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Abstract After reviewing the three well-known methods to obtain Lie algebras and super-
algebras from given ones, namely, contractions, deformations and extensions, we describe
a fourth method recently introduced, the expansion of Lie (super)algebras. Expanded (su-
per)algebras have, in general, larger dimensions than the original algebra, but also include
the İnönü–Wigner and generalized IW contractions as a particular case. As an example of a
physical application of expansions, we discuss the relation between the possible underlying
gauge symmetry of eleven-dimensional supergravity and the superalgebra osp(1|32).

1 Introduction

Different constructions describing the symmetry of physical theories have made their way
into physics, gradually avoiding previously established ‘no-go theorems’. That was, for
instance, the case of Lie superalgebras, nowadays ubiquitous in theoretical physics and
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brought into the picture as a way of mixing spacetime and internal symmetries, not al-
lowed in a purely bosonic context (see [1]). This led to the advent of supersymmetry, a
symmetry which involves bosons and fermions simultaneously. From a mathematical point
of view, and setting aside its Lorentz part, the super-Poincaré algebra is a central extension
of an odd (fermionic, spinorial) Abelian algebra by the spacetime translations (see [2, 3])
but it is not, however, the most general spacetime superalgebra. In fact, larger supersym-
metry algebras going beyond the restrictions of the Haag–Łopuszański–Sohnius theorem
[4] have appeared in connection with the description of different supersymmetric theo-
ries. For instance, the quasi-invariance under standard supersymmetry of the Wess–Zumino
(WZ) terms of the super-p-brane actions results in algebras realized by the conserved su-
percharges that include additional (topological) charges [5] and that are extensions of the
original, {Q,Q} ∼ P minimal supersymmetry algebra. Also—an example to be discussed
in Sect. 4—an osp(1|32)-related gauge formulation of D = 11 supergravity [6] requires a
gauge algebra that includes an additional fermionic generator [7]. It thus makes sense to use
supersymmetry algebras beyond the standard super-Poincaré algebra, and many have been
introduced in various contexts, leading also to a variety of generalized, enlarged superspaces
(see [5, 7–16] and references therein).

New algebras and superalgebras may be related to, or derived from, previously known
ones. With this in mind, we first comment on the three well known ways to obtain new
(super)algebras from given ones, i.e. contractions, deformations and extensions of Lie and
super Lie algebras. Then, we describe in Sect. 3 a new procedure [17, 18] (see also [19]),
that includes the İnönü–Wigner (IW) and generalized contractions, the method of Lie (su-
per)algebra expansions, which makes use of the geometrical structure of the algebra as ex-
pressed by the Maurer–Cartan one-forms. At the end of Sect. 3 the very recent method of
S-expansions of Lie (super)algebras [20] is also briefly described. We conclude with an
application in Sect. 4, where we show how our expanded algebras appear [21, 22] in the
discussion of the relation between OSp(1|32) and the possible underlying gauge symmetry
group of D = 11 supergravity [6].

2 Lie Algebras and Superalgebras from Given Ones

Let G be a finite-dimensional Lie (super)algebra with basis {Xi}, which may be realized
by left-invariant (LI) generators Xi(g) on the corresponding (super)group manifold G with
local coordinates gi , i = 1, . . . ,dimG = dimG. Let ck

ij be the structure constants of G in the
basis {Xi}, [Xi,Xj ] = ck

ijXk . Let {ωi(g)}, i = 1, . . . ,dimG, be the basis determined by the
(dual, LI) Maurer–Cartan (MC) one-forms on G. The MC equations that characterize G, in
a way dual to its Lie bracket description, are given by

dωk(g) = −1

2
ck
ijω

i(g) ∧ ωj (g), i, j, k = 1, . . . ,dimG. (2.1)

The standard procedures to obtain new (super)algebras from given ones are:

(a) Contractions
Contractions go back to the work of Segal, Inönü and Wigner (see [23–26]). In its sim-

plest İnönü–Wigner (IW) form [24, 25], the contraction of G with respect to a subalgebra
L0 ⊂ G is performed by rescaling the generators of the coset G/L0, and then by taking a
singular limit for the rescaling parameter. This procedure may be extended to generalized
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IW contractions in the sense of Weimar-Woods (W-W) [27, 28]. These are defined when the
vector space W of G can be split as a sum of n + 1 subspaces

