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Utilizing the extended projective Ricatti equation expansion method, abundant variable
separation solutions of the (2 + 1)-dimensional dispersive long wave systems are ob-
tained. From the special variable separation solution (38) and by selecting appropriate
functions, new types of interaction between the multi-valued and the single-valued
solitons, such as semi-foldon and dromion, semi-foldon and peakon, semi-foldon and
compacton are found. Meanwhile, we conclude that the solution v is essentially equiv-
alent to the “universal” formula (1).
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PACS numbers 05.45.Yv, 02.30.Jr, 03.65.Ge

1. INTRODUCTION

In recent decades, there has been noticeable progress in the study of the soliton
theory. Some authors are interested in seeking soliton-like solutions (Wang, 1995;
Fan, 2001; Parkes et al., 2002; Conte and Musette, 1992; Yan, 2003; Chen and Li,
2004), because the waveforms can change in different mechanisms and it usually
has travelling wave solutions. Others are devoted to finding rich localized coherent
structures by now called the multilinear variable separation approach (MLVSA)
(Lou and Lu, 1996; Tang et al., 2002; Tang and Lou, 2003a; Zheng and Chen,
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2004; Zheng and Sheng, 2003; Zhang, 2001, 2002; Hong et al., 2003; Ruan and
Chen, 2001, 2003).

The MLVSA has been a nearly systematic process to solve (2 + 1)-
dimensional nonlinear evolution systems. And via the MLVSA it has been found
that a quite “universal” formula

U ≡ �pxqy

(a0 + a1p + a2q + a3pq)2
, � ≡ λ(a1a2 − a0a3), (1)

which is valid for the suitable physical fields or potentials for a large type of
(2 + 1)-dimensional physically interesting nonlinear models, including the Davey-
Stewartsen (DS) equation, the dispersive long wave (DLW) equation, the Broer-
Kaup-Kupershimidt (BKK) system, the Nizhnik-Novikov-Veselov (NVV) equa-
tion, and so on (Lou and Lu, 1996; Tang et al., 2002; Tang and Lou, 2003a; Zheng
and Chen, 2004; Zheng and Sheng, 2003; Zhang, 2001, 2002; Hong et al., 2003;
Ruan and Chen, 2001, 2003). In expression (1), p ≡ p(x, t) is an arbitrary function
of {x, t}, q ≡ q(y, t) may be either an arbitrary function of {y, t} or an arbitrary
solution of a Riccati equation, while λ, a0, a1, a2 and a3 are taken as constants. In
usual cases, the constant λ = ±2 or λ = ±1. Using the formula (1), the quite rich
localized excitations, such as lumps, dromions, peakons, compactons, foldons,
ring solitons, fractal solitons, chaotic soliotns and so on (Lou and Lu, 1996; Tang
et al., 2002; Tang and Lou, 2003a; Zheng and Chen, 2004; Zheng and Sheng,
2003; Zhang, 2001, 2002; Hong et al., 2003; Ruan and Chen, 2001, 2003) are ob-
tained, and the novel interactive behavior among the same types and various types
of soliton excitations are revealed. For example, The interactions between solitons
like dromion and dromion, peakon and peakon, compacton and compacton, foldon
and foldon have also been studied (Lou and Lu, 1996; Tang et al., 2002; Tang and
Lou, 2003a; Zheng and Chen, 2004; Zheng and Sheng, 2003; Zhang, 2001, 2002;
Hong et al., 2003; Ruan and Chen, 2001, 2003). More recently, the interactions
between dromion and compacton, peakon and compacton, dromion and peakon
were reported in Zhang et al. (2004). From above mentioned, one can see that the
interactions were discussed between either single-valued and single-valued soli-
tons, or multi-valued and multi-valued solitons(foldons). To our knowledge, the
interactions between multivalued and single-valued solitons, such as semi-foldon
and dromion, semi-foldon and peakon, semi-foldon and compacton, which are
focused in the present paper, were little reported in previous literature.

