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Algorithm for Probing the Unitarity
of Topologically Massive Models
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An uncomplicated and easy handling prescription that converts the task of checking
the unitarity of massive, topologically massive, models into a straightforward algebraic
exercise, is developed. The algorithm is used to test the unitarity of both topologi-
cally massive higher-derivative electromagnetism (TMHDE) and topologically massive
higher-derivative gravity (TMHDG). The novel and amazing features of these effective
field models are also discussed.
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1. INTRODUCTION

The momentous discovery that there are dynamics possible for gauge the-
ories in an odd number of space–time dimension that are not open to those in
an even number, allowed the construction of field models endowed with novel
and amazing properties. In three dimensions, for instance, the addition of a topo-
logically massive Chern-Simons term to the fundamental Lagrangian for a gauge
field gives rise to a gauge-invariant theory (Deser et al., 1988a,b). Indeed, this
term has a coupling that scales like a mass, but unlike the ways in which gauge
fields are usually given a mass, no gauge symmetry is broken, although parity
is. Of course, the addition of the esoteric Chern-Simons term is certainly not
the unique mass-generating mechanism for gauge fields. We can also utilize for
this purpose the well-known Proca/Fierz-Pauli, or the more sophisticated higher-
derivative electromagnetic/higher-derivative gravitational, terms. In this vein, it
would be interesting to analyze the new physics that emerges from the models ob-
tained by enlarging Maxwell (Einstein)–Chern-Simons theory through the Proca
(Fierz-Pauli), or higher-derivative electromagnetic (gravitational), terms. Our aim
here is to study the three-term models with higher derivatives. Interesting enough,
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these models are gauge invariant; besides, they possess rather unusual and exciting
properties. In fact, as we shall see, in the context of the electromagnetic models, an
attractive interaction between equal charge scalar bosons can occurs which leads
to an amazing planar electrodynamics: scalar pairs can condense into bound states;
while in the framework of the gravitational systems, unlike what happens within
the context of the odorless and insipid three-dimensional general relativity, there
exists both attractive and repulsive gravity. We can also have a null gravitational
interaction, such as in three-dimensional gravity that is trivial outside the sources.

We present an algorithm for probing the unitarity of massive, topologically
massive, models (MTM) in Section 2, which is quite simple to use. This pro-
cedure converts the hard task of checking the unitary of the MTM in a trivial
algebraic exercise. It is utilized to test the unitarity of both topologically massive
higher-derivative electromagnetism (TMHDE) and topologically massive higher-
derivative gravity (TMHDG), in Section 3. The novel and amazing features of the
electromagnetic models are discussed in Section 4, while those of the gravitational
ones are analyzed in Section 5. We conclude in Section 6 with some discussions
and comments. We use natural units throughout.

2. ALGORITHM FOR PROBING THE UNITARITY OF MASSIVE,
TOPOLOGICALLY MASSIVE, MODELS

To probe the tree unitarity of the massive, topologically massive, models, we
will make use of the procedure that consists basically in saturating the propagator
with external conserved currents, compatible with the symmetries of the system.
The unitarity of the models depends on the sign of the residues of the saturated
propagator (SP)—the unitarity is ensured if the residue at each simple pole of the
SP is positive (propagating modes) or zero (non-propagating modes). Note that we
are using the loose expression “the residue’s sign is equal to zero” as synonymous
with “the residue is equal to zero.”

The idea here is to construct a simple algorithm for analyzing the unitarity
of the massive, topologically massive, models, using the procedure we have just
outlined. We begin by building the prescription for the massive, topologically
massive, electromagnetic models (MTME); next we construct the algorithm for
the massive, topologically massive, gravitational models (MTMG).

2.1. Algorithm for Analyzing the Unitarity of the MTME

The saturated propagator related to the MTME, can be written as

SPMTME = Jµ
(
O−1

MTME

)
µν

J ν, (1)

where J and O−1 are, respectively, the conserved current and the propagator con-
cerning the specific massive, topologically massive, electromagnetic model which
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we are interested in probing the unitarity. Our next step is to obtain the propagator
associated with the model at hand. Consider, in this direction, the Lagrangian for
the MTME, namely LMTME = LE + εLgf + LT, where LE is the Lagrangian asso-
ciated with the electromagnetic part of the model,Lgf is a gauge-fixing Lagrangian,
ε is a parameter equal to +1, ifLE is gauge invariant, or 0, ifLE is not gauge invari-
ant, and LT ≡ s

