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The Kochen–Specker theorem has been discussed intensely ever since its original proof
in 1967. It is one of the central no-go theorems of quantum theory, showing the non-
existence of a certain kind of hidden states models. In this paper, we first offer a
new, non-combinatorial proof for quantum systems with a type In factor as algebra of
observables, including I∞. Afterwards, we give a proof of the Kochen–Specker theorem
for an arbitrary von Neumann algebra R without summands of types I1 and I2, using a
known result on two-valued measures on the projection latticeP(R). Some connections
with presheaf formulations as proposed by Isham and Butterfield are made.
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1. INTRODUCTION

In quantum theory, including quantum mechanics in the von Neumann rep-
resentation, quantum field theory and quantum information theory, observables
are represented by self-adjoint operators A in some von Neumann algebra R, the
algebra of observables. The algebra R is contained in L(H), the set of bounded
linear operators on some separable Hilbert spaceH. The self-adjoint operatorsRsa

form a real linear space in the algebra R. It is important for the interpretation of
quantum theory to see if there is a possibility to assign a value to each observable
such that (i) an observable A ∈ Rsa is assigned one element of its spectrum and (ii)
if for two observables A,B ∈ Rsa one has B = g(A) for some (Borel) function g,
then the value assigned to B, say b, is given as g(a), where a is the value assigned
to A. If this were possible, one could imagine to build some realistic model of
the quantum world where all observables have definite values, like in classical
mechanics.

The first condition, namely that each observable should be assigned one of
its spectral values, is quite obvious. The second condition implements the fact that
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the observables are not all independent. In fact, for every Abelian von Neumann
algebraM (think of some Abelian subalgebra ofR), there is a self-adjoint operator
A generating M, i.e. M = {A, I }′′. This was already proved by von Neumann
(1932). For a modern reference, see Theorem III.1.21 in (Takesaki, 1979). Every
operator B ∈ M is a Borel function of A, B = g(A). One has g(spA) ⊆ spB

(see Chap. 5.2 in Kadison and Ringrose, 1997). If g is continuous or if H is
finite-dimensional, equality holds. It is natural to demand that the spectral value b

assigned to B is given as g(a), where a is the value assigned to A. This condition
is often called the FUNC principle.

Kochen and Specker started from a related question in their classical paper
(Kochen and Specker, 1967): is there a space of hidden states? A hidden state ψ

would be given by a probability measure µψ on a generalized quantum mechanical
phase space �, such that an observable A is given as a mapping

fA : � −→ R,

a hidden variable. When the system is in the hidden state ψ and the observable A

is measured, the probability to find a value r lying in the Borel set U is required
to be

PA,ψ (U ) = µψ

(
f −1

A (U )
)
. (1)

Furthermore, the expectation value Eψ (A) of A when the system is in the hidden
state ψ is required to be

Eψ (A) =
∫

�

fA(ω) dµψ (ω).

Kochen and Specker demonstrate that it is trivial to construct such a generalized
phase space � if functional relations between the observables are neglected, but
the problem really starts when one takes these relations into account. If B = g(A)
for some observables A,B ∈ Rsa and a Borel function g, one should have

fB = fg(A) = g ◦ fA. (2)

This simply translates the functional relation between the operators A and
B into the corresponding relation between the hidden variables fA and fB . Since
B = g(A) can only be if A and B commute and since every Abelian von Neumann
algebra is generated by a self-adjoint operator, Kochen and Specker go on to intro-
duce partial algebras, where algebraic relations are defined exclusively between
observables that are commeasurable. If one regards a von Neumann algebra R as
the algebra of observables, as we do here, R is a partial algebra in an obvious
way: one just keeps the algebraic relations between commuting operators and ne-
glects the algebraic relations between non-commuting operators, since at first sight
(2) is a condition on commuting operators only and those are commeasurable. This
point seems important, because a hidden variable no-go theorem by von Neumann
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(1932) has been criticized (see e.g. Bell, 1966) for the fact that von Neumann re-
quired additivity to be preserved even between non-commuting operators, which
does not seem adequate in the light of (2). However, in fact (2) does not just pose
conditions on commuting, but also on non-commuting operators. The reason is
that typically an observable B is given as a function B = g(A) = h(C) of non-
commuting observables A,C ∈ Rsa. We will see that in this way (2) becomes a
very strong condition, ruling out hidden states models of the kind described above.

An Abelian subalgebra M of R is often called a context in the physics
literature. The self-adjoint operatorsMsa in a maximal contextM form a maximal
set of commeasurable observables. Condition (2) seems to be a condition within
each context solely, but in fact it is a condition “across contexts,” because each
observable B typically is contained in many contexts.

The elements of the hypothetical generalized phase space � would be gen-
eralized pure states. In a slight abuse of language, � is also called the space of
hidden states. If one assumes that there is some space � of hidden states, such
that (1) and (2) are satisfied and that there is an embedding f : Rsa → R

� of
the quantum mechanical observables into the mappings from � to R, one would
have a lot of valuations as described above, assigning a spectral value to each
observable and preserving functional relations: every point ω ∈ � defines such a
valuation v by

v(A) := fA(ω).

Demonstrating that there are no such valuations (Kochen and Specker called them
prediction functions) thus shows that there is no space � of hidden states as
described above. More directly, the non-existence of valuation functions means
that no realistic interpretation of quantum mechanics is possible which assumes
that all the observables have definite values at the same time.

It is a funny fact that in spite of many references to it, there seems to be no
single result called the Kochen–Specker theorem. Above, we tried to lay out (very
roughly, admittedly) the train of thought in (Kochen and Specker, 1967), and it
seems sensible to spell out the Kochen–Specker theorem as follows:

1.1. Kochen–Specker Theorem

Let R � L(H), dimH ≥ 3 be the algebra of observables of some quantum
system (R is a type In factor, n = dimH). There is no space � of hidden states
such that (1) and (2) are satisfied, i.e. there is no realistic phase space model of
quantum theory assigning spectral values to all observables at once, preserving
functional relations between them.