G : W = V0 ⊕ V1 ⊕ · · · ⊕ Vn = ⊕sVs, s = 0,1, . . . , n, (2.2)

such that the following W-W conditions are satisfied:

c
ks

ipjq
= 0 if s > p + q i.e. [Vp,Vq ] ⊂ ⊕s≤p+qVs, p, q = 0,1, . . . , n, (2.3)

where ip = 1, . . . ,dimVp labels the generators of G in Vp (we have written above s ≤ p + q

rather than s ≤ min{p + q,n} for simplicity.) Clearly, condition (2.3) implies that V0 is a
subalgebra L0 of G. The contracted algebra Gc is obtained after the generators of each sub-
space are properly re-scaled [27, 28] and a singular limit for the scaling parameter λ is taken.
Gc has the same dimension as G; the case n = 1 reproduces the simple IW contraction. There
have been other variations of the IW contraction procedure (see e.g. [29–36]); in particular,
the ‘graded contractions’ [34, 35] may be expressed as generalized IW ones (see [27, 28]
and the contribution of E. Weimar-Woods to these proceedings). All contractions have in
common that G and Gc have, necessarily, the same dimension as vector spaces.

Well known examples of contractions relevant in physics include the Galilei algebra as an
IW contraction of the Poincaré algebra, the Poincaré algebra as a contraction of the de Sitter
algebras [37], or the characterization of the M-theory superalgebra [9, 10] as a contraction
(ignoring the Lorentz part, cf. [18]) of osp(1|32).

The contraction process has also been considered for ‘quantum’ algebras (see e.g.,
[38, 39]) and used, in particular, to obtain the κ-Poincaré [40] and κ-Galilei algebras [41].

(b) Deformations
From a physical point of view, Lie algebra deformations [42–45] can be regarded as a

process inverse to contractions (see also [27, 28, 37, 46–48]). Mathematically, a deformation
Gd of a Lie algebra G is a Lie algebra ‘close’, but not isomorphic, to G. As in the case of Gc

above, Gd has the same dimension as G.
Deformations are obtained by modifying the r.h.s. of the original commutators by adding

new terms that depend on a parameter t in the form

[X,Y ]t = [X,Y ]0 +
∞∑

i=1

ωi(X,Y )t i , X,Y ∈ G, ωi(X,Y ) ∈ G. (2.4)

Checking the Jacobi identities up to O(t2), it is seen that the expression satisfied by ω1

characterizes it as a two-cocycle. Thus, the second Lie algebra cohomology group H 2(G,G)

of G with coefficients in the Lie algebra G itself is the group of infinitesimal deformations of
G and H 2(G,G) = 0 is a sufficient condition for rigidity [42, 43, 45]. In this case, G is rigid
or stable under infinitesimal deformations; any attempt to deform it yields an isomorphic
algebra. The problem of finite deformations depends on the integrability of the infinitesimal
deformation; the obstruction is governed by the third cohomology group H 3(G,G), which
needs being trivial.

As is well known, the Poincaré algebra may be seen as a deformation of the Galilei one, a
fact that may be viewed as a group theoretical prediction of relativity. The de Sitter, so(4,1),
and anti de Sitter, so(3,2), algebras are stabilizations of the Poincaré algebra; osp(1|4) is a
deformation of the N = 1, D = 4 super-Poincaré algebra [49]. Quantization itself may also
be looked at as a deformation (see [50–54]), the classical limit being the contraction limit
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� → 0. Nontrivial central extensions of Lie algebras may also be considered as deformations
or partial stabilizations of trivial (direct sum) extensions.

(c) Extensions (of a Lie algebra or superalgebra by another one)
In contrast with the procedures (a) and (b) above, the initial data of the extension problem

includes two Lie algebras G and A. A Lie algebra G̃ is an extension of G by A if A is an
ideal of G̃ and G̃/A = G. As a result, dim G̃ = dimG + dimA, so that the extension process
is also ‘dimension preserving’. To obtain an extension G̃ of G by A it is necessary to specify
first an action ρ of G on A i.e., a Lie algebra homomorphism ρ : G → EndA. The possible
extensions G̃ for a given set (G,A, ρ) and the possible obstructions to the extension process
are, again, governed by cohomology (see [3] for full details and references).

Examples of extensions in physics are the centrally extended Galilei algebra, which is
relevant in non-relativistic quantum mechanics (and that may be obtained as a contraction
of the trivially extended D = 4 Poincaré group, see [55] to see how contractions may gen-
erate cohomology), the two-dimensional extended Poincaré algebra that allows [56, 57] for
a gauge theoretical derivation of the Callan–Giddings–Harvey–Strominger model [58] for
two-dimensional gravity, or the M-theory superalgebra that, without its Lorentz automor-
phisms part, is the maximal central extension of the Abelian D = 11 supertranslations alge-
bra ([5, 8–10, 13, 14]).

We now turn to a new procedure, the expansion of Lie algebras and superalgebras.

