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Abstract
Speech problems are a common issue that affects people everywhere and can affect the quality of their lives. The human 
speech production system involves various components. Dysfunction of any of these components can disrupt normal speech 
production, giving rise to speech diseases like laryngopharyngeal reflux, vocal cord paralysis, and vocal fold nodules. Early 
diagnosis of these disorders is very important for the patient's health. Many studies in automatic diagnosis of voice pathology 
have used sustained vowel sounds and read-speech as the primary source of speech data. However, it is crucial to recognize 
the unique value of spontaneous-speech. In addition to inheriting the characteristics of read speech, spontaneous-speech offers 
a more authentic glimpse into individuals' speech behavior. It captures not only linguistic features, but also subtle nuances 
of human emotions, such as fatigue and excitement, which may cause speech impairments, and shows their patterns in the 
speech signal better than in the read-speech data. Therefore, we aim to explore spontaneous speech in voice pathology detec-
tion to determine if it can help us better understand speech problems. In this research, we examine different deep learning 
(DL) models trained on two main features (MFCC and Mel spectrograms) for binary classification of healthy speech versus 
pathological speech, with a specific focus on the spontaneous speech. Extensive experimentation reveals the superiority of 
our proposed convolutional neural network (CNN) model trained on MFCC features. Notably, the CNN model achieves the 
highest accuracy, approximately 85% for test data and 92% for evaluation data. These results emphasize the potential of DL 
approaches in the accurate diagnosis of speech disorders through the analysis of the spontaneous-speech, offering promise 
for early detection and improved patient care.
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1 Introduction

Speech-related disorders affect a significant number of indi-
viduals in today's world and can impair their quality of life. 
These disorders are often caused by abnormalities in the 
human speech production system (SPS) that produces voice 
and speech (Kent, 2004). These conditions can cause chronic 
and distressing speech problems, highlighting the need for 
early diagnosis and intervention. However, many factors, 
such as time, cost, and limited access to medical equipment 
can hinder the assessment and treatment process. Moreo-
ver, some diagnostic methods such as laryngoscopy can be 

invasive and uncomfortable for patients. Therefore, there is 
an urgent demand for the development of non-invasive and 
widely accessible systems that can accurately detect voice 
pathology disorders (VPDs) (Shekofteh & Almasganj, 2013, 
Hegde et al., 2019; Islam et al., 2020, Abdulmajeed et al., 
2022, Zhao et al., 2024).

Rapid advances in artificial intelligence (AI) have paved 
the way for the development and improvement of sys-
tems that are capable of automatic and accurate diagnosis 
of various diseases (Ali et al., 2017, 2018; Chugh et al., 
2021; Deepa & Khilar, 2022; Latif et al., 2020). Conse-
quently, there is an urgent need for robust AI-based sys-
tems that can perform such diagnoses for VPDs. When an 
individual experiences abnormalities in their SPS, these 
changes appear throughout the speech chain, affecting the 
components involved and altering the characteristics of the 
speech signal. By extracting relevant speech features from 
the patient's speech signal, powerful AI-based models can 
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identify patterns that distinguish abnormal speech from 
healthy speech (Abdul & Al-Talabani, 2022; Abdulmajeed 
et al., 2023; Shekofteh & Almasganj, 2013). In this research, 
we use Mel-Frequency Cepstral Coefficients (MFCCs) and 
Mel-spectrograms as input features extracted from the spon-
taneous-speech signals and use deep learning (DL) models 
to classify people as healthy or with voice disorders.

While many studies in voice pathology detection tasks 
mainly use sustained vowel speech data, which facilitates 
easier comparison of results, it is worth noting that some 
researchers had also successfully used the read-speech data 
and achieved high accuracy in the VPDs tasks (Ali et al., 
2013). This choice is rooted in the belief that continuous 
speech serves as a reliable indicator of normal speech, 
closely mirroring everyday conversational habits. The read-
speech encompasses a wide spectrum of speech elements, 
including vowels, consonants, and their combinations, mak-
ing it a valuable resource for extracting features pertinent to 
both healthy and pathological speech patterns.