It is not obvious at first sight if the Kochen–Specker theorem holds for more
general von Neumann algebras R, since each R that is not a type In factor is
properly contained in some L(H), and so there are less conditions (encoded in
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the FUNC principle) than for L(H) itself. This might lead to speculation if some
hidden states, realistic model of quantum systems with an observable algebra R
other than a type In factor exists. A necessary condition would be the existence of
a valuation function v : Rsa → R.

To prove the non-existence of valuation functions, Kochen and Specker
(1967) concentrate on the projections P(R) of R. These form a partial Boolean
algebra. A valuation function v can assign 0 or 1 to a projection E, since
sp E = {0, 1}. Kochen and Specker examine if the partial Boolean algebra P(R)
can be embedded into a Boolean algebra. The existence of such an embedding
is a necessary condition for the existence of a valuation function. For the case
H = R

3,R = M3(R), they construct a finitely generated subalgebra D ⊂ R that
cannot be embedded into a Boolean algebra, thus showing that there is no valuation
function in this case. Kochen and Specker use 117 vectors in their construction,
corresponding to 117 projections onto one-dimensional subspaces. Later on, this
number could be reduced to 33 by Peres and 31 by Conway and Kochen, see
(Peres, 1993) and references therein. The proofs are combinatorial in nature,
giving a counterexample.

In this paper, we will use another approach. LetR be a von Neumann algebra.
Assuming the existence of a valuation function v : Rsa → R (see Def. 2.2. below),
we show that v induces a so-called quasi-state v′ : R → C (see Def. 2.4.) such
that v′|Rsa = v. This quasi-state is a pure state of every Abelian subalgebra M of
R. Restricting v′ to the projections P(R), we obtain a finitely additive probability
measure on P(R).

If R is a type In factor (n ∈ {3, 4, . . .}), Gleason’s theorem (1957) shows
that v′ is a state of R of the form v′( ) = tr(ρ ). But such a state does not assign
0 or 1 to every projection, hence we have a contradiction of one of the defining
conditions of the valuation function v. The case of a type I∞ factor can be treated
easily.

For more general von Neumann algebras, another proof is presented. Us-
ing the Gleason–Christensen–Yeadon theorem (Theorem 2.3), a generalization of
Gleason’s theorem, we again show that v′ is a state if R has no summand of type
I2. Hamhalter showed in (Hamhalter, 1993) that every finitely additive two-valued
probability measure µ : P(R) → {0, 1} gives rise to a multiplicative state of R.
Since v′|P(R) is of this kind, a valuation function v induces a multiplicative state
v′. If a von Neumann algebra R contains no summand of type I1, then there are
no multiplicative states of R, so there is no valuation function for a von Neumann
algebra R without summands of types I1 and I2. Thus, the generalized Kochen–
Specker theorem holds for all von Neumann algebras R without summands of
types I1 and I2.

In Section 3, we give two different reformulations of the generalized Kochen–
Specker theorem in the language of presheafs. For R = L(H), this has been
proposed by Isham, Butterfield and Hamilton (1998, 1999, 2000, 2002). They
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observed that the FUNC principle means that certain presheafs on small categories
have global sections.

Our first presheaf formulation of the Kochen–Specker theorem, generalizing
the category and presheaf chosen in (Hamilton et al., 2000), is closely related
to our first proof (Subsections 2.1, 2.2). The second formulation uses another
presheaf which does have global sections: each state of the von Neumann algebra
R induces one. However, the Kochen–Specker theorem means that there are no
global sections of the kind a valuation function would induce, giving a pure state
of every Abelian subalgebra M of R.

2. THE NEW PROOFS

2.1. Valuation Functions and Quasi-States

All von Neumann and C∗-algebras treated here are unital subalgebras of
some L(H), the algebra of bounded operators on a Hilbert space H. Rsa denotes
the real linear space of self-adjoint elements of a C∗- or von Neumann algebra R,
P(R) is the lattice of projections of R.

Definition 2.1. Let R ⊆ L(H) be a von Neumann algebra. A finitely additive
probability measure µ is a mapping from P(R) to R such that

(M1)∀E ∈ P(R) : 0 ≤ µ(E) ≤ 1 and µ(I ) = 1,

(M2)If E,F ∈ P(R) such that EF = 0, then µ(E ∨ F ) = µ(E) + µ(F ).

If in addition to (M2) one of the stronger conditions

(M2σ )µ(
∨

n∈I Pn) = ∑
n∈I µ(Pn) for every countable family

{Pn}n∈I of orthogonal projections in P(R),

(M2c)µ(
∨

j∈J Pj ) = ∑
j∈J µ(Pj ) for every family{Pj }j∈J

of orthogonal projections inP(R)

holds, then µ is called a σ -additive (countably additive) or a completely
additive probability measure, respectively.

Every normal state φ : R → C is of the form φ( ) = tr(ρ ) for some positive
trace class operator of trace 1, see Theorem 7.1.12 in (Kadison and Ringrose,
1997). Such a normal state induces a completely additive probability measure by
restriction toP(R). For type I factors, the converse is also true, as Gleason showed
in his classical paper (Gleason, 1957). For ease of reference, we cite Gleason’s
theorem:

Theorem 2.1. (Gleason, 1957) Let R be a type In factor, n ∈ {3, 4, . . .},
R � L(H), dimH = n, and let µ be a finitely additive probability measure on
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P(R). There is some positive trace class operator ρ of trace 1 such that

∀E ∈ P(R) : µ(E) = tr(ρE). (3)

If H is infinite-dimensional and separable, µ is σ -additive and R is isomor-
phic to the type I∞ factor L(H), then there is some positive trace class operator
ρ of trace 1 such that (1) holds.