3 Expansions of Lie (Super)Algebras

Under a different name, Lie algebra expansions were first used in [17], and then the method
was studied in general in [18] (see also [19]). The idea is to perform a rescaling by a pa-
rameter λ of some of the group coordinates gi , i = 1, . . . ,dimG. Consequently, the MC
one-forms ωi(g,λ) of G are expanded as power series in λ. Inserting these expansions (poly-
nomials in λ) in the original MC equations for G, one obtains a set of equations that have
to be satisfied, each one corresponding to a power of λ. The problem at this stage is how to
cut the series expansions of the different ωi ’s in such a way that the resulting set of MC-like
equations be closed under d , so that it defines the MC equations of a new, finite-dimensional
expanded Lie algebra.

In fact, notice that it is possible to write the MC forms ωi(g) of G as polynomials in the
group coordinates gi (see [18]) as

ωi(g) =
[
δi
j + 1

2!c
i
jkg

k +
∞∑

n=2

1

(n + 1)!c
h1
jk1

c
h2
h1k2

. . . c
hn−1
hn−2kn−1

ci
hn−1kn

gk1gk2 . . . gkn−1gkn

]
dgj .

(3.1)
Hence, a redefinition

gl → λql gl (3.2)

of some group coordinates gl will produce an expansion of the MC one-forms ωi(g,λ) as a
sum of one-forms ωi,α(g) on G multiplied by the corresponding powers λα of λ. The actual
form of the power series of ωi(g,λ) is in fact dependent on the possible structure of G if a
suitable redefinition of the group parameters is made. In general, moreover, the richer the
structure of G, the more possibilities arise to cut the ωi ’s power series in order to obtain well
defined finite-dimensional Lie algebras.
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For the sake of definiteness, let us discuss the case in which G satisfies the Weimar-
Woods (W-W) conditions (2.2), (2.3), referring to [18] for other interesting cases. When
the W-W conditions are satisfied, the MC one-forms of G arrange themselves in n + 1 sets
{ωip }, ip = 1, . . . ,dimVp , p = 0,1, . . . , n, corresponding to each subspace Vp in (2.2), and
the structure constants of G satisfy c

ks

ipjq
= 0 if s > p + q; the subspace V0 is a subalgebra

L0 of G. Consider next the rescaling gip → λpgip , p = 0, . . . , n, or, explicitly,

gi0 → gi0 , gi1 → λgi1 , . . . , gin → λngin , (3.3)

of the group parameters, where gip is subordinated to the splitting (2.2) in an obvious way.
With this rescaling, the condition (2.3), namely, c

ks

ipjq
= 0 if s > p + q , produces that the

series expansion of the forms ωip in each subspace Vp that results from the insertion of (3.3)
in (3.1), starts with the power λp , p = 0,1, . . . , n [18]:

ωip =
∞∑

αp=p

ωip,αpλαp = λpωip,p + λp+1ωip,p+1 + · · · , (3.4)

where the index denoting each power of λ has been written as αp to stress the fact that the
series expansion is different for each ωip , p = 0,1, . . . , n.

Inserting the series (3.4) into the MC equations (2.1) of G and equating the coefficients
with the same powers of λ, a set of equations for the various coefficient one-forms ωip,αp is
obtained:

dωks ,αs = −1

2
C

ks,αs

ip,βpjq ,γq
ωip,βp ∧ ωjq ,γq , (3.5)

where

C
ks,αs

ip,βpjq ,γq
=

{
0, if βp + γq 
= αs,

c
ks

ipjq
, if βp + γq = αs,

p, q, s = 0,1, . . . , n,

ip,q,s = 1,2, . . . ,dimVp,q,s ,

αp,βp, γp = p,p + 1, . . . ,Np

(3.6)

and the c
ks

ipjq
satisfy (2.3).

One may now consider whether the series (3.4) for each ωip may be cut at an ar-
bitrary order Np i.e., whether any finite number of one-form coefficients ωip,αp , αp =
p,p + 1, . . . ,Np , can be retained in such a way that equations (3.5), (3.6) define, respec-
tively, the MC equations and structure constants of a new, finite-dimensional Lie algebra
labeled G(N0, . . . ,Nn). This is clearly not the case. For G(N0, . . . ,Nn) to be a Lie algebra,
two conditions must be met:

(a) the set of retained one-form coefficients,

{ωi0,0,ωi0,1, N0+1. . . ,ωi0,N0;ωi1,1, N1. . .,ωi1,N1; . . . ;ωin,n, Nn−n+1. . . ,ωin,Nn}, (3.7)

which determines the dimension of the expanded algebra G(N0, . . . ,Nn) by

dimG(N0, . . . ,Nn) =
n∑

p=0

(Np − p + 1)dimVp, (3.8)

must be closed under the exterior differential d ; and



Int J Theor Phys (2007) 46: 2738–2752 2743

(b) the symbols C
ks,αs

ip,βpjq ,γq
defined in (3.6) must obey the Jacobi identity (notice that their

definition (3.6) makes them already inherit the symmetry properties of the structure
constants c

ks

ipjq
of the original (super)algebra).