2εµνρA
µ∂νAρ is the Chern-Simons term, with Aµ being the three-

dimensional vector potential and s > 0 the topological mass. This Lagrangian,
of course, can be written as LMTME = 1

2AµOµνA
ν . Now, it is important for the

success of the method that we can find a basis for expanding the wave operator
and, consequently, the propagator, such that when one contracts their basis vectors
with JJ , the greatest possible number of cancellations may be obtained. The basis
{θ, ω, S}, for instance, where θµν ≡ ηµν − ∂µ∂ν

�
and ωµν = ∂µ∂ν

�
are, respectively,

the usual transverse and longitudinal vector projector operators, Sµν ≡ εµρν∂
ρ is

the operator associated with the topological term, and ηµν is the Minkowski met-
ric, does the job since JωJ = JSJ = 0. The algebra obeyed by these operators is
displayed in Table I. Our signature conventions are (+,−,−), ε012 = +1 = ε012.

Expanding O in the basis {θ, ω, S}, yields O = aθ + bω + cS. With the help
of Table I, we promptly obtain

O−1
MTME = a

a2 + c2�
θ + 1

b
ω − c

a2 + c2�
S. (2)

Inserting Equation (2) into Equation (1), we get

SPMTME = a

a2 + c2�
JµJµ. (3)

Note that only the θ -component of O−1
MTME contributes to the calculation of

SPMTME.
Before going further, we need a lemma.

Lemma 1. If m ≥ 0 is the mass of a generic physical particle associ-
ated with the MTME and k is the corresponding momentum exchanged, then
JµJµ|k2=m2 < 0.

Table I. Multiplicative Table for the
Operators θ , ω, and S

θ ω S

θ θ 0 S

ω 0 ω 0
S S 0 −�θ

Note. The operators are supposed to be
in the ordering “row times column.”
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Proof: To begin with, let us expand the current in a suitable basis. The set of
independent vectors in momentum space,

kµ ≡ (k0, k), k̃µ ≡ (k0,−k), εµ ≡ (0, �ε), (4)

where �ε is a unit vector orthogonal to k, serves our purpose. Using this basis,
Jµ(k) takes the form

Jµ = Akµ + Bk̃µ + Cεµ.

On the other hand, the current conservation gives the constraint A(k2
0 − k2) −

B(k2
0 + k2) = 0, which allows to conclude that A2 > B2. Now, it is trivial to see

that JµJµ = k2(B2 − A2) − C2. Consequently, JµJµ|k2=m2 < 0. �

We are now ready to present the algorithm for probing the unitarity of the
MTME.

Algorithm 1. Calculate the θ -component of the propagator in the basis {θ, ω, S}
which, for short, we shall designate as fθ . Next, determine the signs of the residues
at each simple pole of fθ . If all the signs are ≤0, the model is unitary; if at least
one of the signs is positive, the system is non-unitary.

2.2. Algorithm for Analyzing the Unitarity of the MTMG

The Lagrangian for the MTMG can be written asLMTMG = LG + εLgf + LT,
where LG is the Lagrangian concerning the gravitational part of the theory, and
LT ≡ 1

µ
ελµν
ρ

λσ (∂µ
σ
ρν + 2

3
σ
µβ
β

νρ) is the Chern-Simons Lagrangian, with
µ > 0 being a dimensionless parameter, whereas the corresponding SP is given
by

SPMTMG = T µν
(
O−1

MTMG

)
µν, ρσ

T ρσ , (5)

where T µν is the conserved current which, obviously, is symmetric in the in-
dices µ and ν. Our conventions are Rα

βγ δ = −∂δ

α

βγ + · · · , Rµν = Rα
µνα, R =

gµνRµν , where gµν is the metric tensor, and signature (+,−,−). To calculate
the SPMTMG, we need to know the propagator beforehand. This can be done by
linearizing LMTMG. Setting gµν = ηµν + κhµν , where κ is a constant that in four
dimensions is equal to

√
32πG, with G being Newton’s constant, we can rewrite

the linearized Larangian as L(lin)
MTMG = 1

2hµνO
µν, ρσ hρσ .It is extremely convenient

to expand O in the basis {P 1, P 2, P 0, P
0
, P

0
, P }, where P 1, P 2, P 0, P

0
, and

P
0
, are the usual three-dimensional Barnes–Rivers operators (Antoniadis and

Tomboulis, 1986; Nieuwenhuizen, 1973; Rivers, 1964; Stelle, 1977), namely,

P 1
µν,ρσ = 1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ),
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Table II. Multiplicative Operator Algebra Fulfilled by P 1, P 2, P 0, P
0
, P