If H is an arbitrary infinite-dimensional Hilbert space (possibly non-sepa-
rable), µ is completely additive and R is isomorphic to the type I∞ factor L(H),
then there is some positive trace class operator ρ of trace 1 such that (1) holds.
(For this partial result, see Theorem 2.3 in Maeda, 1990.)

This classifies the probability measures on the projection lattices of type I

factors. In particular, they all come from normal states of the form tr(ρ ).
From now on, we will assume that H is separable.
We now give the precise definition of a valuation function, which is the

starting point for the proof of the Kochen–Specker theorem.

Definition 2.2. Let H be a Hilbert space, R ⊆ L(H) a von Neumann algebra. A
valuation function is a mapping v : Rsa →R such that

(a) v(A) ∈ spA and
(b) for all Borel functions f : R → R, one has v(f (A)) = f (v(A)).

Kochen and Specker call this a prediction function, see (Kochen and Specker,
1967). υ(I ) = 1 and υ(0) = 0 follow. Condition (a) is often called the Spectrum
rule, condition (b) is the FUNC principle.

Definition 2.3. Let v : Rsa → R be a valuation function. We extend v in a canon-
ical manner to a function

v′ : R −→ C,

B = A1 + iA2 �−→ v(A1) + iv(A2),

where B = A1 + iA2 is the unique decomposition of B into self-adjoint operators
A1, A2 ∈ Rsa.

Obviously, v′(A) = v(A) for a self-adjoint operator A ∈ Rsa. This will be
used throughout.

Lemma 2.1. Let g : R → C be a Borel function, gr : R → R its real part,
gi : R → R its imaginary part, g = gr + igi . Thus g acts on a ∈ R as

g(a) = gr (a) + igi(a)
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and on self-adjoint operators A as

g(A) = gr (A) + igi(A).

Let v : Rsa → R be a valuation function, v′ : R → C its extension. Then
v′(g(A)) = g(v′(A)) holds for all self-adjoint operators A ∈ Rsa.

Proof: One has

v′(g(A)) = v′(gr (A) + igi(A))

= v(gr (A)) + iv(gi(A))

= gr (v(A)) + igi(v(A))

= g(v(A))

= g(v′(A)). �

Lemma 2.2. If v : Rsa → R is a valuation function and M ⊆ R is an Abelian
von Neumann subalgebra, then v′|M is a character of M. v|Msa is a real-valued,
R-homogeneous, linear functional.

Proof: Let A ∈ Msa be a self-adjoint operator that generates M, i.e. M =
{A, I }′′ (see Takesaki, 1979, Prop. III.1.21, p. 112). All operators B,C ∈ M are
Borel functions of A:

B = f (A), C = g(A),

where f, g : R → C are Borel functions on spA ⊆ R. Since B + C ∈ M, there
also is a Borel function h : R → C such that B + C = f (A) + g(A) =: h(A) and
hence

v′(B + C) = v′(f (A) + g(A))

= v′(h(A))

= h(v′(A))

= f (v′(A)) + g(v′(A))

= v′(f (A)) + v′(g(A))

= v′(B) + v′(C).

Analogously for BC = CB: there is a Borel function j : R → C such that BC =
f (A)g(A) =: j (A) and hence

v′(BC) = v′(f (A)g(A))

= v′(j (A))
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= j (v′(A))

= f (v′(A))g(v′(A))

= v′(f (A))v′(g(A))

= v′(B)v′(C).

The C-homogeneity of v′|M is obvious. Let α ∈ C. Then

v′(αB) = v′(αf (A))

= v′(k(A))

= k(v′(A))

= αf (v′(A))

= αv′(f (A))

= αv′(B),

where k := Mα ◦ f . This shows that v′|M is a character of M. Restricting to Msa,
one obtains a real-valued, R-homogeneous, linear functional. �

A character (multiplicative linear functional) of an Abelian C∗-algebra M is
a pure state of M. So the above lemma shows that a valuation function induces a
pure state on every Abelian subalgebra M ⊆ R, which is exactly what one would
expect from a physical point of view. Lemma 2 is closely related to the sum rule
and the product rule first described in (Fine, 1974), see also (Redhead, 1987).

Aarnes has introduced the notion of a quasi-state on a C∗-algebra in his paper
(Aarnes, 1969):

Definition 2.4. Let A be a unital C∗-algebra. A quasi-state of A is a functional
ρ satisfying the following three conditions:

(1) For each B ∈ Asa, ρ is linear and positive on the Abelian C∗-subalgebra
AB ⊆ A generated by B and I .

(2) If C = A1 + iA2 for self-adjoint A1, A2 ∈ Asa, then ρ(C) = ρ(A1) +
iρ(A2).

(3) ρ(I ) = 1.

Lemma 2.3. v′ is a quasi-state.

Proof: (1) v′ is linear on every Abelian subalgebra M ⊆ R. v′ is positive on
each such M (and on the whole of R), since a positive operator B∗B is assigned
some element of its spectrum, v′(B∗B) = v(B∗B) ∈ sp(B∗B).

(2) For B = A1 + iA2 (A1, A2 ∈ Rsa) one has

v′(B) = v(A1) + iv(A2) = v′(A1) + iv′(A2),
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the former because of the definition of v′, the latter because v′(A) = v(A) for
A ∈ Rsa.

(3) v′(I ) = 1 holds.
Thus v′ is a quasi-state. �

A quasi-state of an Abelian von Neumann algebra is a state. This follows
from the fact that an Abelian von Neumann algebra on a separable Hilbert space
is generated by an operator A (Takesaki, 1979, Prop. III.1.21), a result we already
used in Lemma 2.