With regard to the condition a) notice that, due to the W-W conditions (2.3), the forms
ωip,βp that enter the expression of dωks ,αs in (3.5) are those with [18]

βp ≤
{

αs − s + p, if p ≤ s,

αs, if p > s,

p, s = 0,1, . . . , n,

αp,βp = p,p + 1, . . . ,Np.
(3.9)

Hence, the set of forms (3.7) will be closed under d if the cutting orders satisfy

Np ≥
{

Ns − s + p, if p ≤ s,

Ns, if p > s,

p, s = 0,1, . . . , n,

αp,βp = p,p + 1, . . . ,Np,
(3.10)

namely, when

Np+1 = Np or Np+1 = Np + 1 (p = 0,1, . . . , n − 1), (3.11)

which gives [18] 2n possibilities in all.
As for the condition (b), the Jacobi identities

C
ks,αs

ip,βp [jq ,γq
C

ip,βp

lt ,ρt mu,σu] = 0

= C
ks,αs

ip,βpjq ,γq
C

ip,βp

lt ,ρtmu,σu
+ C

ks,αs

ip,βpmu,σu
C

ip,βp

jq ,γq lt ,ρt

+ C
ks,αs

ip,βplt ,ρt
C

ip,βp

mu,σujq ,γq
, (3.12)

are satisfied through those for G. This is a consequence of the fact that, for G, the exte-
rior derivative of the λ-expansion of the MC equations is the λ-expansion of their exterior
derivative, but it may also be seen directly.

Indeed, we only need to check that (3.12) reduces to the Jacobi identities for G when
the order in the upper index is the sum of those in the lower ones since the C’s are zero
otherwise. First we see that, when αs = γq + ρt + σu, all three terms in the r.h.s. of (3.12)
give non-zero contributions. This is so because the range of βp is only limited by βp ≤ αs ,
which holds when βp = ρt + σu, βp = γq + ρt and βp = σu + γq . Secondly, and since
βp ≥ p, we also need that the terms in the ip sum that are suppressed in (3.12) when p > βp

be also absent in the Jacobi identities for G so that (3.12) does reduce to the Jacobi identities
for G. Consider e.g., the first term in the r.h.s. of (3.12). If p > βp , then p > ρt + σu and
hence p > t + u. Thus, by the W-W condition (2.3), this term will not contribute to the
Jacobi identities for G and no sum over the subspace Vp index ip will be lost as a result. The
argument also applies to the other two terms for their corresponding βp’s.

A particular solution to (3.11) is obtained by setting Np = p, p = 0,1, . . . , n, which
defines G(0,1, . . . , n), with dimG(0,1, . . . , n) = dimG by (3.8). Since in this case αp takes
only one value (αp = Np = p) for each p = 0,1, . . . , n, we may drop this label. Then, the
structure constants (3.6) for G(0,1, . . . , n) read

C
ks

ipjq
=

{
0, if p + q 
= s, p = 0,1, . . . , n,

c
ks

ipjq
, if p + q = s, ip,q,s = 1,2, . . . ,dimVp,q,s ,

(3.13)
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which shows that G(0,1, . . . , n) is the generalized IW contraction of G, in the sense of
[27, 28], subordinated to the splitting (2.2). Obviously, if n = 1, G = L0 ⊕ V1, where L0 is a
subalgebra, and the simple IW contraction is recovered as the expansion G(0,1).

Thus, we have actually proved the following

Theorem 1 Let G = V0 ⊕V1 ⊕· · ·⊕Vn be a splitting of G into n+1 subspaces. Let G fulfill
the Weimar-Woods contraction condition (2.3) subordinated to this splitting, c

ks

ipjq
= 0 if s >

p + q . The one-form coefficients ωip,αp of (3.7) resulting from the expansion of the Maurer–
Cartan forms ωip in which gip → λpgip ,p = 0, . . . , n (see (3.3)), determine expanded Lie
algebras, denoted G(N0,N1, . . . ,Nn), of dimension (3.8) and structure constants given by

C
ks,αs

ip,βpjq ,γq
=

{
0, if βp + γq 
= αs,

c
ks

ipjq
, if βp + γq = αs,

p, q, s = 0,1, . . . , n,

ip,q,s = 1,2, . . . ,dimVp,q,s ,

αp,βp, γp = p,p + 1, . . . ,Np

(3.14)

(see (3.6)) if Np = Np+1 or Np = Np+1 − 1 (p = 0,1, . . . , n − 1) in (N0,N1, . . . ,Nn). In
particular, the Np = p solution determines the algebra G(0,1, . . . , n), which is the general-
ized İnönü–Wigner contraction of G.