0
, and P

P 1 P 2 P 0 P
0

P
0

P

P 1 P 1 0 0 0 0 0
P 2 0 P 2 0 0 0 P

P 0 0 0 P 0 0 P θω 0

P
0

0 0 0 P
0

P ωθ 0

P
0

0 0 P ωθ P θω 2(P 0 + P
0
) 0

P 0 P 0 0 0 −�3P 2

Note. Here P θω
µν , ρσ ≡ θµνωρσ and P ωθ

µν , ρσ ≡ ωµνθρσ .

P 2
µν,ρσ = 1

2
(θµρθνσ + θµσ θνρ − θµνθρσ ),

P 0
µν,ρσ = 1

2
θµνθρσ , P

0
µν,ρσ = ωµνωρσ ,

P
0

µν, ρσ = θµν ωρσ + ωµν θρσ ,

and P is the operator associated with the linearized Chern-Simons term, i.e.,

Pµν, ρσ ≡ �∂λ

4
[εµλρ θνσ + εµλσ θνρ + ενλρ θµσ + ενλσ θµρ],

since T P 1T = T P
0
T = T P

0
T = T PT = 0. The corresponding multiplica-

tive table is displayed in Table II. The expansion of O in the basis

{P 1, P 2, P 0, P
0
, P

0
, P } is greatly facilitated if use is made of the following

tensorial identities:

1

2
(ηµρηνσ + ηµσηνρ) ≡ Iµν, ρσ = [

P 1 + P 2 + P 0 + P
0]

µν, ρσ
,

ηµνηρσ = [
2P 0 + P

0 + P
0]

µν, ρσ
,

1

�2
(∂µ∂ν∂ρ∂σ ) = P

0
µν, ρσ ,

1

�
(ηµρ∂ν∂σ + ηµσ ∂ν∂ρ + ηνρ∂µ∂σ + ηνσ ∂µ∂ρ) = [

2P 1 + 4P
0]

µν, ρσ
,

1

�
(ηµν∂ρ∂σ + ηρσ ∂µ∂ν) = [

P
0 + 2P

0]
µν, ρσ

.

Expanding O in the basis {P 1, P 2, P 0, P
0
, P

0
, P }, we obtain O = x1P

1 +
x2P

2 + x0P
0 + x 0P

0 + x 0P
0 + pP . With the help of Table II, we find that the
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propagator for MTMG is given by

O−1
MTMG = P 1

x1
+ x2P

2

x2
2 − p2k6

+ x 0P
0

x0x0 − 2x
2
0

+ x0P
0

x0x0 − 2x
2
0

− x 0P
0

x0x 0 − 2x
2
0

− pP

x2
2 − p2k6

. (6)

Now, substituting Equation (6) into Equation (5), and taking the identities,

P 2
µν, ρσ = 1

2
(ηµρηνσ + ηµσηνρ) − 1

2
ηµνηρσ −

[
P 1 + 1

2
P

0 − 1

2
P

0
]

µν, ρσ

,

P 0
µν, ρσ = 1

2
ηµνηρσ − 1

2

[
P

0 + P
0
]

µν, ρσ

,

into account, yields

SPMTMG =
[
T µνTµν − 1

2
T 2

]
x2

x2
2 − p2k6

+ 1

2
T 2 x 0

x0x0 − 2x
2
0

. (7)

We call attention to the fact that fP 2 ≡ x2/(x2
2 − p2k6) and fP 0 ≡ x 0/

(x0x0 − 2x
2
0) are, in this order, the components P 2 and P 0 of O−1

MTMG in the

basis {P 1, P 2, P 0, P
0
, P

0
, P }.

The lemma that follows clears up the question of the sign of T µνTµν − 1
2T 2

at the physical poles; it is also very useful for checking the presence of massless
spin-2 non-propagating excitations in the models we are analyzing.

Lemma 2. If m ≥ 0 is the mass of a generical physical particle associated with
the MTMG and k is the corresponding momentum exchanged, then [T µνTµν −
1
2T 2]k2=m2 > 0 and [T µνTµν − T 2]k2=0 = 0.

Proof: Using Equation (4), we can write the symmetric current tensor as follows

T µν = Akµkν + Bk̃µk̃ν + Cεµεν + Dk(µk̃ν) + Ek(µεν) + F k̃(µεν).

