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Abstract This paper delineates the first steps in a systematic quantitative study of the space-
time fluctuations induced by quantum fields in an evaporating black hole. We explain how
the stochastic gravity formalism can be a useful tool for that purpose within a low-energy
effective field theory approach to quantum gravity. As an explicit example we apply it to
the study of the spherically-symmetric sector of metric perturbations around an evaporating
black hole background geometry. For macroscopic black holes we find that those fluctua-
tions grow and eventually become important when considering sufficiently long periods of
time (of the order of the evaporation time), but well before the Planckian regime is reached.
In addition, the assumption of a simple correlation between the fluctuations of the energy
flux crossing the horizon and far from it, which was made in earlier work on spherically-
symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analy-
sis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a
three-dimensional hypersurface. We emphasize the need for understanding and designing
operational ways of probing quantum metric fluctuations near the horizon and extracting
physically meaningful information.

1 Introduction

Studying the dynamics of quantum fields in a fixed curved spacetime, Hawking found
that black holes emit thermal radiation with a temperature inversely proportional to their
mass [1]. When the back reaction of the quantum fields on the spacetime dynamics is in-
cluded, one expects that the mass of the black hole decreases as thermal radiation at higher
and higher temperatures is emitted. This picture, based on the process known as black hole
evaporation, is obtained from semiclassical gravity calculations which are believed to be
valid at least before the Planckian scale is reached [2, 3].
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Semiclassical gravity [4–6] is a mean field description that neglects the fluctuations of
the spacetime geometry. However, a number of studies have suggested the existence of large
fluctuations near black hole horizons [7–10] (and even instabilities [11]) with characteristic
time-scales much shorter than the black hole evaporation time. In all of them1 either states
which are singular on the horizon (such as the Boulware vacuum for Schwarzschild space-
time) were explicitly considered, or fluctuations were computed with respect to those states
and found to be large near the horizon. Whether these huge fluctuations are of a generic na-
ture or an artifact arising from the consideration of states singular on the horizon is an issue
that deserves further investigation. On the other hand, the fluctuations for states regular on
the horizon were estimated in Ref. [12] and found to be small even when integrated over a
time of the order of the evaporation time. These apparently contradictory claims and the fact
that most claims on black hole horizon fluctuations were based on qualitative arguments
and/or semi-quantitative estimates prompted us to strive for a more quantitative and self-
consistent description. (Previous attempts on this problem with similar emphasis by Raval,
Sinha and one of us have appeared in Refs. [13, 14]. The apparent difference between the
conclusions in Ref. [13] and what is reported here will be explained below.) In contrast to
those prior studies, we find here that in those cases the accumulated fluctuations become sig-
nificant by the time the black hole mass has changed substantially, but well before reaching
the Planckian regime. Our result is in agreement with earlier work by Bekenstein [15].

We will study metric fluctuations within a low-energy effective field theory approach
to quantum gravity [16], which is commonly believed to provide a valid description for
phenomena involving typical length-scales much larger than the Planck length even if the
microscopic details of the theory at Planckian scales are not known. This approach has
been mainly applied to weak field situations, such as the study of quantum corrections to
the Newtonian potential for particles in a Minkowski background [17, 18]. However, it is
particularly interesting to apply it also to strong field situations involving cosmological [19]
or black hole spacetimes. Here we will consider quantized metric perturbations around a
black hole background geometry.

In the spirit of the effective field theory approach, the stochastic gravity formalism
[20, 21] provides a more than adequate and perhaps the best available framework to study
quantum metric fluctuations because, for one reason at least, the correlation functions that
one obtains are equivalent to the quantum correlation functions that would follow from a
quantum field theory treatment, up to a given order in an expansion in terms of the in-
verse number of fields [22, 23]. Stochastic gravity allows for a systematic study of the
metric fluctuations in a black hole spacetime over and beyond that for the mean value of
the background spacetime based on semiclassical gravity (with self-consistent back reac-
tion from the expectation value of the stress tensor). In tackling the problem of metric
fluctuations driven by quantum matter field fluctuations for states regular on the horizon
(as far as the expectation value of the stress tensor is concerned), the existence of cor-
relations between the outgoing energy flux far from the horizon and a negative energy
flux crossing the horizon, based on energy conservation arguments, constitutes an impor-
tant step in previous investigations [12, 15] (see, however, Refs. [24, 25], where those
correlators were shown to vanish in an effectively two-dimensional model). Using semi-
classical gravity, such correlations have been confirmed for the expectation value of the
energy fluxes, provided that the mass of the black hole is much larger than the Planck

1At least those which provide a relativistic description. The argument in Refs. [7, 8] is based on a non-
relativistic description and it is not obvious how to make some of our statements precise in that case. However,
a natural generalization to the relativistic case is provided in Ref. [10], which does fall into this category.
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mass. However, a more careful analysis, summarized in Sect. 4, shows that no such sim-
ple connection exists for energy flux fluctuations. It also reveals that the fluctuations on
the horizon, as a three-dimensional hypersurface, are in fact divergent and one needs to
find an adequate way of probing the metric fluctuations near the horizon and extract-
ing physically meaningful information. The non-existence of this commonly invoked re-
lation in this whole subject matter illustrates the limitations of heuristic arguments and the
necessity of a detailed and consistent formalism to study the fluctuations near the hori-
zon.