In general, the Lie algebra G(N0,N1, . . . ,Nn) is larger than G (see (3.8)). This fact, and
its derivation, justifies the name of expanded algebras [18].

An interesting case is that of Lie superalgebras, the splitting of which into subspaces
naturally satisfies the W-W conditions. For instance, we may take G = V0 ⊕ V1 or G = V0 ⊕
V1 ⊕ V2 with V0 or V0 ⊕ V2 containing all the even (bosonic) generators and V1 containing
the Grassmann odd (fermionic) ones. Then, the expansions of the MC one-forms of V1

(V0 and V2) only contain odd (even) powers of λ [18]. The consistency conditions for the
existence of G(N0,N1)-type expanded superalgebras require that

N0 = N1 − 1 or N0 = N1 + 1, (3.15)

and, for the G(N0,N1,N2) case, that one of the three following possibilities holds:

N0 = N1 + 1 = N2, N0 = N1 − 1 = N2, N0 = N1 − 1 = N2 − 2. (3.16)

This last case allows us to obtain, for example, the M-algebra including the Lorentz
SO(1,10) automorphisms as the expansion osp(1|32)(2,1,2) of osp(1|32). The appropriate
choice of V0, V1, V2 leading to this expansion can be found in [18].

3.1 S-expansions of Lie (super)algebras

As we have seen, the expansion method allows us to obtain new Lie algebras of increasing
dimensions from G by a geometric procedure based on expanding the MC forms. One may
think of other possibilities leading, in general, to larger algebras from a given one. We con-
clude this section by briefly describing another construction, very recently proposed [20],
which is based on combining the structure constants of G with the inner law of a semigroup
S to define the Lie bracket of a new, S-expanded algebra. The ingredients here are, then, the
algebra G and a certain semigroup S.

Consider a finite Abelian semigroup S (a set S with ordS elements α,β, γ, . . . ∈ S, en-
dowed with a commutative and associative composition law S × S → S, (α,β) �→ αβ =
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βα). Then, one may define a Lie algebra structure over the vector space obtained by taking
ordS copies of G,

GS : Wα ⊕ Wβ ⊕ Wγ ⊕ · · · = ⊕α∈SWα (Wα ≈ G ∀α),

dimGS = ordS × dimG,
(3.17)

by means of the structure constants

C
kγ

iα jβ = ck
ij δ

γ

αβ, (3.18)

where δ is the Kronecker symbol and the subindex αβ ∈ S denotes the inner composition
in S so that δ

γ

αβ = 1 when αβ = γ in S and zero otherwise. The constants C
kγ

iαjβ defined by
(3.18) inherit the symmetry properties of the ck

ij of G by virtue of the Abelian character of
the S-product, and satisfy the Jacobi identity Chδ

[iαjβClε
kγ ]hδ = 0 because of the commutativity

and associativity of the semigroup inner law and the Jacobi identity of G, ch
[ij c

l
k]h = 0. This

Lie (super)algebra GS was called S-expansion of G [20].
When the Lie brackets of the original algebra G satisfy certain conditions, as e.g. the W-W

conditions (2.3), then certain subalgebras G′
S can be extracted [20] from the S-expanded

algebra GS provided that it is possible to find subsets of S (see (3.22) below) the composition
of which mimics the subspace structure of G with respect to its Lie bracket (see (2.3)). These
G′

S can then be used to retrieve the expansions G(N0, . . . ,Nn). The procedure is not entirely
straightforward, so we shall make explicit the intermediate steps below.

Let then G satisfy the W-W conditions (2.3) and let us conveniently choose the semigroup
S as [20]

S = {α | α = 0,1, . . . ,N,N + 1}, αβ =
{

α + β, if α + β < N + 1,

N + 1, if α + β ≥ N + 1,
(3.19)

where α + β is simply the sum of natural numbers. The underlying vector space of any
S-expanded algebra is GS = ⊕α∈SWα ; each copy Wα of the vector space W of G obviously
admits the same splitting, Wα = ⊕pVpα,p = 0, . . . , n. Hence, the GS vector subspace struc-
ture splits as

GS =
⊕

p

⊕

α∈S

Vpα, where Vpα ≈ Vp, p = 0,1, . . . , n, α ∈ S. (3.20)

As G satisfies the W-W conditions, [Vp,Vq ] ⊂ ⊕
s≤p+q Vs,p, q = 0,1, . . . n, the Lie bracket

subspace structure of GS inherited from that of G is

GS : [Vpα,Vqβ ] ⊂
⊕

s≤p+q

Vsαβ, (3.21)

where αβ in Vsαβ again denotes S-composition (here again, and also below, we write s ≤
p + q rather than s ≤ min{p + q,n} for simplicity’s sake).

