] = 0, φ ∈ Ω, (14)

E[〈φ1,w
D
s 〉〈wD

s ,φ2〉] = s〈Dφ1, φ2〉, φ1, φ2 ∈ Ω. (15)

The following time scaling law for the Wiener process is well known, see e.g. Shiryaev [18]:

Prob. law (wD
κs : s ≥ 0) = Prob. law (κ1/2wD

s : s ≥ 0) (16)

for any κ > 0. We shall see that by (16) our κ1/2-scaling of ψ ∈ Ω can be considered as the
result of κ-scaling of time.

Our basic postulate is that quantum formalism arises as the result of an approximation
based on the time scaling.

Let us consider a “prequantum time scale” that is essentially finer6 than the quantum time
scale. We suppose that these two time scales can be coupled through a scaling parameter κ .
We denote the prequantum and quantum times by symbols s and t respectively. We suppose
that:

t = κs. (17)

Here κ is a dimensionless parameter. It is assumed that

κ � 1. (18)

Thus the unit interval of the prequantum time corresponds to the interval t = κ of the quan-
tum time. We can also say that the unit interval t = 1 of quantum time corresponds to a
huge interval s = 1

κ
of the prequantum time. Moreover, if κ → 0, then s = 1

κ
→ ∞. At the

prequantum time scale quantum processes have practically infinite duration.
In such a model a quantum measurement has a huge duration with respect to the pre-

quantum time scale. In particular “collapse of the wave function” is a very long process in
the prequantum world.

Let us consider the time scaling (17) for the Wiener processes wD
s . We set

WD
t = wD

κs.

The formula (16) implies that, for any continuous function f : Ω → P (which is integrable
with respect to any Gaussian measure on Ω), we have:

Ef (WD
κ ) = Ef (κ1/2wD

1 ). (19)

6The meaning of “essentially” would be discussed later.
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This is nothing else than the basic “field-scaling” formula which was used in Khrennikov
[12–15]. We interpret WD

t as the Wiener process with respect to the quantum time t and wD
s

as the Wiener process with respect to the prequantum time s.
By our interpretation the quantum formalism does not provide a possibility to find exactly

the average Ef (WD
t ) with respect to the “quantum Wiener process” WD

t . The main problem
is that the interval t = κ is negligible compare with natural quantum scales of time. The
quantum formalism provides only an approximation of the classical average Ef (WD

κ ) (it is
again only our special interpretation of QM).

Moreover, to produce observable effects, the classical physical variable f should be
strongly amplified:

f → fκ ≡ 1

κ
f.

We can proceed through expanding the right-hand side of (19) into the Taylor series with
respect to the scaling parameter κ1/2, cf. with Sect. 3. We obtain the following result on the
asymptotic expansion:

Theorem 1 Let f ∈ Vsymp(Ω.) Then:

Efκ(W
D
κ ) = Efκ(κ

1/2wD
1 ) = 1

2
E(f ′′(0)wD

1 ,wD
1 ) + O(κ), κ → 0. (20)

Thus for nonquadratic maps f : Ω → R, the quantum statistical model gives only an
approximation 〈f 〉D = Tr Df′′(0) of the classical average Efκ(W

D
κ ).

The difference between statistical predictions of the quantum statistical model and
PCSFT is of the magnitude κ, where κ is the scaling parameter for the prequantum and
quantum time scales, see (17). What is a magnitude of the time scaling factor κ? We shall
come back to this problem in Sect. 6.

Thus by taking into account Brownian fluctuations at the prequantum time scale we
can say that prequantum statistical states are given by Wiener measures PD on the space
C0([0, κ]) of trajectories ψ : [0, κ] → Ω,ψ(0) = 0. Denote the space of such Wiener mea-
sures by the symbol SG,symp(C0([0, κ]),Ω) (we recall that [D,J ] = 0).

This is the space of statistical states of our prequantum classical statistical model. As
the space of classical physical variables, we should choose some subspace of the space of
continuous functionals f : C0([0, κ],Ω) → R.

Since all our considerations are coupled to the fixed moment of (quantum) time t = κ,

we can restrict them to the class of functionals which depend only on ψ(κ). So we can
choose the space of classical physical variables consisting of functionals of trajectories,
ψ : [0, κ] → Ω, of the form ψ(·) → f (ψ(κ)), f ∈ Vsymp(Ω) We denote this class by the
symbol Vsymp(C0([0, κ],Ω)).

Thus, finally, we consider the following classical statistical model on phase space con-
sisting of trajectories Ω̃κ = C0([0, κ],Ω):

M̃κ = (SG,symp(Ω̃
κ),Vsymp(Ω̃

κ)).