Among these approaches which are usually used to search for travelling wave
solutions (Wang, 1995; Fan, 2001; Parkes et al., 2002; Conte and Musette, 1992;
Yan, 2003; Chen and Li, 2004) since the first step one may take is travelling
reduction, the extended projective Ricatti equation expansion method is an simple
and effective method. Now a significant and interesting issue is whether all the
localized excitations based on MLVSA can be re-derived by the extended pro-
jective Ricatti equation expansion method (Conte and Musette, 1992; Yan, 2003;
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Chen and Li, 2004). Another crucial question is whether there exist some similar
localized or new localized structures in above mentioned systems. To answer these
questions, we take the (2 + 1)-dimensional dispersive long wave equation(DLWE)

uty + vxx + (uuy)x = 0,
(2)

vt + (uv)x + uxxy = 0

as a concrete example. This equation was introduced by Boiti et al. (1987) as a
compatibility for a “weak” lax pair. The (1 + 1)-dimensional DLWE (y = x of
Eq. (2)) is called the classical Boussinesq equation. There exist a large number
of papers to discuss the possible applications and exact solutions of the (1 + 1)-
dimensional DLWE (Musette and Conte, 1994) Various interesting properties of
the (2 + 1)-dimensional DLWE have been studied by many authors (Paquin and
Winternitz, 1990; Lou, 1993, 1994, 1995; Tang and Lou, 2003b). For example,
In Paquin and Winternitz (1990), showed that the symmetry algebra of Eq. (1) is
infinite-dimensional and Kac-Moody-Virasoro structure. In Lou (1995), outlined
nine types of two dimensional similarity reductions. In Tang and Lou (2003b),
folded solitary waves and foldons was defined and studied both analytically and
graphically.

In our present paper, we obtain some solutions of Eq. (2) with certain arbitrary
functions by the extended projective Ricatti equation expansion method. Based
on these solutions and by selecting appropriate functions, new types of interaction
between the multi-valued and the single-valued solitons, such as semi-foldon and
dromion, semi-foldon and peakon, semi-foldon and compacton are presented.

2. THE GENERALIZED PROJECTED RICATTI EQUATION
EXPANSION METHOD

Consider a given nonlinear evolution equation with independent variables
x = (x0 = t, x1, x2, . . . , xm) and dependent variable u

F
(
u, ut , uxi

, uxixj
, . . .

) = 0. (3)

Step 1 We assume that (3) has the following formal solutions:

u(x) = a0(x) +
l∑

i=1

f i−1(ω(x))[ai(x)f (ω(x)) + bi(x)g(ω(x))], (4)

with

f ′ = εfg, g′ = R + εg2 − rf, ε = ±1, (5)

g2 = −ε
[
R − 2rf + r2 + µ

R
f 2

]
, R �= 0, µ = ±1, (6)
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where x = (x0 = t, x1, x2, . . . , xm), R, r are constants and’ denotes d
dω

. It is easy
to see that Eq. (5) and (6) admits the following solutions:

Case 1 ε = −1, µ = −1

f1 = Rsech(
√

Rω)

rsech(
√

Rω) + 1
, g1 =

√
R tanh(

√
Rω)

rsech(
√

Rω) + 1
. (7)

f2 = 4Rsech(
√

Rω)

4rsech(
√

Rω) + 3 tanh(
√

Rω) + 5
,

g2 =
√

R(5 tanh(
√

Rω) + 3)

4rsech(
√

Rω) + 3 tanh(
√

Rω) + 5
. (8)

Case 2 ε = −1, µ = 1

f3 = Rcsch(
√

Rω)

rcsch(
√

Rω) + 1
, g3 =

√
R coth(

√
Rω)

rcsch(
√

Rω) + 1
. (9)

Case 3 ε = 1, µ = −1

f4 = R sec(
√

Rω)

r sec(
√

Rω) + 1
, g4 =

√
R tan(

√
Rω)

r sec(
√

Rω) + 1
. (10)

f5 =
√

R csc(
√

Rω)

r csc(
√

Rω) + 1
, g5 = −

√
R cot(

√
Rω)

r csc(
√

Rω) + 1
. (11)

Step 2 Determine the parameter l by balancing the highest order derivative terms
with the nonlinear terms in Eq. (3).

Step 3 Substituting (4) with (5) and (6) into (3) yields a set of algebraic polynom-
ials for f igj (i = 0, 1, . . . ; j = 0, 1). Eliminating all the coefficients of the
powers of f igj , yields a series of algebraic equations, from which the
parameters a0, ai, bi(i = 1, . . . , l) and ω are explicitly determined.