Let {Ss} in

S =
⋃

s

Ss, s = 0,1, . . . , n, (3.22)
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be a (not necessarily disjoint) collection of subsets Ss ⊂ S (compare (3.22) and (2.2)). The
subsets Ss ⊂ S are thus in one-to-one correspondence with the vector subspaces Vs ⊂ G in
(2.2). When the condition

SpSq ⊂
⋂

s≤p+q

Ss, SpSq := {αpβq | αp ∈ Sp,βq ∈ Sq}, (3.23)

is satisfied, the collection of subsets Ss ⊂ S is adapted to the partition Vs ⊂ G of the Lie
algebra in the sense that (2.2) and (3.22) induce similar structures in (2.3) and (3.23) respec-
tively. Such a collection {Ss}, S = ⋃

s Ss , was said in [20] to be resonant with the algebra
decomposition G = ⊕

s Vs ; equation (3.23) was called the resonance condition.
Now, the vector subspace of (3.20) G′

S ⊂ GS , defined by

G′
S =

⊕

p

⎛

⎝
⊕

αp∈Sp

Vpαp

⎞

⎠ , p = 0, . . . , n, (3.24)

(cf. (3.20)) is actually a subalgebra (called resonant in [20]) of GS , G′
S ⊂ GS , with Lie bracket

structure given by

G′
S : [Vpαp ,Vqβq ] ⊂

⊕

s≤p+q

Vsαpβq , (3.25)

and with structure constants determined by (3.18) and the S inner law in (3.19). This is so
because the subspace structure (3.25) comes from (2.3) and follows from (3.21), and the
r.h.s. of (3.25) is in G′

S because αpβq ∈ Ss ∀s ≤ p + q due to the resonant condition (3.23).
We now move on to show how the expansions G(N0, . . . ,Nn) in Theorem 1 can be re-

trieved from the above subalgebra G′
S of GS . Let us take the following collection of subsets

of S

Sp = {αp | αp = p, . . . ,N + 1}, p = 0, . . . , n, (3.26)

which clearly satisfy (3.23). Let us split them as Sp = Šp ∪ Ŝp , Šp = {p, . . . ,Np}, Ŝp =
{Np + 1, . . . ,N + 1} [20] and use Ŝp to introduce the vector subspace Ĝ′

S ⊂ G′
S by

Ĝ′
S =

⊕

p

⎛

⎝
⊕

αp∈Ŝp

Vpαp

⎞

⎠ , p = 0, . . . , n (3.27)

(c.f. (3.24)). Now, if the integers Np , p = 0, . . . , n, are chosen to obey the restrictions (3.11)
or, equivalently, (3.10), then Ĝ′

S is an ideal of G′
S . Indeed, we see from (3.18) that Ĝ′

S will
be an ideal of G′

S if for αp ∈ Ŝp and βq ∈ Sq in (3.25), αpβq ∈ Ŝs where s = min{n,p + q}.
This is indeed the case: if s = p + q ≤ n in (3.25), equation (3.10) for p ≤ s leads to
(Np + 1) + q ≥ (Np+q + 1), and hence αpβq ∈ Ŝp+q . And, if p + q > n, s = n in (3.25),
equation (3.10) for p ≤ n gives Np ≥ Nn − n + p and so Np + q ≥ Nn − n + p + q . Since
now p + q > n, this gives (Np + 1) + q ≥ (Nn + 1), and thus αpβq ∈ Ŝn, ∀ αp ∈ Ŝp , ∀
βq ∈ Sq .

The quotient of G′
S by the ideal Ĝ′

S ,

Ǧ′
S = G′

S/Ĝ
′
S (3.28)
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defines the algebra Ǧ′
S (not a subalgebra of G′

S ), with underlying vector space

Ǧ′
S =

⊕

p

⎛

⎝
⊕

αp∈Šp

Vpαp

⎞

⎠ , p = 0, . . . , n. (3.29)

As vector spaces, Ĝ′
S and Ǧ′

S are complementary in G′
S . The dimension of Ǧ′

S is given by

dim Ǧ′
S = dimG′

S − dim Ĝ′
S

=
n∑

p=0

∑

αp∈Šp

dimVpαp =
n∑

p=0

Np∑

αp=p

dimVpαp =
n∑

p=0

(Np − p + 1) dimVp. (3.30)