We close this introduction with a few technical remarks. First, we will restrict our at-
tention to the spherically-symmetric sector of metric fluctuations, which necessarily implies
a partial description of the fluctuations. Note, however, that contrary to the case for semi-
classical gravity solutions, even if one starts with spherically-symmetric initial conditions,
the stress tensor fluctuations will induce fluctuations involving higher multipoles. Thus, the
multipole structure of the fluctuations is far richer than that of spherically-symmetric semi-
classical gravity solutions, but this also means that obtaining a complete solution (including
all multipoles) for fluctuations rather than the mean value, even a particular one, is much
more difficult.

Second, for black hole masses much larger than the Planck mass (otherwise the effec-
tive field theory description will break down anyway), one can introduce a useful adiabatic
approximation involving inverse powers of the black hole mass. To obtain results to lowest
order, it is sufficient to compute the expectation value of the stress tensor operator and its
correlation functions in Schwarzschild spacetime. The corrections, proportional to higher
powers of the inverse mass, can be neglected for sufficiently massive black holes.

Third, when studying the dynamics of induced metric fluctuations, the additional contri-
bution to the stress tensor expectation value which results from evaluating it using the per-
turbed metric is often neglected. In the consideration of fluctuations for an evaporating black
hole such a term (which will be denoted by 〈T̂ (1)

ab [g + h]〉ren in Sect. 3) becomes important
when its effect builds up for long times. The importance of this term is clear when compar-
ing with the simple estimate made by Wu and Ford in Ref. [12], where 〈T̂ (1)

ab [g + h]〉ren was
neglected and the fluctuations were found to be small even when integrated over long times,
of the order of the evaporation time of the black hole.

The paper is organized as follows. In Sect. 2 we briefly review the results for the mean
evolution of an evaporating black hole obtained in the context of semiclassical gravity.
The stochastic gravity formalism is then applied in Sect. 3 to the study of the spherically-
symmetric sector of fluctuations around the semiclassical gravity solution for an evaporating
black hole. The existence of an exact correlation between the fluctuations of the negative en-
ergy flux crossing the horizon and the flux far from it has been previously assumed. In this
paper we want to question this assumption, but in the presentation in Sect. 3 we make such
an assumption to be in line with the literature. In Sect. 4, we present a careful analysis of
this assumption, and show that it is invalid. Further details can be found in a longer paper on
the same subject [26]. Finally, in Sect. 5 we discuss several implications of our results and
suggest some directions for further investigation.

Throughout the paper we use Planckian units with � = c = G = 1 and the (+,+,+)

convention of Ref. [27]. We also make use of the abstract index notation of Ref. [28]. Latin
indices denote abstract indices, whereas Greek indices are employed whenever a particular
coordinate system is considered.
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2 Mean Evolution of an Evaporating Black Hole

Semiclassical gravity provides a mean field description of gravitational back-reaction prob-
lems in which the quantum effects of the matter fields can be important [4–6]. It is believed
to be applicable to situations involving length-scales much larger than the Planck scale and
for which the quantum back-reaction effects due to the metric itself can be neglected as
compared to those due to the matter fields. In semiclassical gravity the spacetime geometry
is described by a classical metric while the matter fields are quantized. The dynamics of the
metric is governed by the semiclassical Einstein equation:

Gab[g] = κ〈T̂ab[g]〉ren, (1)

where 〈T̂ab[g]〉ren is the renormalized expectation value of the stress tensor operator of the
quantum matter fields and κ = 8π/m2

p with m2
p being the Planck mass. Both the semiclas-

sical Einstein equation and the equation of motion for the matter fields evolving in that
geometry, whose solution is needed to evaluate 〈T̂ab[g]〉ren, must be solved self-consistently.

An important application of semiclassical gravity is the study of black hole evaporation
due to the back reaction of the Hawking radiation emitted by the black hole on the spacetime
geometry. This has been studied in some detail for spherically symmetric black holes [2, 3].
For a general spherically-symmetric metric there always exists a system of coordinates in
which it takes the form

ds2 = −e2ψ(v,r)(1 − 2m(v, r)/r)dv2 + 2eψ(v,r)dvdr + r2(dθ2 + sin2 θdϕ2). (2)

This completely fixes the gauge freedom under local diffeomorphism transformations ex-
cept for an arbitrary function of v that can be added to the function ψ(v, r) and is related
to the freedom in reparametrizing v (we will see below how this can also be fixed). In gen-
eral this metric exhibits an apparent horizon, where the expansion of the outgoing radial
null geodesics vanishes and which separates regions with positive and negative expansion
for those geodesics, at those radii that correspond to (odd degree) zeroes of the vv metric
component. Throughout the paper the location of the apparent horizon will be denoted by
rAH(v) = 2M(v), where M(v) satisfies the equation 2m(2M(v), v) = 2M(v).