We define the maps T mapping the classical model into the quantum model:

T : SG,symp(Ω̃
κ) → D(Ωc), T (PD) = D; (21)

T : Vsymp(Ω̃
κ) → Ls(Ωc), T (f ) = f ′′(0)/2. (22)
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Theorem 2 Both maps (21) and (22) are surjections. The map (21) is even an injection.
However, the map (22) is not one-to-one. The latter map is R-linear.

We can say that the family of classical statistical models M̃κ, κ > 0, and the pair of maps
(21), (22) provide “dequantization” of the conventional quantum statistical model Nquant =
(D(Ωc),Ls(Ωc)), see Sect. 2.

6 The Magnitude of Time-Scaling

To get the basic parameter of our model κ, we should choose quantum and prequantum time
scales. There are a few different possibilities and we shall discuss one of them. We choose
the atom time-scale in QM and the Planck time-scale in the prequantum classical theory.

We recall that Max Planck first listed his set of units and gave values for them remarkably
close to those used today, at the time, see Planck [17], when QM had not been invented. He
had not yet discovered the theory of black-body radiation.

We assume that the prequantum time scale is based on the Planck time:

tprq = tP =
√

�G

c5
≈ 5.391 × 10−44 s. (23)

We remark that the Planck time tP is expressed as

tP = �

c2MP

, (24)

where the Planck mass is given by

mP =
√

�c

G
≈ 2.176 × 10−8 kg.

We recall that, in contrast to the Planck time as well as the Planck length, the Planck mass is a
macroscopic quantity. It is often considered as a pathological feature of the Planck systems
of units. We shall see that in our approach the mass scale of a prequantum model should
really be macroscopic. It would imply that the difference between statistical predictions of
quantum and prequantum models would be very small.

To obtain the atom time-scale we choose the electron mass scale, me ≈ 9.109×10−31 kg.
The corresponding time scale can be set in the same way as it was done by Max Planck:

tq = te = �

c2me

= 1.288 × 10−21. (25)

Therefore our time scaling parameter

κ = tprq

tq
= tP

te
≈ 4.185 × 10−23. (26)

We also remark that

κ = me

mP

. (27)
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Thus our time-scaling parameter has the magnitude:

κ ∼ 10−23.

Under such a choice of the prequantum scale the difference between statistical predictions
of PCSFT and the quantum statistical model (given by (20)) is of the order 10−23. Thus, if,
e.g., the classical physical variable

f (ψ) = 1

2
〈Aψ,ψ〉 + 1

4
〈Aψ,ψ〉2, A ∈ Ls ,

then the difference between the quantum prediction (〈A〉D = Tr DA) and the PCSFT-
prediction should be of the order 10−23.

Of course, all previous consideration have sense only under the assumption that the
Planck time tP really provides the correct prequantum time-scale. As was already men-
tioned, at the moment we cannot justify this assumption. The main problem induced by
such a choice is that there is a huge gap between the atomic and Planck scales. It might be
found another natural scale between the Planck and atomic scales. In such a case κ would
be larger. This would simplify the experimental verification of PCSFT. On the other hand,
using the Planck scale (and hence the macroscopic mass scale) and the corresponding para-
meter κ ≡ κe ∼ 10−23 clarify why predictions of the quantum statistical model have not yet
been violated—the deviation is really negligibly small.

One of the reasons in favor of the Planck scale as the scale of prequantum fluctuations is
that the Planck mass is of the macroscopic magnitude.

Let a system have the mass m. Then by choosing the corresponding time scale

tm = �

c2m
,

we obtain

κ = m

mP

.

Therefore predictions of the quantum statistical model should be violated for systems of
macroscopic mass. In principle, one may expect that it would be easier to produce deviations
from QM for heavy elementary particles, e.g., muons. Let take m = mmuon. The correspond-
ing time scale

κmuon = κe

mmuon

me

≈ 207κe.

Thus statistical deviations for muons are essentially larger than for electrons, but they are
still very small

κmuonκe ∼ 10−21.

On the other hand, decreasing of the mass increases strongly the precision of quantum ap-
proximation. For electron neutrino and antineutrino

κe-neutrino = κe

me-neutrino

me

< 4.31 × 10−7κe ∼ 10−30.

It is impossible to interpolate our theory directly to photons, since we considered non-
relativistic QM. The direct interpolation would give us

κphoton = 0.
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Thus it would imply that the quantum statistical model is precise for photons. However, as
was already mentioned, such an interpolation is too straightforward.
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