Step 4 Substituting a0, ai, bi, ω obtained in Step 3 into (4) with (7)–(11), we can
then derive the solutions of (3).

3. NEW VARIABLE SEPARATION SOLUTIONS OF THE
(2 + 1)- DIMENSIONAL DISPERSIVE LONG WAVE EQUATION

To solve the (2 + 1)-dimensional dispersive long wave equation, we consider
the following Painlevé-Bäcklund transformation for u and v in (2):

u = ±2 ln(f )x + u0, v = 2 ln(f )xy + v0, (12)

which can be derived from the standard Painlevé truncated expansion, where the
functions u0 = u0(x, t) and v0 = 0 are seed solutions of (2). Based on (12) and
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seed solutions, we can straightly obtain a simple relation for u and

v = ±uy. (13)

Inserting (13) into (2) yields

∂y(ut ± uxx + uux) = 0. (14)

For simplicity and convenience discussions, here we take

ut ± uxx + uux = 0. (15)

Now we apply the generalized projected Ricatti equation expansion method
to Eq. (14). By balancing the highest order derivative terms with the nonlinear
terms in Eq. (14), the ansatz (4) becomes

u = a0(x, y, t) + a1(x, y, t)f (ω(x, y, t)) + b1(x, y, t)g(ω(x, y, t)), (16)

where a0(x, y, t), a1(x, y, t), b1(x, y, t), ω(x, y, t) are arbitrary functions of
{x, y, t} to be determined later. Substituting (16) with (5) and (6) into (15), and
eliminating the coefficients of the powers of f igj (i = 0 ∼ 4; j = 0, 1), one have

− 3Ra1
2εwywx(µ + r2) ± 12b1εwx

2wyr
2µ + 6b1

2wyr
2wxµ

± 6b1εwx
2wy(µ2 + r4) + 3b1

2wywx(µ2 + r4) = 0, (17)

− 6a1εwyRb1wx(µ + r2) ∓ 6a1wywx
2R(µ + r2) = 0, (18)

− 2Ra1b1xwy(µ + r2) ∓ 2a1yεwx
2R(µ + r2) ∓ 4a1x

εwywxR(µ + r2)

∓ 4a1εwxwxyR(µ + r2) − 2a1εwywtR(µ + r2)

− 2Ra0a1εwywx(µ + r2) − 2Ra1b1ywx(µ + r2) − 2Ra1b1wxy(µ + r2)

∓ 12b1εwx
2wyrR(µ + r2) − 2b1wya1x

R(µ + r2)

− 7b1
2wywxRr(µ + r2) − 2a1yRb1wx(µ + r2) ∓ 2a1εwywxxR(µ + r2)

+ 5a1
2εwywxrR

2 = 0, (19)

∓ 2b1yεwx
2R(µ + r2) ∓ 4b1εwxwxyR(µ + r2)

∓ 2b1εwywxxR(µ + r2) − 2b1yRb1wx(µ + r2) − Rb1
2wxy(µ + r2)

+ a1
2εwxyR

2 + 6a1εwyR
2b1wxr ± 6a1wywx

2R2r

− 2b1εwywtR(µ + r2) ∓ 4b1xεwywxR(µ + r2)

+ 2a1yR
2a1εwx − 2b1wyb1xR(µ + r2)

− 2Ra0b1εwywx(µ + r2) + 2a1εwyR
2a1x = 0, (20)
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− 2a1
2εwywxR

3 ± 6a1xεwywxR
2r + a1a1xyR

2 + a1yR
2a1x

± 7b1εwx
2wyr

2R2 + 3a1b1ywxrR
2

+ 5b1
2wyr

2R2wx ± 6a1εwxwxyR
2r + 3a1yR

2b1wxr

± 3a1yεwx
2R2r + 2b1

2wyR
2wxµ ∓ b1ywxxR(µ + r2)

∓ b1xxwyR(µ + r2) − b1ywtR(µ + r2) − b1wtyR(µ + r2)

∓ b1wxxyR(µ + r2) − b1twyR(µ + r2) ∓ 2b1xywxR(µ + r2)