Spherical symmetry implies that the components Tθr , Tθv , Tϕr and Tϕv vanish and the
remaining components are independent of the angular coordinates. Under these conditions
the various components of the semiclassical Einstein equation associated with the metric
in (2) become

∂m

∂v
= 4πr2T r

v , (3)

∂m

∂r
= −4πr2T v

v , (4)

∂ψ

∂r
= 4πrTrr , (5)

where from now on we will simply use Tμν to denote the expectation value 〈T̂μν[g]〉ren and
employ Planckian units (with m2

p = 1). Note that the arbitrariness in ψ can be eliminated by
choosing a parametrization of v such that ψ takes a particular value at a given radius (we
will choose that it vanishes at r = 2M(v), where the apparent horizon is located); ψ is then
entirely fixed by (5).
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Solving (3–5) is no easy task. However, one can introduce a useful adiabatic approxima-
tion in the regime where the mass of the black hole is much larger than the Planck mass,
which is in any case a necessary condition for the semiclassical treatment to be valid. What
this entails is that when M � 1 (remember that we are using Planckian units) for each value
of v one can simply substitute Tμν by its “parametric value”—by this we mean the expec-
tation value of the stress energy tensor of the quantum field in a Schwarzschild black hole
with a mass corresponding to M(v) evaluated at that value of v. This is in contrast to its
dynamical value, which should be determined by solving self-consistently the semiclassi-
cal Einstein equation for the spacetime metric and the equations of motion for the quantum
matter fields. This kind of approximation introduces errors of higher order in LH ≡ B/M2

(B is a dimensionless parameter that depends on the number of massless fields and their
spins and accounts for their corresponding grey-body factors; it has been estimated to be of
order 10−4 [29]), which are very small for black holes well above Planckian scales. These
errors are due to the fact that M(v) is not constant and that, even for a constant M(v), the
resulting static geometry is not exactly Schwarzschild because the vacuum polarization of
the quantum fields gives rise to a non-vanishing 〈T̂ab[g]〉ren [30].

The expectation value of the stress tensor for Schwarzschild spacetime has been found to
correspond to a thermal flux of radiation (with T r

v = LH/(4πr2)) for large radii and of order
LH near the horizon2 [31–35]. This shows the consistency of the adiabatic approximation
for LH � 1: the right-hand side of (3–5) contains terms of order LH and higher, so that
the derivatives of m(v, r) and ψ(v, r) are indeed small. Furthermore, one can use the v

component of the stress-energy conservation equation

∂(r2T r
v )

∂r
+ r2 ∂T v

v

∂v
= 0, (6)

to relate the T r
v components on the horizon and far from it. Integrating (6) radially, one gets

(r2T r
v )(r = 2M(v), v) = (r2T r

v )(r ≈ 6M(v), v) + O(L2
H), (7)

where we considered a radius sufficiently far from the horizon, but not arbitrarily far (i.e.
2M(v) � r � M(v)/LH). The second condition is necessary to ensure that the size of the
horizon has not changed much since the value of v′ at which the radiation crossing the sphere
of radius r at time v left the region close to the horizon. Note that while in the nearly flat
region (for large radii) T r

v corresponds to minus the outgoing energy flux crossing the sphere
of radius r , on the horizon, where ds2 = 2eψ(v,r)dvdr + r2(dθ2 + sin2 θdϕ2), T r

v equals
Tvv , which corresponds to the null energy flux crossing the horizon. Hence, (7) relates the
positive energy flux radiated away far from the horizon and the negative energy flux crossing
the horizon. Taking into account this connection between energy fluxes and evaluating (3)
on the apparent horizon, we finally get the equation governing the evolution of its size:

dM

dv
= − B

M2
. (8)

2The natural quantum state for a black hole formed by gravitational collapse is the Unruh vacuum, which
corresponds to the absence of incoming radiation far from the horizon. The expectation value of the stress
tensor operator for that state is finite on the future horizon of Schwarzschild, which is the relevant one when
identifying a region of the Schwarzschild geometry with the spacetime outside the collapsing matter for a
black hole formed by gravitational collapse.



Int J Theor Phys (2007) 46: 2204–2217 2209

Unless M(v) is constant, the event horizon and the apparent horizon do not coincide.
However, in the adiabatic regime their radii differ by a quantity of higher order in LH:
rEH(v) = rAH(v)(1 + O(LH)).