The structure constants of Ǧ′
S are given by

C
ks,αs

ip,βpjq ,γq
= δ

αs
βpγq

c
ks

ipjq
, p, q, s = 0,1, . . . , n, αp,βp, γp = p, . . . ,Np (3.31)

=
{

0, if βp + γq 
= αs

c
ks

ipjq
, if βp + γq = αs

p, q, s = 0,1, . . . , n,

ip,q,s = 1,2, . . . ,dimVp,q,s ,

αp,βp, γp = p,p + 1, . . . ,Np,

(3.32)

where the part δ
αs
βpγq

of the structure constants (see (3.18)), in which and βp , γq , . . . , in-

dicate the elements of the subsets Šp , Šq . . . above, is obtained from (3.19). We see that
the dimensions in (3.30) and (3.8), and the structure constants in (3.32) and (3.6), coincide.
Thus, if the integers Np are restricted as in (3.11), the above algebra Ǧ′

S is just the expansion
G(N0, . . . ,Nn) [18] of Theorem 1.

We refer to [20] for further details on S-expanded algebras.

4 The gauge structure of D = 11 supergravity

As a recent physical application of the expansion method, we now comment briefly on the
underlying gauge structure of eleven-dimensional supergravity [7, 21, 22]. See [17–19, 59–
65] for other possible applications of the expansion method.

We are interested here in the underlying gauge symmetry of D = 11 Cremmer–Julia–
Scherk (CJS) supergravity [6] as a way of understanding the symmetry structure of
M-theory, the low energy limit of which is D = 11 supergravity. The problem of its hid-
den or underlying gauge geometry was raised already in the CJS pioneering paper [6],
where the possible relevance of OSp(1|32) was suggested. It was specially considered by
D’Auria and Fré [7], who looked at the problem as a search for a composite structure of its
three-form field A3(x). Indeed, while two of the D = 11 supergravity fields (the graviton
ea = dxμea

μ(x) and the gravitino ψα = dxμψα
μ(x)) are given by one-form spacetime fields

and thus can be considered, together with the spin connection (ωab = dxμωab
μ (x)), as gauge

fields for the standard super-Poincaré group, the additional Aμ1μ2μ3(x) Abelian gauge field
in D = 11 CJS supergravity is not associated with any super-Poincaré algebra MC one-form
or generator since it rather corresponds to a three-form A3. However, one may ask whether it
is possible to introduce a set of additional one-form fields associated to the LI MC forms of a
larger superalgebra such that these fields, together with ea and ψα , can be used to express A3
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in terms of one-forms. If so, the ‘old’ ea,ψα and the ‘new’ one-form fields may be consid-
ered as gauge fields of a larger supersymmetry group, with A3 expressed in terms of them.
This is what is meant by the underlying gauge group structure of CJS supergravity: it is hid-
den when the standard D = 11 supergravity multiplet is considered, and manifest when the
three-form field A3 becomes a composite of one-form fields associated with the MC forms of
the larger superalgebra, in which case all CJS supergravity fields can be treated as one-form
gauge fields. It is then seen that the solution of this problem is equivalent to trivializing a
standard D = 11 supersymmetry algebra E(11|32) cohomology four-cocycle ω4 (structurally
equivalent to the four-form dA3) on a larger algebra Ẽ corresponding to a larger superspace
group Σ̃ .

It turns out [21, 22] that there is a whole one-parameter family of enlarged supersym-
metry algebras Ẽ(s), s 
= 0 that trivialize the E(11|32) four-cocycle ω4 (∼ dA3) (see [21, 22]
for the meaning of Ẽ(s) and its associated family of enlarged superspace groups Σ̃(s)).
Hence (and adding the D = 11 Lorentz group, SO(1,10)), this means that the underlying
gauge supergroup of D = 11 supergravity has a semidirect structure and can be described by
any representative of a one-parametric family of supergroups, Σ̃(s) ×⊃ SO(1,10) for s 
= 0.
These may be seen as deformations of Σ̃(0) ×⊃ SO(1,10) ⊂ Σ̃(0) ×⊃ Sp(32), where Σ̃(0)

is a certain enlarged superspace group [21, 22]. Thus our conclusion is that the underly-
ing gauge group structure of D = 11 supergravity is determined by a one-parametric non-
trivial deformation of Σ̃(0) ×⊃ SO(1,10) ⊂ Σ̃(0) ×⊃ Sp(32) (two specific cases of the Ẽ(s)

family, Ẽ(3/2) and Ẽ(−1), were already found in [7]). The singularity of Ẽ(0) looks rea-
sonable; the corresponding Σ̃(0) enlarged superspace group is special because the Lorentz
SO(1,10) automorphism group of Σ̃(s) (s 
= 0) is enhanced to Sp(32) for Σ̃(0). The appear-
ance of Σ̃(0) allows us to clarify the connection of the underlying gauge supergroups with
OSp(1|32) above mentioned. It is found [21, 22] that Σ̃(0) ×⊃ SO(1,10) is an expansion of
OSp(1|32); specifically, Σ̃(0) ×⊃ SO(1,10) ≈ OSp(1|32)(2,3,2). It may also be shown that
Σ̃(0) ×⊃ Sp(32) is the expansion of OSp(1|32)(2,3).