In contrast, we chose to focus on the spontaneous-speech 
data for our study. We hold the belief that the spontaneous-
speech represents the most natural form of everyday commu-
nication, encompassing combinations of vowels, consonants, 
and moments of silence, while also reflecting the emotional 
nuances experienced during the speech. Unlike the read-
speech, the spontaneous-speech can reveal certain pathologi-
cal features that some patients may be able to mask when 
reading a pre-prepared text. But they are not able to hide and 
control them during the spontaneous speech. By examining 
the spontaneous-speech data, researchers and clinicians may 
gain a more holistic perspective on an individual's communi-
cation abilities, allowing for the detection and characteriza-
tion of a broader range of voice disorders and related issues 
in a real-world context.

To the best of our knowledge, no previous studies have 
investigated the use of the spontaneous-speech data to detect 
voice abnormalities and distinguish between healthy individ-
uals and individuals with voice disorders. Most studies have 
focused primarily on vowel data. One of the reasons for this 
emphasis on vowel data is the ease of comparing results with 
previous studies, since vowel production exhibits minimal 
variation across languages, dialects, and accents across indi-
viduals and languages. However, some studies have incor-
porated continuous speech data, such as the read-speech, 
into their research and found that this type of data yields 
improved results. Continuous speech is more representative 
of real-life situations because people use it more during their 
daily conversations compared to producing isolated vowels 
(Ali et al., 2013). Furthermore, combining speech sounds, 
including vowels, consonants, and pauses, and extracting 
features from these types of data, although more challeng-
ing, can potentially provide more detailed insight into a 
patient's speech and voice states. Moreover, we believe that 

the spontaneous-speech can provide clearer indications of 
speech abnormalities and disorders.

In the spontaneous-speech, unlike the read-speech, indi-
viduals do not read or recite predetermined sentences, so 
they cannot change their speaking style or control their voice 
problems. Instead, they speak spontaneously, which is the 
most natural form of human speech. While there has been 
limited research on the spontaneous-speech data in this field, 
we include this type of data in our research. We aim to evalu-
ate the effect of the spontaneous-speech on the automatic 
voice pathology detection task. Therefore, our main goal 
in the present study is to use the spontaneous-speech data 
to see how it affects classification accuracy in VPDs tasks 
using DL models.

The DL models have a rich history that has seen signifi-
cant advances in various applications, including their pro-
found impact on health data analytics, particularly in the 
domain of automatic voice pathology detection. They have 
enabled the development of sophisticated algorithms that 
can analyze subtle features in vocal patterns to identify and 
classify voice disorders with remarkable accuracy. Notable 
DL models frequently employed in voice pathology detec-
tion and classification include deep forward neural networks, 
and convolutional neural networks (CNNs) which are excel-
lent at capturing spatial dependencies in audio data and its 
two-dimension-extracted features such as Mel-spectrograms 
and MFCCs of the audio frames, and recurrent neural net-
works (RNNs), which are renowned for their ability to model 
sequential patterns in the speech. Consequently, our main 
goal is to increase classification accuracy and improve our 
understanding of the effectiveness of spontaneous-speech 
data. We aim to identify the DL models and specific fea-
tures that can collaboratively better the detection of voice 
pathology.

Our proposed model for classifying healthy subjects and 
those with pathological speech is shown in Fig. 1. It uti-
lizes raw waveforms of healthy and impaired speech signals. 
After the preprocessing steps, which are explained in detail 
later in the paper, we extract MFCC and Mel-spectrograms 
from each frame. Subsequently, we apply three kinds of DL 
models to distinguish healthy samples from those with voice 
disorders.