∓ 2b1xwxyR(µ + r2) − b1εb1xyR(µ + r2) − b1yεRb1x(µ + r2)

− a0yRb1wx(µ + r2) − Ra0b1xwy(µ + r2)

− b1wya0xR(µ + r2) − Ra0b1ywx(µ + r2) − Ra0b1wxy(µ + r2)

± 4b1εwx
2wyR

2µ + 3b1wyrR
2a1x

+ 3a0a1εwywxrR
2 + 3a1b1wxyrR

2 + 3a1b1xwyrR
2

± 3a1εwywxxR
2r + 3a1εwywtR

2r = 0, (21)

2b1wyrR
2b1x + a1yR

2b1x + b1a1xyR
2 + a1b1xyR

2 + b1yR
2a1x

± a1yεwtR
2 ± a1xxεwyR

2 ± a1εwxxyR
2

∓ a1wywx
2R3 + b1

2wxyrR
2 ± a1yεwxxR

2 + a1εwtyR
2 + a1t εwyR

2

± 2a1xyεwxR
2 ± 2a1xεwxyR

2 + a0a1xεwyR
2

+ a0a1εwxyR
2 + a0a1yεwxR

2 + a0b1εwywxrR
2 ± b1yεwx

2R2r

+ a1 ∈ wyR
2a0x + a0yR

2a1εwx ± b1εwywxxR
2r

− a1εwyR
3b1wx + b1εwywtR

2r + 2b1yR
2b1wxr ± 2b1xεwywxR

2r

± 2b1εwxwxyR
2r = 0, (22)

a0yR
2a1x + a1a0xyR

2 + a0a1xyR
2 + a1yR

2a0x + 2b1yεR
2b1xr

∓ 2a1εwxwxyR
3 ∓ 2a1xεwywxR

3

+ a1tyR
2 + 2b1εb1xyR

2r ± b1xxwyR
2r + b1ywtR

2r ± b1wxxyR
2r

+ b1wtyR
2r + b1twyR

2r − a1yR
3b1wx

− a1b1ywxR
3 − a1b1xwyR

3 − b1wyR
3a1x ∓ a1yεwx

2R3

± b1ywxxR
2r − a1b1wxyR

3 ± 2b1xywxR
2r ± 2b1xwxyR

2r

± a1xxyR
2 + a0b1xwyrR

2 + a0yR
2b1wxr − a1εwywtR

3 ∓ a1εwywxxR
3
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∓ b1εwx
2wyR

3r − b1
2wyR

3wxr

+ b1wyrR
2a0x + a0b1ywxrR

2 + a0b1wxyrR
2 − a0a1εwywxR

3 = 0, (23)

a0yR
2a0x + a0a0xyR

2 + a0tyR
2 − b1εb1xyR

3

− b1yεR
3b1x ± a0xxyR

2 = 0, (24)

a0yR
2b1x + b1tyR

2 ± b1xxyR
2 + b1a0xyR

2 + b1yR
2a0x + a0b1xyR

2 = 0. (25)

According to (17)–(25) and through careful calculations, we can derive many
families of solutions. For the limit of length, we only list two classes of solutions.

a0 = −ωt ± ωxx

ωx

, a1 = ±
√

−Rε(µ + r2)ωx

R
,

(26)
b1 = ∓εωx, ω = χ (x, t) + ϕ(y),

where R > 0 and r are two arbitrary constants. And

r = 0, a1 = 0, a0 = −ωt ± ωxx

ωx

, b1 = ∓2εωx, ω = χ (x, t) + ϕ(y).

(27)
From (26), (27) with (7)–(11), one can get two families of solutions. For
simplicity, we only give these solutions from (27) with (7)–(11):

ε = −1, µ = −1

u1 = −χt ± χxx

χx

± 2
√

Rχx tan(
√

R(χ + ϕ)), (28)

v1 = ±u1y = 2Rχxϕysech2(
√

R(χ + ϕ)), (29)

u2 = −χxx ± χt

χx

± 2
√

Rχx

5 tanh(
√

R(χ + ϕ)) + 3

5 + 3 tanh(
√

R(χ + ϕ))
, (30)

v2 = ±u2y = 32Rχxϕysech2(
√

R(χ + ϕ))

[5 + 3 tanh(
√

R(χ + ϕ))]2
, (31)

with two arbitrary functions χ (x, t), ϕ(y) and an arbitrary constant R(> 0).