The current conservation gives the following constraints for the coefficients
A,B,D,E, and F :

Ak2 + D

2

(
k2

0 + k2) = 0, (8)

B
(
k2

0 + k2) + D

2
k2 = 0, (9)

Ek2 + F
(
k2

0 + k2) = 0. (10)
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From Equations (8) and (9), we get Ak4 = B(k2
0 + k2)2, while Equation (10)

implies E2 > F 2. On the other hand, saturating the indices of T µν with momenta
kµ, we arrive at a consistent relation for the coefficients A,B, and D:

Ak4 + B
(
k2

0 + k2)2 + Dk2
(
k2

0 + k2) = 0.

After a lengthy but otherwise straightforward calculation using the earlier
equations, we obtain

T µνTµν − 1

2
T 2 =

[
k2(A − B)√

2
− C√

2

]2

+ k2

2
(E2 − F 2), (11)

T µνTµν − T 2 = k2

[
1

2
(E2 − F 2) − 2C(A − B)

]
. (12)

Therefore, [T µνTµν − 1
2T 2]k2=m2 > 0 and [T µνTµν − T 2]k2=0 = 0. �

We remark that T µνTµν − 1
2T 2 is always greater than zero for any physical

particle; in addition, T µνTµν − T 2 is zero for massless spin-2 non-propagating
modes.

We are ready now to enunciate the algorithm for testing the unitarity of the
MTMG.

Algorithm 2. Compute SPMTMG using Equation (7) and then find the signs of
the residues at each simple pole of SPMTMG with the help of the Lemma 2. If all the
signs are ≥0, the model is unitary; however, if at least one of the signs is negative,
the system is non-unitary.

3. CHECKING THE UNITARITY OF TMHDE AND TMHDG

We introduce here the two three-term systems we want to test the unitarity,
i.e., TMHDE and TMHDG, and afterwards we study their unitarity.

3.1. The Models

The Lagrangian for TMHDE is the sum of Maxwell, higher-derivative
(Podolsky and Schwed, 1948), gauge-fixing (Lorentz-gauge), and Chern-Simons,
terms, i.e.,

LTMHDE = −FµνF
µν

4
+ l2

2
∂νF

µν∂λFµλ − 1

2λ
(∂νA

ν)2 + s

2
εµνρA

µ∂νAρ. (13)
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Here, Fµν = ∂νAµ − ∂µAν is the usual electromagnetic tensor field, and l is a
cutoff. The corresponding propagator is given by

O−1
TMHDE = l2k4 + k2

(l2k4 + k2)2 − s2k2
θ − λ

k2
ω − s

(l2k4 + k2)2 − s2k2
S. (14)

The Lagrangian related to TMHDG, in turn, is given by

LTMHDG = √
g

(
−2R

κ2
+ α

2
R2 + β

2
R2

µν

)

+ 1

µ
ελµν
ρ

λσ

(
∂µ
σ

ρν + 2

3

σ

µβ
β
νρ

)
, (15)

where α and β are suitable constants with dimension L. For the sake of simplicity,
the gauge-fixing term was omitted. Linearizing Equation (15) and adding to the
result the gauge-fixing term Lgf = 1

2λ
(hµν

, ν − 1
2h, µ)2 (de Donder gauge), we find

that the propagator concerning TMHDG takes the form

O−1
TMHDG = 1

�
[ − 1 + b

(
3
2 + 4c

)
�
]P

0 + 2λ

k2
P 1 + 1

�
[ − 1 + b

(
3
2 + 4c

)
�
]P 0

+ 4M

�[M2b2�2 + 4(bM2 + 1)� + 4M2]
P

× 2M2(2 + b�)

�[M2b2�2 + 4(bM2 + 1)� + 4M2]
P 2

+
[
−4λ

�
+ 2

�
[ − 1 + b

(
3
2 + 4c

)
�
]
]

P
0
, (16)

where b ≡ βκ2

2 , c ≡ α
β

, and M ≡ µ

κ2 .