It is easy to see that a quasi-state on an arbitrary von Neumann algebra
R, when restricted to the lattice of projections P(R), gives a finitely additive
probability measure. We follow the proof given in (Maeda, 1990, Cor. 7.9, p. 264):

Lemma 2.4. If ρ is a quasi-state of a von Neumann algebra R, then ρ|P(R) is
a finitely additive probability measure P(R) → [0, 1].

Proof: For E ∈ P(R), we have 0 = ρ(0) ≤ ρ(E) ≤ ρ(I ) = 1, since ρ is pos-
itive on {E, I }′′. If EF = 0 for E,F ∈ P(R), then M := {E,F, I }′′ ⊆ R is
Abelian and ρ|M is a state, in particular, it is additive. Hence,

ρ(E ∨ F ) = ρ(E + F ) = ρ(E) + ρ(F ). �

To clarify the relation between normal states and valuation functions, we will
need the following fact Lemma 6.5.6 in (Kadison and Ringrose, 1997):

Lemma 2.5. Let R be a von Neumann algebra with no central portion of type I

(equivalently, with no non-zero Abelian projections), and let E ∈ P(R). For each
positive integer n, there are n equivalent orthogonal projections with sum E.

Lemma 2.6. Let R ⊆ L(H) be a von Neumann algebra of type In, n ∈
{2, 3, . . .} ∪ {∞}, or of type II or III, and let φ be a normal state of R. There
is a projection E ∈ P(R) such that φ(E) /∈ {0, 1} = spE.

Proof: Since φ is a normal state, it is weakly continuous and of the form

φ( ) = tr(ρ )

for some positive trace class operator ρ of trace 1, see (Kadison and Ringrose,
1997, Theorem 7.1.12).

We assume that φ(E) = tr(ρE) ∈ {0, 1} holds for all E ∈ P(R). Let {ek}k∈K

be an orthonormal basis of H that is adapted to E, i.e. for all k, ek ∈ imE ∪
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im(I − E). Let KE := {k ∈ K | ek ∈ imE}. If tr(ρE) = 1, we have

1 =
∑

k

〈ρek, Eek〉

=
∑
k∈KE

〈ρek, ek〉 .

Since 〈ρek, ek〉 ≥ 0 for all k ∈ K and trρ = 1, we see that 〈ρek, ek〉 = 0 for all
k ∈ K\KE , and hence ρek = 0 for all k ∈ K\KE . Therefore, ρ(I − E) = 0, i.e.
ρ = ρE and

ρE = ρ = ρ∗ = Eρ.

If tr(ρE) = 0, we have tr(ρ(I − E)) = 1, since tr(ρI ) = 1 = tr(ρE) +
tr(ρ(I − E)). It follows that ρ(I − E) = (I − E)ρ and thus ρE = Eρ in this
case, too. Since a von Neumann algebra is generated by its projections, we obtain

(∀E ∈ P(R) : tr(ρE) ∈ {0, 1}) =⇒ ρ ∈ R′,

where R′ is the commutant of R. Now let θ ∈ R be a partial isometry such that
θ∗θ = E and F := θθ∗. One has

tr(ρE) = tr(ρθ∗θ ) = tr(θρθ∗) = tr(θθ∗ρ) = tr(Fρ) = tr(ρF ),

so from E ∼ F it follows that φ(E) = tr(ρE) = tr(ρF ) = φ(F ).
If R is of type In, n ≥ 2, then the identity I is the sum of n equivalent Abelian

(orthogonal) projections Ej (j = 1, . . . , n). We have

1 = φ(I ) = φ


 n∑

j=1

Ej


 =

n∑
j=1

φ(Ej ),

so φ(Ej ) = 1
n

(j = 1, . . . , n), which contradicts our assumption φ(E) ∈ {0, 1} for
all E ∈ P(R).

If R is of type I∞, we use the halving lemma (6.3.3 in Kadison and Ringrose,
1997) to show that there is a projection F ∈ P(R) such that F ∼ F⊥ := I − F .
If R is of type II or III, then we employ Lemma 2.5 for E = I and n = 2 to obtain
the same. We have

1 = φ(I ) = φ(F + I − F ) = φ(F ) + φ(F⊥),

so φ(F ) = φ(F⊥) = 1
2 , which contradicts our assumption. �

This lemma means that restricting a normal state φ of a von Neumann algebra
R that is not of type I1 (i.e. Abelian) to Rsa can never give a valuation function.
The proof of this lemma is based on the proof of Theorem 6.4 in (de Groote, 2001)
(Theorem 2.2 in our paper).
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2.2. Type In Factors

In this subsection, let R be a type I factor.

Definition 2.5. Using some notions from (de Groote, 2001), we call a maximal
distributive sublattice of P(R) a Boolean sector B. The Abelian von Neumann
algebra M(B) ⊆ R generated by B has Gelfand spectrum �(M(B)). One can
define the Stone spectrum Q(B) of B as the set of maximal dual ideals in B,
equipped with the topology induced by the sets

QE(B) := {β ∈ Q(B) | E ∈ β},
see Chap. 4 in (de Groote, 2001) (the Stone spectrum of B is called the Stone space
of B there). The elements β of the Stone spectrum Q(B) are called quasipoints. To
every quasipoint β of Q(B), there corresponds an element ω of �(M(B)), since
the Stone spectrum and the Gelfand spectrum are homeomorphic (de Groote,
2001, Theorem 5.2). More generally, the Stone spectrum Q(M) := Q(P (M)) of
an Abelian von Neumann algebra M is defined as the set of maximal dual ideals
β in P(M), equipped with the topology induced by the sets

QE(M) := {β ∈ Q(M) | E ∈ β}.
Q(M) is homeomorphic to the Gelfand spectrum �(M).