In the field of automatic diagnosis of voice pathology, 
limited and free databases are available. The Massachusetts 
Eye and Ear Infirmary Database (MEEI) in English, the 
Saarbruecken Voice Database (SVD) in German, and the 
Arabic Voice Pathology database (AVPD) are among the 
most well-known databases, which have been frequently 
utilized in related studies (Hegde et al., 2019; Lee, 2021; 
Mesallam et al., 2017; Sindhu & Sainin, 2024). These data-
bases mainly consist of audio files containing vowel sounds 
and speech including reading sentences or texts. In our 
study, we employed the dataset of Advanced Voice Function 
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Assessment Databases (AVFAD) in Portugal, collected by 
the University of Aveiro, which includes voice recordings 
from people with various speech disorders as well as healthy 
voice individuals (Jesus et al., 2017). In addition to sus-
taining vowels and read-speech data, the AVFAD also has 
spontaneous-speech data for each sample.

The novelties of the proposed method in this paper are 
outlined below:

(a) Utilizing the spontaneous-speech data as the primary 
data type for automatic voice pathology detection.

(b) Employing the AVFAD dataset, which comprises 
diverse pathology types (approximately 26), for both 
training and testing of our deep learning models, and 
identifying the most effective model.

The remainder of this paper is organized as follows: we 
will first review the related works in Sect. 2. Then, we intro-
duce the data used, feature extraction methods, and the pro-
posed DL models employed in this study. Subsequently, we 
present evaluations and results, and finally, we discuss the 
conclusions of our study and outline future works.

2  Related works

Numerous studies have been conducted in the field of voice 
pathology and speech disorder diagnosis with the aim of 
distinguishing between normal and abnormal voices. These 
studies primarily focus on the binary classification and dis-
tinguishing between healthy individuals and individuals 
with voice disorders. In addition, some studies make mul-
tiple classifications and categorize individuals according to 
the specific type of voice disorder they have such as vocal 

nodules, vocal polyps, laryngitis, and vocal cord paralysis 
(Payten et al., 2022).

In automatic VPDs detection, researchers can utilize three 
types of speech data: sustained vowel data, read-speech data, 
and spontaneous-speech data. Sustained vowel data refers 
to recordings or samples of individuals producing and sus-
taining specific vowel sounds for analysis. These sustained 
vowels are often chosen from a set that includes commonly 
used vowel sounds in human speech, such as /a/, /e/, /i/, /o/, 
and /u/. The SVD, AVPD, MEEI, and AVFAD datasets con-
tain this type of data.

The purpose of collecting sustained vowel data in voice 
pathology detection is to assess and analyze various acous-
tic properties and characteristics of the sustained vowels. 
Changes in these acoustic features can provide valuable 
information about potential voice disorders or abnormali-
ties. For instance, in (Mohammed et al., 2020), the SVD 
dataset was utilized, focusing solely on the vowel /a/. They 
employed a pre-trained CNN, specifically the ResNet34 
model, with a spectrogram as its input. Their spectrogram 
consisted of at least 20 band filters based on octaves. They 
achieved about 96% accuracy in automatic VPDs detec-
tion by their system. In (Ksibi et al., 2023), they used the 
SVD dataset, focusing on the vowel /a/. The aim of this 
study was to create an automatic voice pathology detec-
tion system for early detection of voice abnormalities and 
specific pathologies. For binary classification of healthy 
versus unhealthy samples, manual audio features such 
as MFCC, ZCR, and RMSE were extracted. A two-level 
classifier model was employed, where the first level classi-
fies male samples from female samples and the next level 
distinguishes healthy samples from unhealthy ones. Their 
model consisted of CNN blocks followed by an RNN block, 
with two dense layers after the RNN. The proposed model 
achieved an accuracy of 88.84%. In (Verma et al., 2023), the 
vowel /a/ sound from the VOICED dataset was used. This 
research proposed a novel methodology called VDDMFS 
(Voice Disorder Detection using MFCC, Fundamental fre-
quency, and Spectral centroid). It combined an artificial 
neural network (ANN) trained on acoustic attributes and a 
long short-term memory (LSTM) model trained on MFCC 
attributes. The probabilities generated by both the ANN 
and LSTM models were then stacked and used as input to 
XGBoost, which detected whether a voice was disordered 
or not. This approach achieved an accuracy of 95.67%. In 
(Muhammad & Alhussein, 2021), researchers utilized the 
SVD dataset, specifically focusing on data associated with 
sustained vowel sounds, particularly the vowel sound /a/. 
In addition to the signal related to the vowel sound /a/, they 
incorporated the Electroglottogram (EGG) signal extracted 
from the subjects. The input data for their model comprised 
spectrograms and Mel-spectrograms extracted from both the 
vowel sound signal and the corresponding EGG signal. Their 