3 Spherically-symmetric induced fluctuations

There are situations in which the fluctuations of the stress tensor operator and the metric
fluctuations that they induce may be important, so that the mean field description provided
by semiclassical gravity is incomplete and even fails to capture the most relevant phenomena
(the generation of primordial cosmological perturbations constitutes a clear example of that).
The stochastic gravity formalism [20, 21] provides a framework to study those fluctuations.
Its centerpiece is the Einstein–Langevin equation

G
(1)
ab [g + h] = κ〈T̂ (1)

ab [g + h]〉ren + κξab[g], (9)

which governs the dynamics of the metric fluctuations around a background metric gab

that corresponds to a given solution of semiclassical gravity. The superindex (1) indi-
cates that only the terms linear in the metric perturbations should be considered, and ξab

is a Gaussian stochastic source with vanishing expectation value and correlation function3

〈ξab(x)ξcd(x
′)〉ξ = (1/2)〈{t̂ab(x), t̂cd (x

′)}〉 (with t̂ab ≡ T̂ab − 〈T̂ab〉), where the term on the
right-hand side, which accounts for the stress tensor fluctuations within this Gaussian ap-
proximation, is commonly known as the noise kernel and denoted by Nabcd(x, x ′). In this
framework the metric perturbations are still classical but stochastic. Nevertheless, one can
show that the correlation functions for the metric perturbations that one obtains in stochastic
gravity are equivalent through order 1/N to the quantum correlation functions that would
follow from a quantum field theory treatment when considering a large number of fields N

[22, 23]. In particular, the symmetrized two-point function consists of two contributions:
intrinsic and induced fluctuations. The intrinsic fluctuations are a consequence of the quan-
tum width of the initial state of the metric perturbations, and they are obtained in stochastic
gravity by averaging over the initial conditions for the solutions of the homogeneous part of
(9) distributed according to the reduced Wigner function associated with the initial quantum
state of the metric perturbations. On the other hand, the induced fluctuations are due to the
quantum fluctuations of the matter fields interacting with the metric perturbations, and they
are obtained by solving the Einstein–Langevin equation using a retarded propagator with
vanishing initial conditions.

In this section, we will apply the stochastic gravity formalism to the study of the
spherically-symmetric sector (i.e., the monopole contribution, which corresponds to l = 0, in
a multipole expansion in terms of spherical harmonics Ylm(θ,φ)) of metric fluctuations for
an evaporating black hole. In this case only induced fluctuations are possible. The fact that
intrinsic fluctuations cannot exist can be clearly seen if one neglects vacuum polarization
effects, since Birkhoff’s theorem forbids the existence of free spherically-symmetric metric
perturbations outside the vacuum region of a spherically-symmetric black hole that keep
the ADM mass constant. Even when vacuum polarization effects are included, spherically-
symmetric perturbations, characterized by m(v, r) and ψ(v, r), are not independent degrees
of freedom. This follows from (3–5), which can be regarded as constraint equations.

3Throughout the paper we use the notation 〈· · ·〉ξ for stochastic averages over all possible realizations of the
source ξab to distinguish them from quantum averages, which are denoted by 〈· · ·〉.
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The fluctuations of the stress tensor are inhomogeneous and non-spherically-symmetric
even if we choose a spherically-symmetric vacuum state for the matter fields (spherical
symmetry simply implies that the angular dependence of the noise kernel in spherical coor-
dinates is entirely given by the relative angle between the spacetime points x and y). This
means that, in contrast to the semiclassical gravity case, projecting onto the l = 0 sector of
metric perturbations does not give an exact solution of the Einstein–Langevin equation in
the stochastic gravity approach that we have adopted here. Nevertheless, restricting to spher-
ical symmetry in this way gives more accurate results than two-dimensional dilaton-gravity
models resulting from simple dimensional reduction [36–38]. This is because we project the
solutions of the Einstein–Langevin equation just at the end, rather than considering only the
contribution of the s-wave modes to the classical action for both the metric and the matter
fields from the very beginning. Hence, an infinite number of modes for the matter fields
with l 	= 0 contribute to the l = 0 projection of the noise kernel, whereas only the s-wave
modes for each matter field would contribute to the noise kernel if dimensional reduction
had been imposed right from the start, as done in Refs. [24, 25, 39] as well as in studies of
two-dimensional dilaton-gravity models.

The Einstein–Langevin equation for the spherically-symmetric sector of metric perturba-
tions can be obtained by considering linear perturbations of m(v, r) and ψ(v, r), projecting
the stochastic source that accounts for the stress tensor fluctuations to the l = 0 sector, and
adding it to the right-hand side of (3–5). We will focus our attention on the equation for the
evolution of η(v, r), the perturbation of m(v, r):

∂(m + η)

∂v
= − B

(m + η)2
+ 4πr2ξ r

v + O(L2
H), (10)

which reduces, after neglecting terms of order L2
H or higher, to the following equation to

linear order in η:

∂η

∂v
= 2B

m3
η + 4πr2ξ r

v . (11)

It is important to emphasize that in (10) we assumed that the change in time of η(v, r) is
sufficiently slow so that the adiabatic approximation employed in the previous section to
obtain the mean evolution of m(v, r) can also be applied to the perturbed quantity m(v, r)+
η(v, r). This is guaranteed as long as the term corresponding to the stochastic source is of
order LH or higher, a point that will be discussed below.