Every state ρ of R induces a bounded positive Radon measure µB
ρ of norm 1

on Q(B) by

µB

ρ : C(Q(B)) −→ C

A �−→ tr(ρA).

We will use the following result (Theorem 6.4 in de Groote, 2001):

Theorem 2.2. Let ρ be a state ofR, and let B ⊆ P(R) be a Boolean sector. Then
the Radon measure µB

ρ on the Stone spectrum Q(B) is the point measure εβ0 for
some β0 ∈ Q(B), if and only if there is an x ∈ S1(H) such that Cx ∈ B, β0 = βCx

and ρ = PCx . Here βCx is the unique quasipoint containing PCx .

Proposition 2.1. Let R be a factor of type In, n ∈ {3, 4, ...} ∪ {∞}. There is no
valuation function v : Rsa → R.

Proof: We first treat the case of finite n. As shown above, assuming the existence
of a valuation function v, one has a quasi-state v′ of R, which is a pure state (i.e.
a character) of every Abelian von Neumann subalgebra M ⊆ R. Lemma 2.4
shows that v′|P(R) is a finitely additive probability measure. Gleason’s theorem
(Theorem 2.1) shows that v′|P(R) comes from a state of R � L(Hn), where Hn is
an n-dimensional Hilbert space.
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The state given by Gleason’s theorem is of the form tr(ρ ), where ρ is a
positive trace class operator of trace 1. According to the spectral theorem, every
operator A ∈ R is the norm limit of complex linear combinations of projections,
hence there is a unique possibility to extend the probability measure v′|P(R) to
a state (given by linearly extending v′|P(R)). Of course, this extension simply
is v′, so

v′( ) = tr(ρ ).

Let B be a Boolean sector of P(R), and let M(B) be the maximal Abelian
subalgebra of R generated by B. Since v′|M(B) is a pure state, it corresponds to
exactly one element β0 ∈ Q(B). v′ induces a point measure on M(B) = C(Q(B))
in this way.

According to Theorem 2.2, ρ and β are of the form

ρ = PCx,

β = βCx,

and thus

v′( ) = tr(PCx ).

This form does not depend on the chosen Boolean sector B.
Now let B

′ be a different Boolean sector that does not contain the projections
PCx, I − PCx . There is a projection F ′ ∈ B

′ such that

v′(F ′) = tr(PCxF
′) /∈ {0, 1},

contradicting the defining condition v′(E) = v(E) ∈ spE = {0, 1} (E ∈ P(R)) of
a valuation function. This shows that there is no valuation function v : Rsa → R

for factors R of type In, n ∈ {3, 4, . . .}, from which the Kochen–Specker theorem
follows. Instead of referring to (de Groote, 2001), we could have used Lemma 2.6.

Now let R be a type I∞ factor, R � L(H) for an infinite-dimensional sepa-
rable Hilbert space H. R contains a subfactor of type In for every n ∈ {3, 4, . . .}:
Let S be a type In factor, S � L(Hn). The separable Hilbert spaces Hn ⊗ H and
H are isomorphic and will be identified. Embed L(Hn) into L(H) via the mapping

L(Hn) −→ L(Hn ⊗ H) � L(H)

A �−→ A ⊗ I.

This guarantees that the identity In of L(Hn) is mapped to the identity I of L(H ).
We assume that there is a valuation function v : Rsa → R. Restricting v to

the self-adjoint part of a type In subfactor S of R gives a valuation function for S.
Since we saw that there is no such valuation function, there can be none forRsa. �
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2.3. Von Neumann Algebras Without Type I2 Summand

The proof for the type In case proceeded in two steps: first, assuming that
there is a valuation function v : Rsa → R forR a type In algebra, we showed that it
induces a quasi-state v′ : R → C in a canonical manner and thus a finitely additive
probability measure v′|P(R). In a second step, we used Gleason’s theorem to see
that v′ is a state of R of the form v′( ) = tr(ρ ), which cannot satisfy the defining
conditions for a valuation function, because there are projections F ′ ∈ P(R) such
that v′(F ′) /∈ spF ′ = {0, 1}.

If we want to treat more general von Neumann algebras R, we first must
assure that the quasi-state v′ is a state of R. Since we know that v′|P(R) is a finitely
additive probability measure for an arbitrary von Neumann algebra R (Lemma
4), a generalization of Gleason’s theorem is needed, showing that this probability
measure comes from a state. There is a beautiful and detailed paper by Maeda
(Maeda, 1990) on the generalizations of Gleason’s theorem. Maeda is drawing on
results by Aarnes (1969, 1970), Gunson (1972), Christensen (1982, 1985), Yeadon
(1983, 1984) and Saito (1985). The proofs given in Maeda’s paper are by no means
trivial. The central point of course is to show that a quasi-state is linear on Rsa

for non-commuting self-adjoint operators A,B. Maeda uses Gleason’s theorem
(Gleason, 1957) for the type In algebras. Types II and III require a lot more work.
We cite the main result (Theorem 12.1 in Maeda, 1990):

Theorem 2.3. (Christensen, Yeadon, Maeda et al.) Let R be a von Neumann
algebra without direct summand of type I2, and let µ be a finitely additive proba-
bility measure on the complete orthomodular lattice P(R). µ can be extended to
a state µ̂ of R, and moreover

∀E,F ∈ P(R) : |µ(E) − µ(F )| ≤ ||E − F ||.