Fig. 1  The proposed classification flowchart of healthy people and 
patients in this study
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model was composed of two pre-trained CNNs: one takes 
as input the spectrograms extracted from the vowel sound 
signal, while the other CNN's input was the spectrogram 
extracted from the EGG signal. The outputs of the CNNs 
were then combined and fed into a bidirectional long short-
term memory (Bi-LSTM) network for classification. They 
achieved their highest accuracy using the Xception model 
as their pre-trained CNN model. They were able to attain a 
classification accuracy of 95.65% for distinguishing between 
healthy and pathological subjects.

In voice pathology detection, read-speech data refers to 
recordings or samples of individuals reading a specified text 
or passage aloud. This type of speech data is collected to 
analyze a person's voice during natural and conversational 
speech patterns. The SVD, AVPD, MEEI, and AVFAD data-
sets have this type of data. The read-speech is more natu-
ral and reflects the way individuals typically communicate 
(Hegde et al., 2019). For example, in (Ali et al., 2013) the 
AVPD dataset was used, specifically the read-speech data. 
In this research, the MFCCs were employed as features and 
inputted into a Gaussian Mixture Model (GMM), resulting 
in a notable accuracy of 91.66%. In (Ali et al., 2016), the 
study employed the read-speech data from the MEEI data-
base to classify healthy subjects from pathological subjects. 
Two types of features were utilized in this research: auditory 
spectrum features and All-Pole model-based cepstral coef-
ficients (APCC). This study achieved a notable accuracy of 
99.56% for binary classification, employing 36 APCC coef-
ficients (12 static and its first and second derivatives) along 
with an 80-GMM for classification. In Narendra and Alku 
(2020), researchers compared traditional pipeline and end-
to-end approaches using glottal source information to inves-
tigate automatic methods for detecting pathological voice 
from healthy speech. They used both sustained vowel and 
read speech data types. In the traditional pipeline approach, 
two sets of glottal features and openSMILE features were 
used to train support vector machine (SVM) classifiers. The 
end-to-end approach utilized raw speech signals and glottal 
flow waveforms to train two DL architectures: a combination 
of CNN and multilayer perceptron (MLP), and a combina-
tion of CNN and LSTM network. The end-to-end approach 
showed a 2–3% improvement in accuracy when using glottal 
flow as input compared to the raw speech waveform.

The spontaneous-speech data in voice pathology detec-
tion refers to recordings or samples of individuals engaging 
in unscripted, natural conversations or monologues. Unlike 
controlled tasks such as sustained vowel production or read-
ing a text aloud, the spontaneous-speech involves the free-
flowing expression of thoughts and ideas in real-life com-
munication scenarios. Analyzing of the spontaneous-speech 
data can be valuable in voice pathology detection for several 
reasons. This type of data is important for understanding 
how voice disorders may impact communication in diverse 