ε = −1, µ = 1

u3 = −χt ± χxx

χx

± 2
√

Rχx coth(
√

R(χ + ϕ)), (32)

v3 = ±u3y = −2Rχxϕycsch2(
√

R(χ + ϕ)), (33)

with two arbitrary functions χ (x, t), ϕ(y) and an arbitrary constant R(> 0).
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ε = 1, µ = −1

u4 = −χt ± χxx

χx

∓ 2
√

Rχx tan(
√

R(χ + ϕ)), (34)

v4 = ±u4y = −2Rχxϕy sec2(
√

R(χ + ϕ)), (35)

u5 = −χt ± χxx

χx

± 2
√

Rχx cot(
√

R(χ + ϕ)), (36)

v5 = ±u5y = −2Rχxϕycsc2(
√

R(χ + ϕ)), (37)

with two arbitrary functions χ (x, t), ϕ(y) and an arbitrary constant R(> 0).
It is noted that the sign “±” in (17)–(37) is matched as following: the above

and above signs are composed of one pair, the nether and nether signs constitute
another pair. Take example for (28), i.e.

u1 = −χt − χxx

χx

+ 2
√

Rχx tanh(
√

R(χ + ϕ))

or

u1 = −χt − χxx

χx

− 2
√

Rχx tanh(
√

R(χ + ϕ))

Remark When χ (x, t) = ξ (x) + τ (t), these solutions (28), (29) and (32)–(37) in
our paper can degenerate to the solutions (25)–(32) in Zheng et al. (2004a), where
non-propagating (2 + 1)-dimensional solitons were discussed in detail.

4. NEW TYPES OF INTERACTION BETWEEN SOLITONS
IN THE (2 + 1)-DIMENSIONAL DLWE

Since some arbitrariness of the functions χ (x, t) and ϕ(y) included in above
cases, the physical quantities u and v may possess abundant structures. For ex-
ample, when χ (x, t) − ξ (x) + τ (t) and selecting appropriate functions, the rich
non-propagating (2 + 1)-dimensional solitons can be found (Zheng et al., 2004b).
If χ (x, t) − f (kx + ct) and ϕ(y) = g(y), then all the solutions of the above cases
may show rich localized and propagating excitations. Moreover, one of the simplest
travelling wave excitations can be easily obtained by selecting χ (x, t) = kx + ct

and ϕ(y) = ly, where k, l, c are arbitrary constants. The localized excitations,
such as dromion, peakon, foldon et al., and the interactive behaviors between
either single-valued and single-valued solitons, or multi-valued and multi-valued
solitons(foldons) in the (2 + 1)-dimensional systems have been discussed (Lou
and Lu, 1996; Tang et al., 2002; Tang and Lou, 2003a,b; Zheng and Chen, 2004;
Zheng and Sheng, 2003; Zhang, 2001, 2002; Hong et al., 2003; Ruan and Chen,
2001, 2003; Zhang et al., 2004; Lou, 1995). Obviously, these localized excitations
above mentioned can be easily recovered by selecting appropriate functions of the
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expression (38). Here we are interested in revealing some new types of interaction
between solitons in the (2 + 1)-dimensional systems such as the interactive be-
haviors between semi-foldon and dromion, semi-foldon and peakon, semi-foldon
and compacton. For simplification in the following discussion, we merely analyze
these interaction based on the solutions (29) and rewrite in a simple form (as
R = 1), that is

v ≡ v1 = 2χxϕysech2(χ + ϕ). (38)

4.1. Interaction Between Semi-Foldon and Peakon

Due to the arbitrariness of the functions in solutions (38), we can find the
interaction between semi-foldon and peakon by selecting an arbitrary multi-valued
function and an arbitrary single-valued piecewise smooth function, i.e.