It follows that the quasi-state v′ is a state of R if the von Neumann algebra
R has no summand of type I2. However, the state v′ is not normal necessarily,
i.e. it need not be of the form v′( ) = tr(ρ ), so we cannot use the same argu-
ment as before. Instead, we will show that v′ is a multiplicative state, using a
result by Hamhalter (Hamhalter, 1993), and give a second proof of the Kochen–
Specker theorem, valid for all von Neumann algebras without summands of types
I1 and I2.

We will exploit the fact that v′|P(R) is a two-valued measure, i.e. v′(E) ∈
{0, 1} for all E ∈ P(R). From now on, measure will always mean finitely additive
probability measure. We cite Lemma 5.1 of (Hamhalter, 1993) with proof:

Lemma 2.7. Let R be a von Neumann algebra without type I2 summand. Every
two-valued measure on P(R) can be extended to a multiplicative state of R.
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Proof: Let µ be a two-valued measure on P(R). Using the Gleason–
Christensen–Yeadon theorem (Theorem 2.3), we can extend µ to a state φ of
R. Let πφ : R → Hφ be the GNS representation engendered by φ. Let xφ be a
unit cyclic vector of πφ such that φ = ωxφ

◦ πφ , where ωxφ
is the vector state

given by xφ . For every E ∈ P(R) we have µ(E) = 〈
πφ(E)xφ, xφ

〉
. We see that

µ(E) is either 0 or 1. It follows that either πφ(E)xφ = xφ or πφ(E)xφ = 0.
Hence, Hφ = lin{πφ(A)xφ | A ∈ R} = lin{πφ(E) | E ∈ P(R)} = lin{xφ}, where
lin means the linear span and lin its closure. Therefore, for every A ∈ R there
is a complex number λA such that πφ(A)xφ = λAxφ . Obviously, λAB = λAλB for
A,B ∈ R, and therefore

φ(AB) = 〈πφ(AB)xφ, xφ〉 = λAB

= λAλB = 〈πφ(A)xφ, xφ〉〈πφ(B)xφ, xφ〉
= φ(A)φ(B)

for all A,B ∈ R. �

Corollary 2.1. Let R be a von Neumann algebra without type I2 summand. The
state v′ induced by a valuation function v : Rsa → R is multiplicative.

We now give a short proof (in two lemmata) for the well-known fact that a
von Neumann algebra R of fixed type has no multiplicative states unless R is of
type I1, i.e. Abelian. See also Theorem 5.3 in (Hamhalter, 1993).

Lemma 2.8. Let R be a von Neumann algebra of type In, n ≥ 2. There are no
multiplicative states of R.

Proof: If R is of type In, then I is the sum of n equivalent Abelian orthogonal
projections Ej (j = 1, . . . , n). E1 ∼ E2 means that there is a partial isometry
θ ∈ R such that E1 = θ∗θ and E2 = θθ∗. Let φ be a multiplicative state of R. In
particular, φ is a tracial state, i.e. φ(AB) = φ(BA) for all A,B ∈ R, hence

φ(E1) = φ(θ∗θ ) = φ(θθ∗) = φ(E2).

In the same manner, one obtains φ(E1) = φ(E2) = φ(E3) = · · · = φ(En). But
φ(E1) ∈ {0, 1}, since φ is multiplicative, so

φ(I ) = φ


 n∑

j=1

Ej


 =

n∑
j=1

φ(En) ∈ {0, n},

which is a contradiction. �
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Lemma 2.9. Let R be a von Neumann algebra of type I∞, II or III. There are
no multiplicative states of R.

Proof: First regard the case that R is of type I∞. Since R is properly infinite,
we can use the halving lemma (Lemma 6.3.3 in Kadison and Ringrose, 1997) to
show that there is a projection F ∈ P(R) such that F ∼ F⊥ := I − F . For R a
type II or III algebra, we use lemma 5 (choose E = I and n = 2) to the same
effect. F ∼ F⊥ means that there is a partial isometry θ ∈ R such that F = θ∗θ
and F⊥ = θθ∗. Let φ be a multiplicative state of R, so

φ(F ) = φ(θ∗θ ) = φ(θθ∗) = φ(F⊥).

Since φ(F ) ∈ {0, 1}, we have

φ(I ) = φ(I − F + F ) = φ(F⊥) + φ(F ) ∈ {0, 2},
which is a contradiction. �

Now let R be an arbitrary von Neumann algebra without summand of type
I2. Let PI1 ∈ P(R) be the maximal Abelian central projection, PI the maximal
central projection such that RPI is of type I , but has no central Abelian portion,
PII the maximal central projection such that RPII is of type II and PIII the
maximal central projection such that RPIII is of type III. We have I = PI1 +
PI + PII + PIII (see Theorem 6.5.2 in Kadison and Ringrose, 1997).

Every projection E ∈ P(R) can be written as E = EI1 + EI + EII + EIII

for orthogonal projections EI1 ∈ RPI1 , EI ∈ RP1, EII ∈ RPII and EIII ∈
RPIII . Let v : Rsa → R be a valuation function and let v′ be the induced state
of R. Since v′|P(R) is finitely additive, v′|Rsa = v and v(I ) = 1 = v(PI1 ) +
v(PI ) + v(PII ) + v(PIII ), exactly one term on the right hand side equals 1, the
others are zero. Let Px (x ∈ {I1, I, II , III }) denote the central projection such
that v(Px) = 1. It follows that v(E) = 0 for all E ≤ Py (y ∈ {I1, I, II , III })
for all y �= x, since v′|{E,Py }′′ is positive. This means that the valuation func-
tion is concentrated at RPx in the sense that v(E) = 0 for all projections E

orthogonal to Px .
v|RPI

cannot be a valuation function for (RPI )sa, since the induced state
(v|RPI

)′ on RPI would be multiplicative, but RPI is a sum of type In algebras,
n ∈ {3, 4, . . . ,∞}, and none of these algebras has a multiplicative state. Simi-
larly, v|RPII

cannot be a valuation function for RPII and v|RPIII
cannot be a

valuation function for RPIII , because RPII and RPIII have no multiplicative
states. It follows that v|RPI1

is a valuation function for (RPI1 )sa and the induced
multiplicative state (v|RPI1