Obtaining the noise kernel which determines the correlation function for the stochastic
source is highly nontrivial even if we compute it on the Schwarzschild spacetime, which is
justified in the adiabatic regime for the background geometry. As implicitly done in prior
work (for instance in Refs. [12, 15]; see, however, Refs. [24, 25]), we will assume in this
section that the fluctuations of the radiated energy flux far from the horizon are exactly cor-
related with the fluctuations of the negative energy flux crossing the horizon. This is a crucial
assumption which implies an enormous simplification and allows a direct comparison with
the results in the existing literature, and its validity will be analyzed more carefully in the
next section.4

4This simple relation between the energy flux crossing the horizon and the flux far from it is valid for the
expectation value of the stress tensor, which is based on an energy conservation argument for the T r

v com-
ponent. In most of the literature this relation is assumed to hold also for fluctuations. However, in the next
section we will show that this is an incorrect assumption. Therefore, results derived from this assumption and
conclusions drawn are in principle suspect. (This misstep is understandable because most authors have not
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Since the generation of Hawking radiation is especially sensitive to what happens near
the horizon, from now on we will concentrate on the metric perturbations near the horizon5

and consider η(v) = η(v,2M(v)). Assuming that the fluctuations of the energy flux crossing
the horizon and those far from it are exactly correlated, from (11) we have

dη(v)

dv
= 2B

M3(v)
η(v) + ξ(v), (12)

where ξ(v) ≡ (4πr2ξ r
v )(v, r ≈ 6M(v)). The correlation function for the spherically-

symmetric fluctuation ξ(v) is determined by the integral over the whole solid angle of the
Nrr

vv component of the noise kernel, which is given by (1/2)〈{t̂ r
v (x), t̂ r

v (x ′)}〉. The l = 0 fluc-
tuations of the energy flux of Hawking radiation, characterized by (1/2)〈{t̂ r

v (x), t̂ r
v (x ′)}〉, far

from a black hole formed by gravitational collapse have been studied in Ref. [12]. Its main
features are a correlation time of order M and a characteristic fluctuation amplitude of order
ε0/M

4 (this is the result of smearing the stress tensor two-point function, which diverges
in the coincidence limit, over a period of time of the order of the correlation time). The
order of magnitude of ε0 has been estimated to lie between 0.1B and B [12, 15]. For sim-
plicity, we will consider quantities smeared over a time of order M . We can then introduce
the Markovian approximation 〈ξ(v)ξ(v′)〉ξ = (ε0/M

3(v))δ(v − v′), which coarse-grains the
information on features corresponding to time-scales shorter than the correlation time M .
Under those conditions r2ξ r

v is of order 1/M2 and the adiabatic approximation made when
deriving (10) is justified.

The stochastic equation (12) can be solved in the usual way and the correlation function
for η(v) can then be computed. Alternatively, one can follow Bekenstein [15] and derive
directly an equation for 〈η2(v)〉ξ . This is easily done multiplying (12) by η(v) and taking
the expectation value. The result is

d

dv
〈η2(v)〉ξ = 4B

M3(v)
〈η2(v)〉ξ + 2〈η(v)ξ(v)〉ξ . (13)

For delta-correlated noise (the Stratonovich prescription is the appropriate one in this case),
〈η(v)ξ(v)〉ξ equals one half the time-dependent coefficient multiplying the delta function
δ(v − v′) in the expression for 〈ξ(v)ξ(v′)〉ξ , which is given by ε0/M

3(v) in our case. Taking
that into account, (13) becomes

d

dv
〈η2(v)〉ξ = 4B

M3(v)
〈η2(v)〉ξ + ε0

M3(v)
. (14)

Finally, it is convenient to change from the v coordinate to the mass function M(v) for the
background solution. Equation (14) can then be rewritten as

d

dM
〈η2(M)〉ξ = − 4

M
〈η2(M)〉ξ − (ε0/B)

M
. (15)

acquired as much insight into the nature of fluctuations phenomena as now.) Our investigation testifies to the
necessity of a complete reexamination of all cases afresh. In fact, as we will show in the longer paper follow-
ing, an evaluation of the noise kernel near the horizon seems unavoidable for the consideration of fluctuations
and back-reaction issues.
5This means that possible effects on the Hawking radiation due to the fluctuations of the potential barrier for
the radial mode functions will be missed by our analysis.
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The solutions of this equation are given by

〈η2(M)〉ξ = 〈η2(M0)〉ξ
(

M0

M

)4

+ ε0

4B

[(
M0

M

)4

− 1

]
. (16)

Provided that the fluctuations at the initial time corresponding to M = M0 are negligible
(much smaller than

√
ε0/4B ∼ 1), the fluctuations become comparable to the background

solution when M ∼ M
2/3
0 . Note that fluctuations of the horizon radius of order one in Planck-

ian units do not correspond to Planck scale physics because near the horizon �R = r − 2M

corresponds to a physical distance L ∼ √
M�R, as can be obtained from the line element

for Schwarzschild, ds2 = −(1 − 2M/r)dt2 + (1 − 2M/r)−1dr2 + r2(dθ2 + sin2 θdϕ2), by
considering pairs of points at constant t . So �R ∼ 1 corresponds to L ∼ √

M , whereas a
physical distance of order one is associated with �R ∼ 1/M , which corresponds to an area
change of order one for spheres with those radii. One can, therefore, have initial fluctua-
tions of the horizon radius of order one for physical distances well above the Planck length
provided that we consider a black hole with a mass much larger than the Planck mass. One
expects that the fluctuations for states that are regular on the horizon correspond to physi-
cal distances not much larger than the Planck length, so that the horizon radius fluctuations
would be much smaller than one for sufficiently large black hole masses. Nevertheless, that
may not be the case when dealing with states which are singular on the horizon, with es-
timated fluctuations of order M1/3 or even

√
M [9–11]. Confirming that the fluctuations

are indeed so small for regular states and verifying how generic, natural and stable they
are as compared to singular ones is a topic that we plan to address in future investiga-
tions.