3.2. Testing the Unitarity of TMHDE

The calculations that are needed for checking the unitarity of TMHDE are
somewhat complicated because this model represents in general three massive
excitations. Since the θ -component of the propagator concerning TMHDE can be
written as fθ = M2(x−M2)

x3−2M2x2+M4x−M4s2 , where M ≡ 1
l
, we have to analyze the nature,

as well as the signs, of the roots of the cubic equation x3 + a2x
2 + a1x + a0 = 0,

where a2 ≡ −2M2, a1 ≡ M4, and a0 ≡ −M4s2. Taking into account that we are
only interested in those roots that are both real and unequal, we require D < 0,

where D ≡ Q3 + R2, with Q and R being, in this order, equal to 3a1−a2
2

9 and
9a1a2−27a0−2a3

2
54 , is the polynomial discriminant. Performing the computations we

get D = M8s2[ s2

4 − M2

27 ], implying that only and if only s2 < 4M2

27 will the roots be
real and distinct. Our next step is to verify whether or not these roots are positive.
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This can be accomplished by building the Routh–Hurwitz array (Uspensky, 1948),
namely,

1 M4

−2M2 −M4s2

M2
(
M2 − s2

2

)
0

−M4s2 0

Noting that there are three signs changes in the first column of the array given
earlier, we conclude that all the three roots are positive. In summary, if s2 < 4m2

27 ,
TMHDE is a model with acceptable values for the masses. Denoting these roots
as x1, x2, and x3, and assuming without any loss of generality that x1 > x2 > x3,
we get

fθ = M2(x1 − M2)

(x1 − x2)(x1 − x3)

1

x − x1
+ M2(x2 − M2)

(x2 − x1)(x2 − x3)

1

x − x2

+ M2(x3 − M2)

(x3 − x1)(x3 − x2)

1

x − x3
.

Hence, TMHDE with will be unitary if the conditions x1 − M2 < 0, x2 −
M2 > 0, and x3 − M2 < 0 hold simultaneously. Obviously, this will never occur,
which allows us to conclude that TMHDE is non-unitary.

Should we expect intuitively that TMHDE faced unitary problems? The an-
swer is affirmative. In fact, setting s = 0, for instance, in its Lagrangian, we recover
the Lagrangian for the usual Podolsky electromagnetism which is non-unitary
(Podolsky and Schwed, 1948). Nonetheless, Podolsky–Chern-Simons (PCS) pla-
nar electromagnetism with s2 < 4M2

27 , despite being haunted by ghosts, has normal
massive modes. Note that the existence of these well-behaved excitations is sub-
ordinated to the condition s < 2M√

27
, which really encourages us to regard this

system as an effective field model. We shall discuss their astonishing properties in
Section 4.

3.3. Testing the Unitarity of TMHDG

The SP concerning TMHDG can be written as

SPTMHDG = M2b

2

(
T µνTµν − 1

2T 2
)

k2 − M2
1

−1 + √
1 + 2bM2

√
1 + 2bM2[1 + bM2 − √

1 + 2bM2]

+ M2b

2

(
T µνTµν − 1

2T 2
)

k2 − M2
2

1 + √
1 + 2bM2

√
1 + 2bM2[1 + bM2 + √

1 − +bM2]

+ − T µνTµν − T 2

k2
−

1
2T 2

(k2 − m2)
, (17)
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where

M2
1 ≡

(
2

b2M2

)
[1 + bM2 −

√
1 + 2bM2],

M2
2 ≡

(
2

b2M2

)
[1 + bM2 +

√
1 + 2bM2],

m2 ≡ − 1

b(3/2 + 4c)
.

It is interesting to note that M2
1 → M2, and M2

2 → +∞ , as b → 0, implying
that when α, β → 0, Equation (17) reduces to

SP =
(

T µµTµν − 1

2
T 2

)
1

k2 − M2
+ (

T µµTµν − T 2
) 1

k2
, (18)

which is the expression for the SP related to Maxwell–Chern-Simons theory
(MCS). Using Equation (18), we promptly obtain

Res(SP)| k2=M2 > 0, Res(SP)|k2=0 = 0,

which means that MCS is unitary. Thence, we have reobtained, in a trivial way, a
well-known result (Deser et al., 1988a,b).