)′ equals v′. For the Abelian part RPI1 , a “hidden state
space” is given by the Gelfand spectrum �(RPI1 ), each element ω ∈ �(RPI1 ) is
a hidden pure state and induces a valuation function, assigning a spectral value
to each A ∈ RPI1 by evaluating ω(A), preserving functional relations. We have
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shown that only in this trivial situation one can have a valuation function. We
obtain:

Lemma 2.10. Let R be a von Neumann algebra without type I2 summand, and
let PI1 ∈ P(R) be the maximal Abelian central projection. There exists a valuation
function v : Rsa → R if and only if R has a summand of type I1, i.e. PI1 �= 0.
In this case, v = v|RPI1

, and the valuation function v is completely trivial on the
non-Abelian part R(I − PI1 ) of R, v|(R(I−PI1 ))sa = 0.

Summing up, we have a generalized Kochen–Specker theorem:

Theorem 2.4. Let R be a von Neumann algebra without type I2 summand. If
R has no type I1 summand, then the Kochen–Specker theorem holds. If R has a
type I1 summand, then there is a hidden state space in the sense described in the
introduction, but only for the trivial, Abelian part RPI1 of R.

3. THE PRESHEAF PERSPECTIVE

In a remarkable series of papers, Isham and Butterfield (with Hamilton as
co-author of the third paper) have given several reformulations of the Kochen–
Specker theorem (Isham and Butterfield, 1998, 1999; Hamilton et al., 2000; Isham
and Butterfield, 2002). They use the language of presheafs on a category:

Definition 3.1 Let C be a small category. A presheaf on C is a covariant functor

P : Cop −→ Set.

The observation is that the FUNC principle, condition (b) in Def. 2.2., means
that a certain square diagram commutes:

This diagram captures the situation B = g(A) and v(B) = v(g(A)) =
g(v(A)). Isham and Butterfield observe that such a diagram can be read as
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expressing that there is a section of a presheaf on a category:

Definition 3.2 Let P be a presheaf on a small category C. A global section s of
P is a mapping C → Set such that s(a) ∈ P (a) for all a ∈ C and, whenever there
is a morphism ϕ : a → b (a, b ∈ C), the following diagram commutes:

Please notice that the the horizontal arrow at the bottom is reversed, because
we are dealing with presheafs, i.e. contravariant functors C → Set.

There are several choices for the category and the presheaf that can be used to
reformulate the Kochen–Specker theorem. We will generalize the proposal made in
(Hamilton et al., 2000): Let A(R) denote the category of unital Abelian subalgebras
of R (the unit of M ∈ A(R) is the unit of R). A morphism ιMN : M → N
exists whenever M ⊆ N . Hamilton, Isham and Butterfield only regard the case
R = L(H) and denote this category by V .

Definition 3.3 (compare Def 2.3 in Hamilton et al., 2000) The spectral presheaf
over A(R) is the contravariant functor � : A(R) → Set defined as follows:

(i) On objects: �(M) := �(M), the Gelfand spectrum of M.
(ii) On morphisms: If ιMN : M → N is the inclusion, then �(ιMN ):

�(N ) → �(M) is defined by �(ιMN )(ω) := ω|M.

If there was a global section s of �, the following diagram would commute:
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For M ∈ A(R), s(M) ∈ �(M) and s(M) = �(ιMN )(s(ιMN (M)), where
ιMN (M) is the algebra M seen as part of N and s(ιMN (M)) ∈ �(N ). The
commutativity of the diagram means that s(M) is given as the restriction of
s(ιMN (M)) to �(M) ⊆ �(N ).

Such a choice of one element s(M) of the Gelfand spectrum �(M) per
Abelian subalgebra M of R, compatible with the spectral presheaf mappings,
i.e. with restrictions �(N ) → �(M), would give a valuation function when
restricted to the self-adjoint elements: for all A ∈ Msa, s(M)(A) ∈ spA and
s(M)(f (A)) = f (s(M)(A)). The generalized Kochen–Specker theorem (The-
orem 4) hence shows that for von Neumann algebras R without summands of
types I1 and I2, there is no global section of �.

In Lemma 2, we saw that having a valuation function v : Rsa → R would
mean having a character v′|M (an element of the Gelfand spectrum) for each
Abelian subalgebra M ∈ A(R). It follows from the FUNC principle that these
characters are subject to the same conditions as above: if M ⊆ N , then restricting
v′|N to �(M) must give v′|M (which is not possible globally). This choice of
a category and a presheaf thus brings the presheaf formulation of the Kochen–
Specker theorem very close to our first proof.

There is a closely related formulation, using Stone spectra instead of Gelfand
spectra (see Def. 2.5.):

Definition 3.4 The state presheaf M1 on A(R) is defined as follows:

(i) On objects:M1(M) := M1(Q(M)), the set of positive Radon measures
of norm 1 on Q(M).

(ii) On morphisms: for M,N ∈ A(R) such that M ⊆ N let

pN
M : M1(N ) −→ M1(M)

µN �−→ pN
M.µN ,

where pN
M.µN is the image measure defined by(

pN
M.µN

)
(U ) := µN

((
pN
M

)−1
(U )

)
,

where U ⊆ Q(M) is a Borel set and pN
M : Q(N ) → Q(M), β �→ β ∩ M is the

restriction map between the Stone spectra.
M1 really is a presheaf on A(R), since obviously pM

M = idM1(M) and since
pP
M = pN

M ◦ pP
N as mappings Q(P) → Q(N ) → Q(M), the same holds for the

mappings M1(P) → M1(N ) → M1(M). Let R have no type I1 and I2 sum-
mands. From the generalized Kochen–Specker theorem (Theorem 2.4) it follows
that M1 has no global sections consisting entirely of point measures. The fact that
M1 has no such global sections is equivalent to the generalized Kochen–Specker
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theorem, since a valuation function would induce a quasi-state v′ (Lemma 2.3)
such that v′|M is a pure state for every M ∈ A(R) (and hence gives a point
measure on Q(M)).