Our result for the growth of the fluctuations of the size of the black hole horizon agrees
with the result obtained by Bekenstein in Ref. [15] and implies that, for a sufficiently mas-
sive black hole (with a few solar masses or a supermassive black hole), the fluctuations
become important before the Planckian regime is reached. Strictly speaking, one cannot
expect that a linear treatment of the perturbations provides an accurate result when the fluc-
tuations become comparable to the mean value, but it signals a significant growth of the
fluctuations (at least until the nonlinear effects on the perturbation dynamics become rele-
vant).

This growth of the fluctuations which was found by Bekenstein and confirmed here via
the Einstein–Langevin equation seems to be in conflict with the estimate given by Wu and
Ford in Ref. [12]. According to their estimate, the accumulated mass fluctuations over a
period of the order of the black hole evaporation time (�t ∼ M3

0 ) would be of the order of
the Planck mass. The discrepancy is due to the fact that the first term on the right-hand side
of (12), which corresponds to the perturbed expectation value 〈T̂ (1)

ab [g + h]〉ren in (9), was
not taken into account in Ref. [12]. The larger growth obtained here is a consequence of
the secular effect of that term, which builds up in time (slowly at first, during most of the
evaporation time, and becoming more significant at late times when the mass has changed
substantially) and reflects the unstable nature of the background solution for an evaporating
black hole.6

6A clarification between our results and the claims by Hu, Raval and Sinha in Ref. [13] is in place here:
both use the stochastic gravity framework and perform an analysis based on the Einstein–Langevin equation,
so there should be no discrepancy. However, the claim in Ref. [13] was based on a qualitative argument that
focused on the stochastic source, but missed the fact that the perturbations around the mean are unstable for an
evaporating black hole. Once this is taken into account, agreement with the result obtained here is recovered.
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All this can be qualitatively understood as follows. Consider an evaporating black hole
with initial mass M0 and suppose that the initial mass is perturbed by an amount δM0 = 1.
The mean evolution for the perturbed black hole (without taking into account any fluctua-
tions) leads to a mass perturbation that grows like δM = (M0/M)2δM0 = (M0/M)2, so that
it becomes comparable to the unperturbed mass M when M ∼ M

2/3
0 , which coincides with

the result obtained above. Such a coincidence has a simple explanation: the fluctuations of
the Hawking flux slowly accumulated during most of the evaporating time, which are of
the order of the Planck mass, as found by Wu and Ford, give a dispersion of that order for
the mass distribution at the time when unstable nature of the small perturbations around the
background solution start to become significant.

4 Correlation Between Outgoing and Ingoing Energy Fluxes

In this section we will analyze more carefully whether the simple relation between the en-
ergy flux crossing the horizon and the flux far from it also holds for the fluctuations. One
can find simple arguments which show that those correlations vanish in two-dimensional
spacetimes [26]. Indeed, the correlation function for the outgoing and ingoing null en-
ergy fluxes in an effectively two-dimensional model was explicitly computed in Refs. [24,
25] and found to vanish. On the other hand, in four dimensions the correlation function
does not vanish in general and correlations between outgoing and ingoing fluxes do ex-
ist near the horizon (at least partially). We plan to elaborate further on these points in
Ref. [26].

For black hole masses much larger than the Planck mass, one can use the adiabatic ap-
proximation for the background mean evolution. Therefore, to lowest order in LH one can
compute the fluctuations of the stress tensor in Schwarzschild spacetime. In Schwarzschild,
the amplitude of the fluctuations of r2T̂ r

v far from the horizon is of order 1/M2 (= M2/M4)
when smearing over a correlation time of order M , which one can estimate for a hot thermal
plasma in flat space [40, 41] (see Ref. [12] for a more accurate computation of the fluctua-
tions of r2T̂ r

v far from the horizon). The amplitude of the fluctuations of r2T̂ r
v is thus of the

same order as its expectation value. However, their derivatives with respect to v are rather
different: since the characteristic variation times for the expectation value and the fluctua-
tions are M3 and M respectively, ∂(r2T r

v )/∂v is of order 1/M5 whereas ∂(r2ξ r
v )/∂v is of

order 1/M3. This implies an additional contribution of order LH due to the second term
in (6) if one radially integrates the same equation applied to stress tensor fluctuations (the
stochastic source in the Einstein–Langevin equation). Hence, in contrast to the case of the
mean value, the contribution from the second term in (6) cannot be neglected when radially
integrating since it is of the same order as the contributions from the first term, and one can
no longer obtain a simple relation between the outgoing energy flux far from the horizon
and the energy flux crossing the horizon.