χx = sech2(ζ ) + 0.5sech2(ζ −0.3t), x =ζ −0.5 tanh(ζ −0.3t),

χ =
∫ ζ

χxxζ dζ, (39)

ϕ =
{

exp(y) y < 0

− exp(−y) + 2 y ≥ 0
(40)

From Fig. 1, we can see the interaction between multi-valued semi-foldon
and single-valued peakon is completely elastic which is similar to the interaction
between either single-valued and single-valued solitons (Lou and Lu, 1996; Tang
et al., 2002; Tang and Lou, 2003a; Zheng and Chen, 2004; Zheng and Sheng,
2003; Zhang, 2001, 2002; Hong et al., 2003; Ruan and Chen, 2001, 2003; Zhang
et al., 2004), or multi-valued and multi-valued solitons (foldons) (Tang and Lou,
2003b) since the wave shapes, amplitudes and velocities of the static peakon and
moving semi-foldon are hardly changed after collision. Moreover, the phase shift
of the static peakon can be observed. Before the interaction, the static peakon is
located at x = −1.5 and after the interaction, it is shifted to x = 1.5. The phase
shift of the static peakon is 3.

4.2. Interaction Between Semi-Foldon and Compacton

Similarly, one of the simplest selections for discussing the interaction between
semi-foldon and compacton is to take an arbitrary multi-valued function and an
arbitrary single-valued function, i.e.

χx = sech2(ζ ) + 0.5sech2(ζ − 0.3t),

x = ζ − 1.5 tanh(ζ − 0.3t), χ =
∫ ς

χxxςdζ, (41)
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Fig. 1. Evolution profiles of the elastic interaction between semi-foldon and peakon determined
by Eq. (38) with Eqs. (39) and (40) at (a) t = −20, (b) t = −7, (c) t = −1, (d) t = 7, (e) t = 20.
(f) The corresponding sectional view at {t = −20, y = 0} (dotted line before collision), {t =
−1, y = 0}(solid line in collision), {t = 20, y = 0} (dashed line after collision), respectively.

ϕ =

⎧
⎪⎨

⎪⎩

0 y ≤ −π
2

sin(y) + 1 −π
2 < y ≤ π

2

2 y > π
2

(42)
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Fig. 2. Evolution profiles of the elastic interaction between semi-foldon and compacton deter-
mined by Eq. (38) with Eqs. (41) and (42) at (a) t = −25, (b) t = −5, (c) t = 0.5, (d) t = 5,
(e) t = 25. (f) The corresponding sectional view at {t = −25, y = 0} (dotted line before col-
lision), {t = 0.5, y = 0} (solid line in collision), {t = 25, y = 0} (dashed line after collision),
respectively.

From Fig. 2, we can see the interaction between multi-valued semi-foldon
and single-valued compacton is also completely elastic which is similar to the
interactive behaviors between multi-valued semi-foldon and single-valued peakon.
The wave shapes, amplitudes and velocities of the static compacton and moving
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semi-foldon are nearly unchanged after collision. Moreover, the phase shift of the
static compacton can be observed. Before the interaction, the static compacton is
located at x = −1.5 and after the interaction, it is shifted to x = 1.5. The phase
shift of the static compacton is 3.

4.3. Interaction between semi-foldon and dromion

Finally, we discuss the interactive behavior between semi-foldon and
dromion. Selecting

χx = sech2(ζ ) + 0.5sech2(ζ − 0.3t), x = ζ − 1.5 tanh(ζ − 0.3t),

χ =
∫ ζ

χxxςdζ, (43)

ϕ = tanh(y), (44)

then the interaction between semi-foldon and dromion can be observed.
From Fig. 3, we can see the interaction between multi-valued semi-foldon

and single-valued dromion is non-elastic which is different from two above cases.
The amplitude of the static dromion is decreased a little, while the amplitude of
the moving semi-foldon is increased. The shapes of the static dromion and the
moving semi-foldon are both changed. Furthermore, the phase shift of the static
dromion can be observed. Before the collision, the static dromion is located at
x = −1 and after the collision, it is shifted to x = 2. The phase shift of the static
dromion is also 3.