We are now ready to analyze the excitations and mass counts concerning
TMHDG. To avoid needless repetitions, we restrict ourselves to presenting a
summary of the main results in Table III. The systems that do not appear in
this table are tachyonic, i.e., unphysical. As intuitively expected, TMHDG is
non-unitary. Indeed, if the topologically massive term is removed, TMHDG re-
duces to three-dimensional higher-derivative gravity—an effectively multimass
model of the fourth-derivative order with interesting properties of its own (Accioly
et al., 2001a,b,c,)—which is non-unitary. Nonetheless, TMHDG is in general non-
tachyonic, which means that under circumstances it may be viewed as an effective

Table III. Unitarity Analysis of Topologically Massive Higher-Derivative Gravity

b 3
2 + 4c Excitations and mass counts Tachyons Unitarity

>0 <0 2 massive spin-2 normal particles, 1
massless spin-2 non-propagating
particle, 1 massive spin-0
ghost

No one Non-unitary

−1
2M2 < b < 0 >0 1 massive spin-2 normal particle, 1

massless spin-2 non-propagating
particle, 1 massive spin-2 ghost,
1 massive spin-0 ghost

No one Non-unitary
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field model. We shall investigate, in passing, the novel and amazing features of
this effective system in Section 5.

4. ATTRACTIVE INTERACTION BETWEEN EQUAL CHARGE
BOSONS IN THE FRAMEWORK OF MAXWELL–CHERN–SIMONS
ELECTRODYNAMICS

In order to avoid extremely long calculations, we investigate here Maxwell–
Chern–Simons electrodynamics (MCSE) instead of Podolsky–Chern–Simons
electrodynamics (PCSE). Certainly, the two models share similar characteristics.
In other words, the exciting features of PCSE are also present, mutatis mutandis,
in MCSE. Accordingly, let us analyze the interaction between equal charge bosons
in the context of the MCSE coupled to a charged-scalar field. To do that we need
to compute, first of all, the effective non-relativistic potential for the interaction of
two charged-scalar bosons. Now, non-relativistic quantum mechanics tells us that
in the first Born approximation the cross section for the scattering of two indistin-
guishable massive particles, in the center-of-mass frame (CoM), is given by dσ

d�
=

| m
4π

∫
e−ip′ · rV (r)eip· rd2 r|2, where p (p′) is the initial (final) momentum of one of

the particles in the CoM. In terms of the transfer momentum, k ≡ p′ − p, it reads

dσ

d�
=

∣∣∣∣ m

4π

∫
V (r)eik· rdD−1 r

∣∣∣∣
2

. (19)

On the other hand, from quantum field theory we know that the cross section,
in the CoM, for the scattering of two identical massive scalars bosons by an
electromagnetic field, can be written as dσ

d�
= | 1

16πE
M|2, where E is the initial

energy of one of the bosons and M is the Feynman amplitude for the process at
hand, which in the non-relativistic limit (N.R.) reduces to

dσ

d�
=

∣∣∣∣ 1

16πm
MN.R.

∣∣∣∣
2

. (20)

From Equations (19) and (20) we come to the conclusion that the expression
that enables us to compute the effective non-relativistic potential has the form

V (r) = 1

4m2

1

(2π )2

∫
d2 k MN.R. e−ik· r, (21)

which clearly shows how the potential from quantum mechanics and the Feynman
amplitude obtained via quantum field theory are related to each other. Now, in
the Lorentz gauge the MCSE coupled to a charged-scalar field is described by the
Lagrangian

L = −1

4
FµνF

µν + s

2
εµνρA

µ∂νAρ − 1

2λ
(∂νA

ν)2 + (Dµφ)∗Dµφ − m2φ∗φ,

(22)
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where Dµ ≡ ∂µ + iqAµ. Therefore, the interaction Lagrangian to order Q for
the process S + S −→ S + S, where S denotes a spinless boson of mass m and
charge Q, is Lint = iQAµ(φ∂µφ∗ − φ∗∂µφ), implying that the elementary vertice
is given by



µ
φ (p, p′) = −Q(p + p′)µ,

where p (p′) is the momentum of the incoming (outgoing) scalar boson. As a
consequence, the Feynman amplitude for the interaction of two charged spinless
bosons of equal mass is

M = 

µ
φ (p, p′)O−1

µν 
ν
φ(q, q ′) (23)

where

O−1 = − θ

k2 − s2
− λω

k2
− sS

k4 − s2k2
.