So far we have argued that the method employed for the mean value cannot be employed
for the fluctuations. Although one expects that r2ξ r

v on the horizon and far from it will not be
equal when including the contributions that results from radially integrating the second term
in (6), one might wonder whether there is a possibility that those contributions would some-
how cancel out. That possibility can, however, be excluded using the following argument.
The smeared correlation function

∫
dvh(v)

∫
dv′h(v′) r4〈ξ r

v (v, r)ξ r
v (v′, r)〉ξ , (17)
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where h(v) is some appropriate smearing function and ξ r
v (v, r) has already been integrated

over the whole solid angle, is divergent on the horizon but finite far from it. Therefore, r2ξ r
v

on the horizon and far from it cannot be equal for each value of v.
Let us discuss in some more detail the fact that certain smearings of the quantity

r4〈ξ r
v (v, r)ξ r

v (v′, r)〉ξ are divergent on the horizon but finite far from it. The smeared corre-
lation function is related to the noise kernel as follows:∫

dvdv′h(v)h(v′)r4〈ξ r
v (v, r)ξ r

v (v′, r)〉ξ

= r4
∫

dvdv′h(v)h(v′)
∫

dΩdΩ ′Nrr
vv(v, r, θ,ϕ;v′, r, θ ′, ϕ′). (18)

The noise kernel is divergent in the coincident limit or for null-separated points. Smearing
the noise kernel along all directions gives a finite result. However, although certain partial
smearings also give a finite result, others do not. For instance, smearing along a timelike di-
rection yields a finite result, whereas smearing on a spacelike hypersurface yields in general
a divergent result [26, 42]. On the other hand, the result of smearing along two “trans-
verse” null directions (two opposite null directions sharing the same orthogonal spacelike
2-surfaces) is also finite, but not for a smearing along just one null direction, even if we also
smear along the orthogonal spacelike directions. For r > 2M (18) corresponds to a smearing
along a timelike direction and gives a finite result for the smeared correlation function, but
on the horizon it corresponds to a smearing along a single null direction and it is divergent.

The proof of the results described in the previous paragraph will be provided in Ref. [26]
by considering a smearing along all directions and then taking the limit in which the smear-
ing size along one of the null directions vanishes. It proceeds in two steps. First, it is shown
in the flat space case. Then it is generalized to curved spacetimes using a quasilocal expan-
sion in terms of Riemann normal coordinates.

5 Discussion

Using the stochastic gravity formalism, in Sect. 3 we found that the spherically-symmetric
fluctuations of the horizon size of an evaporating black hole become important at late times,
and even comparable to its mean value when M ∼ M

2/3
0 , where M0 is the mass of the black

hole at some initial time when the fluctuations of the horizon radius are much smaller than
the Planck length.7 This is consistent with the result previously obtained by Bekenstein in
Ref. [15].

It is important to realize that for a sufficiently massive black hole, the fluctuations become
significant well before the Planckian regime is reached. More specifically, for a solar mass
black hole they become comparable to the mean value when the black hole radius is of the
order of 10 nm, whereas for a supermassive black hole with M ∼ 107M�, that happens when
the radius reaches a size of the order of 1 mm. One expects that in those circumstances the
low-energy effective field theory approach of stochastic gravity should provide a reliable
description.

Due to the nonlinear nature of the back-reaction equations, such as (10), the fact that
the fluctuations can grow and become comparable to the mean value implies non-negligible

7Remember that for large black hole masses this can still correspond to physical distances much larger than
the Planck length, as explained in Sect. 3.
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corrections to the dynamics of the mean value itself. This can be seen by expanding (10)
(evaluated on the horizon) in powers of η and taking the expectation value. Through order
η2 we get

d(M(v) + 〈η(v)〉ξ )
dv

= −
〈

B

(M(v) + η(v))2

〉
ξ

= − B

M2(v)

[
1 − 2

M(v)
〈η(v)〉ξ + 3

M2(v)
〈η2(v)〉ξ + O

(
η3

M3

)]
. (19)

When the fluctuations become comparable to the mass itself, the third term (and higher order
terms) on the right-hand side is no longer negligible and we get non-trivial corrections to
(8) for the dynamics of the mean value. These corrections can be interpreted as higher order
radiative corrections to semiclassical gravity that include the effects of metric fluctuations
on the evolution of the mean value. For instance, the third term on the right-hand side of (19)
would correspond to a two-loop Feynman diagram involving a matter loop with an internal
propagator for the metric perturbations (restricted to the spherically-symmetric sector in
our case), as compared to just one matter loop, which is all that semiclassical gravity can
account for.

An interesting aspect that we have not addressed in this work, but which is worth inves-
tigating, is the quantum coherence of those fluctuations. It seems likely that, given the long
time periods involved and the size of the fluctuations, the entanglement between the Hawk-
ing radiation emitted and the black hole spacetime geometry will effectively decohere the
large horizon fluctuations, rendering them equivalent to an incoherent statistical ensemble.