This presheaf formulation emphasizes the fact that a valuation function would
give a pure state of every M ∈ A(R). The presheaf M1 does have global sections
(every state of R induces one, obviously), but it has no global sections consisting
entirely of point measures.

4. DISCUSSION

We have presented two functional analytic proofs for the fact that there are
no valuation functions v : Rsa → R for R a von Neumann algebra. The first proof
only uses Gleason’s classical theorem (Theorem 1) and holds for R a type In

factor, n ≥ 3. The second proof depends on the Gleason–Christensen–Yeadon
theorem (Theorem 3) and holds for von Neumann algebras R without summands
of types I1 and I2. To the best of our knowledge, for the first time von Neumann
algebras other than the type In factors L(H) have been treated. The generalized
Kochen–Specker theorem follows: there is no hidden states model of quantum
theory in the sense described in the introduction.

Both proofs are based on the fact that having a valuation function v would
mean having a state v′ of R, which follows from Gleason’s theorem, and this state
has properties that lead to a contradiction. In the first proof, for type In factors
(n ≥ 3), the state is of the form v′( ) = tr(ρ ), so there are projections E ∈ P(R)
such that v′(E) /∈ {0, 1}. The second proof, which is much more general, uses the
fact that v′ is a multiplicative state. Since there are no multiplicative states except
on type I1, i.e. Abelian, algebras, the Kochen–Specker theorem holds for all von
Neumann algebras without summands of types I1 and I2. Type I2 must be excluded
since Gleason’s theorem and the Gleason–Christensen–Yeadon theorem only hold
if R has no type I2 summand. It is known that every type I2 algebra admits a
two-valued measure and hence a valuation function, see Rem. 5.4 in (Hamhalter,
1993). If R has a type I1 summand, then there are valuation functions, but they
are concentrated at the trivial, Abelian part RPI1 of R, where PI1 ∈ P(R) is the
maximal Abelian central projection.

The fact that the defining conditions of a valuation function v inevitably
lead to a multiplicative state shows that these conditions are very strong. In-
deed, although the FUNC principle only seems to pose conditions on commuting
operators, this is not the case: v′ is a state, i.e. additive on non-commuting op-
erators also. In the physics literature, an Abelian subalgebra M of R is called a
context. Of course, the contexts give nothing like a partition of R into Abelian,
“classical” parts, but are interwoven in an intricate manner, since an observable
A ∈ Rsa typically is contained in many Abelian subalgebras. The FUNC principle
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poses conditions within each context, but since typically A = f (B) = g(C) for
non-commuting observables B,C, it also poses conditions on non-commuting
observables, across contexts. The presheaf formulations presented in section 3
clearly show that the Kochen–Specker theorem means that there is no state φ of
R such that for all contexts M ∈ A(R), the restriction φ|M is a pure state. This
can also be expressed by saying that there are no dispersionless states. The article
(Hamhalter, 2004) and the book (Hamhalter, 2003) (especially section 7.3) by
Hamhalter are a valuable source of results on the dispersion of states, two-valued
probability measures and hidden variables.

The Kochen–Specker theorem is little more than a corollary to Gleason’s
theorem, in a more general sense than worked out by Bell (1966). The fact that
v′ is a state comes from Gleason’s theorem (or its generalization): a valuation
function v defines a quasi-state v′ in a canonical manner, and restricting the
quasi-state v′ to the projection lattice P(R) gives a finitely additive probability
measure. Gleason’s theorem shows that v′ must be a state. The deep meaning
of Gleason’s theorem is that the simple, lattice-theoretic condition of finite ad-
ditivity on each distributive sublattice, which is a condition on finite joins ac-
tually (E + F = E ∨ F for orthogonal projections E,F ), suffices to guarantee
additivity of the functional v′ defined by linear extension of the probability mea-
sure (and taking the appropriate limit, see e.g. Chap III.7 of Maeda, 1990). Of
course, finite additivity on each distributive sublattice is a condition across dis-
tributive sublattices, since each projection E is contained in many distributive
sublattices.

But the defining conditions of a valuation function v are even stronger:
using the fact that v(E) ∈ spE = {0, 1} (E ∈ P(R)), we saw that the state v′ is
multiplicative, which is only possible if v is concentrated at the Abelian part RPI1

of R. Thus, a valuation function and a hidden states model can only exist for the
trivial, Abelian situation. This generalizes to arbitrary von Neumann algebras a
result found by Malley (2004). It also rebuts the critique of von Neumann’s proof
from 1932 (von Neumann, 1932). Von Neumann posed additivity conditions on
non-commuting observables, which was strongly criticized by Bell (1966) as
unphysical. Of course, the Gelfand representation of an Abelian von Neumann
algebra is a hidden states model, the Gelfand spectrum �(R) taking the rôle of
the “hidden” state space.

We have shown more than the fact that there are no non-trivial hidden states
models: Each element ω of a hidden state space � would give a valuation function,
as described in the introduction, but having a valuation function would not nec-
essarily mean having a hidden states model. A valuation function would simply
assign values to all observables in a manner consistent with the FUNC principle,
which would be an important piece of a realistic quantum theory. Since we have
ruled out this possibility, there are no such naı̈ve realistic models of quantum
theory.
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