In the non-relativistic limit, the Feynman amplitude for the process under
consideration assumes the form

MN.R. =
[

4Q2m2

k2 + s2
+ 8ismQ2 k ∧ P

k2(k2 + s2)

]
,

where P ≡ 1
2 (p − q) is the relative momentum of the incoming charged-scalar

bosons in the CoM.
It follows that the effective non-relativistic potential is given by

V (r) = − Q2

mπs

[
1

r2
− sK1(sr)

r

]
L + Q2

2πs
K0(sr), (24)

where L ≡ r ∧ P is the orbital angular momentum, and K is the modified Bessel
function. Let us then investigate whether or not this potential can bind a pair of
identical charged-scalar bosons. In this case, the corresponding time-independent
Schrödinger equation can be written as

HlRnl = − 1

m

(
d2

dr2
Rnl + 1

r

d

dr
Rnl

)
+ V eff

l Rnl

= EnlRnl, (25)

V eff
l ≡ l2

mr2
+ V (r)

= l2

mr2
− Q2

mπs

[
1

r2
− sK1(sr)

r

]
L + Q2

2πs
K0(sr),

where Rnl is the nth normalizable eigenfunction of the radial Hamiltonian Hl

whose corresponding eigenvalue is Enl and V eff
l is the lth partial wave effec-

tive potential. Note that V eff
l behaves as l2

mr2 at the origin and as l
m

[ l − Q2s

πs
] 1
r
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asymptotically. On the other hand,

d

dr
V eff

l = −2l

m

[
l − Q2

πs

]
1

r3
− Q2sl

mπ

1

r
K0(sr) −

[
Q22l

mπr2
+ Q2s

2π

]
K1(sr)

Assuming, without any loss of generality, that l > 0, it is trivial to see that,
if l > Q2

πs
, the potential is strictly decreasing, which precludes the existence of

bound states. The remaining possibility is l < Q2

πs
. In this interval V eff

l approaches
+∞ at the origin and 0− for r → +∞, which is indicative of a local mini-
mum. Consequently, the existence of charged-scalar boson bound states is sub-
ordinated to the condition 0 < l < Q2

πs
. In terms of the dimensionless parameters

y ≡ sr, α ≡ Q2

πs
, β ≡ m

s
, and Ẽnl ≡ mEnl

s2 , Equation (25) reads[
d2

dy2
+ 1

y

d

dy

]
Rnl + [

Ẽnl − Ṽ eff
l

]
Rnl = 0, (26)

with

Ṽ eff
l ≡ − l(α − l)

y2
+ αβ

2
K0(y) − αl

y
K1(y).

Of course, Equation (26) cannot be solved analytically; nevertheless, it can be
solved numerically. To accomplish this, we rewrite the radial function as Rnl ≡
unl√

y
. As a consequence, Equation (26) takes the form[

d2

dy2
+ 1

4y2

]
unl + [

Ẽnl − Ṽ eff
l

]
unl. (27)

Using the Numerov algorithm (Numerov, 1924), we have solved Equation (27)
numerically for several values of the parameters α, β, and l. In Fig. 1 we present our
numerical results for the potential in the specific case of l = 6. The corresponding
ground-state energy is −1.68 × 10−8 MeV. The graphic shown in Fig. 1 exhibits
the generic features of the potential, although it has been composed using particular
values of the parameters α, β, and l.

In conclusion we may say that since “Cooper pairs” exist in the framework of
MCSE, they also exist, as a consequence, in the context of PCSE. A detailed study
of the potential, as well as the eigenvalue structure, for the PCSE coupled with a
charged-scalar field, will be published elsewhere (Accioly and Dias, 2004a).

5. GRAVITY, ANTIGRAVITY, AND GRAVITATIONAL SHIELDING
IN THE CONTEXT OF THREE-DIMENSIONAL GENERAL
RELATIVITY WITH HIGHER DERIVATIVES

For reasons similar to those discussed in Section 4, we consider here the
astonishing features of higher-derivative gravity instead of TMHDG. Let us then
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Fig. 1. Attractive effective non-relativistic potential corresponding to the eigenvalue
l = 6. Here [V eff

6 ] = eV, [r] = MeV−1, α = 7.6, and β = 7000.

compute the effective non-relativistic potential for the interaction of two identical
massive bosons of zero spin via a graviton exchange. The expression for the
potential is

V (r) = 1

4m2

1

(2π )2

∫
d2 k MN.R. e−ik· r, (28)

where m is the mass of one of the bosons. Now, the interaction Lagrangian for the
process we are analyzing is

Lint = −κhµν

2

[
∂µφ∂νφ − 1

2
ηµν

(
∂αφ∂αφ − m2φ2

)]
,

implying that the elementary vertice can be written as


φ
µν(p, p′) = 1

2
κ

[
pµp′

ν + pνp
′
µ − ηµν

(
p.p′ + m2

)]
, (29)

where the momenta are supposed to be incoming. The expression for the non-
relativistic Feynman amplitude is, in turn, given by