The enlarged supersymmetry algebras Ẽ(s) are central extensions of the M-algebra (of
generators Qα,Pa,Zab,Za1...a5 ) by an additional fermionic generator Q′

α . Trivializing the
E(11|32) Lie superalgebra cohomology four-cocycle ω4 on the enlarged supersymmetry alge-
bra Ẽ(s), so that ω4 is the exterior derivative of an invariant form, ω4 = dω̃3, is tantamount
to finding a composite structure for the three-form field A3 of CJS supergravity in terms of
one-form gauge fields, A3 = A3(e

a,ψα;Ba1a2 ,Ba1...a5 , ηα) associated to the MC forms of
Ẽ(s). The compositeness of A3 is given by the same equation that provides the ω̃3 trivializa-
tion ω4 = dω̃3 of the ω4 cocycle (where now ω̃3 is Σ̃(s)-invariant; this is why ω4 becomes
a trivial cocycle for Ẽ(s), s 
= 0; see e.g. [3]). In the composite A3 expression, the Ẽ(s)

MC forms are replaced by ‘soft’ one-forms—spacetime one-form fields—obeying a free
differential algebra with curvatures.

The presence of the additional one-form gauge fields associated with the new generators
in Ẽ(s) might be expected. The field Ba1...a5 , associated to the Za1...a5 M-algebra generator,
is needed [66] for a coupling to BPS preons [67, 68], the hypothetical basic constituents
of M-theory. In a more conventional perspective, one can notice that the generators Za1a2

and Za1...a5 can be treated as topological charges [5] of the M2 and M5 superbranes (see
also [69]). In the standard CJS supergravity the M2-brane solution carries a charge of the
three-form gauge field A3 and thus there should have a relation with the charge Za1a2 and its
gauge field Ba1a2 . The analysis of the rôle of the fermionic central charge Q′

α and its gauge
field ηα in this perspective requires more care, although such a fermionic ‘central’ charge is
also present in the Green algebra [70] (see also [11–14, 71] and references therein).

Some comments are now in order.
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• The supergroup manifolds Σ̃(s) are enlarged superspaces. The fact that all the space-
time fields appearing in the above description of CJS supergravity may be associated to the
various coordinates of Σ̃(s) is suggestive of an enlarged superspace variables/spacetime
fields correspondence principle for D = 11 CJS supergravity.

• This is not the only case where such a situation appears. It may be seen [13, 14] that
one may introduce an enlarged superspace variables/worldvolume fields correspondence
principle for superbranes, by which one associates all worldvolume fields, including the
Born–Infeld (BI) ones [13, 14, 72, 73] in the various D-brane actions, to fields corresponding
to forms defined on suitably enlarged superspaces Σ̃ (the actual worldvolume fields are
the pull-backs of these forms to the worldvolume of the extended supersymmetric object).
The worldvolume BI fields, as the spacetime A3 field of CJS supergravity above, become
composite fields. Moreover, a Chevalley–Eilenberg Lie algebra cohomology analysis [13,
14, 74, 75] of the Wess–Zumino terms of many different superbrane actions determines
the possible ones and how the ordinary supersymmetry algebra has to be extended (see
also [72, 73, 76]). This again suggests an enlarged superspace variables/worldvolume fields
correspondence.

• Thus, could there be an enlarged superspace variables/fields correspondence princi-
ple in M-theory?

To conclude, we would like to mention that the expansion method can also be applied
[18] to free differential algebras (FDAs) [7, 77–79], structures that prove useful to discuss
the dynamics of supergravity theories. In particular, it can be applied to the gauge FDAs
obtained by ‘softening’ the MC forms, and therefore to obtain Chern–Simons type actions,
from those for the unexpanded algebras [18, 62, 63] (see [64, 65] for a review of Chern–
Simons actions in the supergravity context). The S-expansions [20] briefly reviewed at the
end of Sect. 3 can also be applied to the construction of Chern–Simons Lagrangians [80].
The reduction of the D = 11 supergravity FDA has been very recently analyzed [81] in
terms of the Sezgin algebra [12] and the E11 Kac–Moody algebra.
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