Does the existence of the significant deviations for the mean evolution mentioned above
imply that the results based on semiclassical gravity obtained by Bardeen and Massar in
Refs. [2, 3] are invalid? Several remarks are in order. First of all, those deviations start
to become significant only after a period of the order of the evaporation time when the
mass of the black hole has decreased substantially. Secondly, since fluctuations were not
considered in those references, a direct comparison cannot be established. However, we can
compare the average of the fluctuating ensemble with their results. Doing so exhibits an
evolution that deviates significantly when the fluctuations become important. Nevertheless,
if one considers a single member of the ensemble at that time, its evolution will be accurately
described by the corresponding semiclassical gravity solution until the fluctuations around
that particular solution become important again, after a period of the order of the evaporation
time associated with the new initial value of the mass at that time.

In this paper we take a first step to put the study of metric fluctuations in black hole
spacetimes on a firmer basis by considering a detailed derivation of the results from an ap-
propriate formalism rather than using heuristic arguments or simple estimates. The spirit is
somewhat analogous to the study of the mean back-reaction effect of Hawking radiation on
a black hole spacetime geometry (both for black holes in equilibrium and for evaporating
ones) by considering the solutions of semiclassical gravity in that case rather than just re-
lying on simple energy conservation arguments. In order to obtain an explicit result from
the stochastic gravity approach and compare with earlier work, in Sect. 3 we employed a
simplifying assumption implicitly made in most of the literature: the existence of a simple
connection between the outgoing energy flux fluctuations far from the horizon and the neg-
ative energy flux fluctuations crossing the horizon. In Sect. 4 we analyzed this assumption
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carefully and showed it to be invalid. This strongly suggests that one needs to study the
stress tensor fluctuations from an explicit calculation of the noise kernel near the horizon.
This quantity is obtainable from the stochastic gravity program and calculation is underway
[43, 44].

A possible way to compute the noise kernel near the horizon could be to use an approxi-
mation scheme based on a quasilocal expansion such as Page’s approximation [32] or similar
methods corresponding to higher order WKB expansions [35].8 With these techniques one
can obtain an approximate expression for the Wightmann function of the matter fields, which
is the essential object needed to compute the noise kernel. Unfortunately these approxima-
tions are only accurate for pairs of points with a small separation scale and break down when
it becomes comparable to the black hole radius. Therefore, it cannot be employed to study
the l = 0 multipole since that corresponds to averaging the noise kernel over the whole solid
angle, which involves typical separations for pairs of points on the horizon of the order of
the black hole radius. Alternatively, one might hope to gain some insight on the fluctuations
near a black hole horizon by studying the fluctuations of the event horizon surrounding any
geodesic observer in de Sitter spacetime, which exhibits a number of similarities with the
event horizon of a black hole in equilibrium [45]. In contrast to the black hole case, it may
be possible to obtain exact analytical results for de Sitter space due to its high degree of
symmetry.

Furthermore, as explained in Sect. 4 and shown in detail in Ref. [26], the noise kernel
smeared over the horizon is divergent, and so are the induced metric fluctuations. Hence, one
cannot study the fluctuations of the horizon as a three-dimensional hypersurface for each
realization of the stochastic source because they are infinite, even when restricting one’s
attention to the l = 0 sector. This means that one must find an adequate way of probing the
metric fluctuations and extracting physically meaningful information, such as their effect
on the Hawking radiation emitted by the black hole. One possibility is to study how metric
fluctuations affect the propagation of a bundle of null geodesics [24, 25, 39, 46, 47]. One
expects that this should provide a description of the effects on the propagation of a test field
whenever the geometrical optics approximation is valid. However, if one tries to justify this
point starting with a quantum field theory treatment, one realizes that even in simple cases
interference effects cannot be neglected for sufficiently long times (much longer than the
inverse of the frequency of the wave-packet whose propagation one is considering) and the
geometrical optics approximation is invalid. Another possibility, which seems to constitute
a better probe of the metric fluctuations, is to analyze the effect on the two-point quantum
correlation functions of a test field. The two-point functions characterize the response of
a particle detector for that field and can be used to obtain the expectation value and the
fluctuations of the stress tensor of the test field.

Finally, since the large fluctuations suggested in Refs. [7–10] involve time-scales much
shorter than the evaporation time (contrary to those considered in this paper) and high mul-
tipoles, one expects that for a sufficiently massive black hole the spacetime near the hori-
zon can be approximated by Rindler spacetime (identifying the black hole horizon and the
Rindler horizon) provided that we restrict ourselves to sufficiently small angular scales.
Thus, analyzing the effect of including the interaction with the metric fluctuations on the
two-point functions of a test field propagating in flat space, which is technically much sim-
pler, could provide useful information for the black hole case.

8Note, however, that in most of these approaches the state of the quantum fields is the Hartle–Hawking
vacuum. For an evaporating black hole, one should consider the Unruh vacuum.
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