MN.R. = −1

2

κ2m4m2
1

k2
(
k2 + m2

1

) + 1

2

κ2m4m2
0

k2
(
k2 + m2

0

) , (30)

where m2
0 ≡ 1

κ2[ 3
4 β+2α]

and m2
1 ≡ − 4

κ2β
are supposed to be positive in order to

avoid the presence of tachyons in the dynamical field. Performing the appropriate
integrations using Equations (28) and (30), we obtain the effective non-relativistic
potential, namely,

V (r) = 2Gm2 [K0(m1r) − K0(m0r)] . (31)



Algorithm for Probing the Unitarity of Topologically Massive Models 1137

Note that V (r) behaves as 2Gm2 ln(m0
m1

) at the origin and as

2Gm2

[√
π

2m1r
e−m1r −

√
π

2m0r
e−m0r

]
asymptotically. Note that this potential is extremely well behaved: it is finite at the
origin and zero at infinity. On the other hand, the derivative of the potential with
respect to r is given by

dV

dr
= 2Gm2 [−m1K1(m1r) + m0K1(m0r)] ,

implying that it is everywhere attractive if m0 > m1, is repulsive if m1 > m0, and
vanishes if m1 = m0. If we appeal to the usual tools of Einstein’s geometrical
theory, we arrive at the same conclusions. In fact, in the weak field approximation
the gravitational acceleration, γ l = dvl

dt
, of a slowly moving particle is given

by γ l = −κ[∂th
l
0 − 1

2∂lh00], which for time-independent fields reduces to γ l =
κ
2 ∂lh00. Now, taking into account that h00 = 2V

mκ
, we obtain

γ l = 2mG
xl

r
[m0K1(rm0) − m1K1 (m1r)] .

Therefore, the gravitational force exerted on the particle,

F l = 2Gm2 xl

r
[m0K1(rm0) − m1K1 (m1r)] ,

is everywhere attractive if m0 > m1, is repulsive if m1 > m0 (antigravity), and
vanishes if m1 = m0 (gravitational shielding). It is remarkable that this force does
not exist in general relativity. It is peculiar to both higher-derivative gravity and
TMHDG (Accioly and Dias, 2005).

In Fig. 2 it is shown a schematic picture of the effective non-relativistic
potential for the three situations described earlier, i.e., m0 > m1, m1 > m0, and
m1 = m0.

6. DISCUSSIONS AND COMMENTS

According to a somewhat obscure unitarity lore it is expected that the opera-
tion of augmenting a non-topological massive gravity model through the topolog-
ical term would transform the non-unitary systems into unitary ones and preserve
the unitarity of the originally unitary models. This false idea is, perhaps, re-
sponsible for the claims in the literature concerning the pseudo-unitarity of both
topologically massive Fierz-Pauli gravity (TMFPG) (Pinheiro et al., 1997a,b)
and TMHDG (Pinheiro et al., 1997c). The authors of these works wrongly state
that these models are unitary. As far as TMPFG is concerned, it was shown re-
cently that this system with the Einstein’s term with the “wrong sign” is forbidden,
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Fig. 2. Gravity, antigravity and gravitational shielding in the framework of
three-dimensional Einstein’s gravity with higher derivatives.

while the model with the usual sign has acceptable mass ranges but faces ghosts
problems (Deser and Tekin, 2002). On the other hand, the non-unitarity problem of
TMHDG was recently rehearsed (Accioly, 2003, 2004) and carefully tackled (Ac-
cioly and Dias, 2004b). In truth, we may say that we will never be ale to construct
an unitary, massive, topologically massive, gravitational model. Indeed, the fancy
way Einstein–Chern-Simons theory is built, i.e., with the Einstein’s term with
the opposite sign, precludes the existence of ghost-free, massive, topologically
massive, gravitational models (Accioly and Dias, 2005). It is worth mentioning
that these idiosyncrasies do not occur in the framework of massive, topologically
massive, electromagnetic models because the Maxwell sign’s term concerning
MCS theory is the same as that of the usual Maxwell’s theory.

Nonetheless, the massive topologically massive models with higher deriva-
tives may be utilized under certain circumstance as effective field models, i.e., as
low-energy approximations to more fundamental theories that, quoting Weinberg
(1995), “may not be field theories at all.” The physics associated with these
models is not only intriguing, but also fascinating. Certainly it deserves to be
much better known.
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