5. SUMMARY AND DISCUSSION

In summary, Using the extended projective Ricatti equation expansion
method, abundant variable separation solutions of the (2 + 1)-dimensional dis-
persive long wave systems are obtained. From the special variable separation
solution (38) and by selecting appropriate functions, new types of interaction be-
tween the multivalued and the single-valued solitons, such as semi-foldon and
dromion, semi-foldon and peakon, semi-foldon and compacton are presented.
There is a worthwhile question: why the field v expressed by (38) engenders rich
excitations of the formula (1)? The main reason is that, compare formula (1)
with the solutions (38), they are essentially equivalent. By selecting p(x, t) =
exp[2χ (x, t)], q(y, t) = exp[2ϕ(y)], a1 = a2 = 0, a0 = a3 = 1, one can derive
v = − 2

λ
U . In a similar way, by choosing some apt parameters, one can also

further verify the solution (33) and the formula (1) are essentially identical. Thus
all the localized excitations based on the common formula (1) can be obtained
from the solution (38).
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Fig. 3. Evolution profiles of the non-elastic interaction between semi-foldon and dromion determined
by Eq. (38) with Eqs. (43) and (44) at (a) t = −25, (b) t = −5, (c) t = 1, (d) t = 5, (e) t = 25. (f)
The corresponding sectional view at {t = −25, y = 0} (dotted line before collision), {t = 1, y = 0}
(solid line in collision), {t = 25, y = 0} (dashed line after collision), respectively.
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This method presented in this paper is an initial work, more application
to other nonlinear physical systems should be concerned and deserve further
investigation. In our future work, on the one hand, we devote to generalizing
this method to other (2 + 1)-dimensional nonlinear systems such as Broer-Kaup-
Kupershmidt system, Boiti-Leon-Pempinelle system etc. On the other hand, we
will look for more interesting localized excitations.

REFERENCES

Boiti, M., Leon, J. J. P., and Pempinelli, F. (1987). Inverse Problems 3, 371.
Chen, C. L. and Lou, S. Y. (2003). Chaos, Solitons and Fractals 16, 27.
Chen, Y. and Li, B. (2004). Chaos, Solitons and Fractals 19, 977.
Conte, R. and Musette, M. (1992). Journal of Physics A: Mathematical and General 25, 5609.
Fan, E. G. (2001). Physics Letters A 282, 18.
Hong, K. Z., Wu, B., and Chen, X. F. (2003). Commun. Theor. Phys. 39, 393.
Lou, S. Y. (1993). Physics Letters A 176, 96.
Lou, S. Y. (1994). Journal of Mathematics and Physics 27, 3235.
Lou, S. Y. (1995). Mathematical Methods in Applied Sciences 18, 789.
Lou, S. Y. and Lu, J. Z. (1996). Journal of Physics A: Mathematical and General 29, 4029.
Musette, M. and Conte, R. (1994). Journal of Physics A: Mathematical and General 27, 3895.
Musette, M., Conte, R., and Pickering, A. (1995). Journal of Physics A: Mathematical and General

28, 179.
Parkes, E. G., Duffy, B. R., and Abbott, P. C. (2002). Physics Letters A 295, 280.
Paquin, G. and Winternitz, P. (1990). Physica D 46, 122.
Ruan, H. Y. and Chen, Y. X. (2001). Acta Physica Sinica 50, 586 (in Chinese).
Ruan, H. Y. and Chen, Y. X. (2003). Chaos, Solitons and Fractals 17, 929.
Tang, X. Y., Lou, S. Y., and Zhang, Y. (2002). Physical Review E 66, 046601.
Tang, X. Y. and Lou, S. Y. (2003a). Journal of Mathematical Physics 44, 4000.
Tang, X. Y. and Lou, S. Y. (2003b). Communications in Theoretical Physics 40, 62.
Wang, M. L. (1995). Physics Letters A 199, 169.
Yan, Z. Y. (2003). Chaos, Solitons and Fractals 16 759.
Zhang, J. F. (2001). Chinese Physics 10, 0893.
Zhang, J. F. (2002). Chinese Physics 11, 0425.
Zheng, C. L. and Chen, L. Q. (2004). Journal of the Physical Society of Japan 73, 293.
Zheng, C. L., Fang, J. P., and Chen, L. Q. (2004a). Preprint Submitted Chaos, Solitons and Fractals.
Zhang, J. F., Meng, J. P., and Huang, W. H. (2004b). Communications in Theoretical Physics 42, 161.
Zheng, C. L. and Sheng, Z. M. (2003). International Journal of Modern Physics B 17, 4407.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