and unstructured contexts. In addition, the spontaneous-
speech as a continuous speech contains prosodic features, 
including intonation, rhythm, and stress patterns. Changes in 
prosody can be indicative of certain voice disorders or emo-
tional states that affect speech. Also, the spontaneous-speech 
data contains different kinds of vowels, consonants, silence, 
and their combinations, and it is another positive point of 
this type of data for detecting speech disorders. There are 
some works that have used AI models and spontaneous 
speech data to distinguish healthy speech from the impaired 
speech caused by a specific disease such as Alzheimer's or 
Parkinson’s. For example, in a study by (Chen et al., 2021), 
they used spontaneous speech data and employed a logis-
tic regression model with acoustic and linguistic features 
to classify cognitively healthy individuals and patients with 
Alzheimer’s disease (AD). However, we have not found any 
study that addresses the gap of using spontaneous speech 
data to classify healthy and unhealthy samples containing 
various impairments related to different diseases. One of our 
initial focuses in this research is to develop a model with the 
ability to learn and notice patterns in speech signals that may 
indicate impairments caused by different types of diseases. 
Therefore, in this study, we investigated the impact of incor-
porating spontaneous-speech data to distinguish pathological 
samples from healthy samples.

The number of reported studies using the AVFAD data-
base for automatic voice pathology detection and classifica-
tion is very small compared to other well-known databases, 
and according to our studies, the spontaneous speech has 
not been evaluated in any of them. In (Oliveira et al., 2020), 
researchers employed the AVFAD and SVD databases to 
investigate the effect of the combination of vowel sounds 
(/a/, /i/, and /u/) on extracted wavelet coefficients. They uti-
lized a random forest (RF) machine learning model for clas-
sification and found that combining vowel sounds enhanced 
the distinguishability of wavelet coefficients extracted from 
the audio signals, resulting in a more accurate classification 
of healthy and abnormal voices. Therefore, combining vowel 
sounds was beneficial in increasing the discriminative prop-
erties of the extracted wavelet coefficients, which ultimately 
led to improved accuracy in the classification of healthy and 
unhealthy samples. In (Ribas et al., 2023a), the SVD and 
AVFAD datasets were used. Their data was prepared from 
the type of sustained vowel /a/ and the reading-speech from 
the reading of some sentences. In this study, they used an 
SVM learning model to classify pathologic samples from 
healthy ones. Their extracted features included several 
common features in this field such as MFCCs. Their best 
accuracy using the read-speech part of the SVD dataset was 
around 95%, and their best accuracy was around 91.5% on 
the AVFAD dataset, which was achieved with the sustained 
vowel. In (Ribas et al., 2023b, b), the SVD, and AVFAD data-
sets were utilized to train the model. The primary objective 
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of this research was to encompass various disorders within 
their patient samples. However, due to the limited number 
of data instances for certain types of diseases in the SVD, 
the researchers augmented their dataset by incorporating 
the AVFAD dataset. The results of the study demonstrated a 
significant improvement in classification accuracy with the 
addition of AVFAD. To extract features from audio signals, 
the researchers utilized self-supervised pre-trained models, 
namely wav2vec2, HuBERT, and WavLM. Subsequently, 
they applied once a transformer and once a DNN for clas-
sification. Notably, the highest accuracy was achieved when 
HuBERT was used for feature extraction, paired with a 
transformer for classification. They achieved a remarkable 
accuracy of 94.27% for the classification of pathological and 
healthy samples.

3  Materials and methods

In this section, the data set used in this research is explained. 
It also provides detailed information on data preparation 
steps, preprocessing, and feature extraction methods, and 
proposed architectures for DL models used in classification.

3.1  Study subjects

In our study, we employed the AVFAD dataset, which was 
collected by the University of Aveiro in Portugal and con-
sists of recorded voices from individuals with various speech 
disorders as well as individuals with healthy voices. The 
AVFAD dataset encompasses three types of data for each 
person. The first type is related to sustained vowel sounds, 
especially the vowel sounds /a/, /u/, and /i/. Each audio file 
for each sustained vowel sound contains three repetitions of 
that vowel sound.

The second type focuses on reading a specific text or 
sentence, comprising seven parts that involve reading six 
Portuguese CAPE-V sentences (Association, 2009; Jesus 
et al., 2009). Each sentence from the read-speech part of 
the AVFAD dataset was read three times by each subject; 
hence, each sentence audio file contained three repetitions 
of that sentence. The seventh part was related to reading a 
famous phonetically balanced text which was the Portuguese 
version of the passage “The North Wind and the Son” (Jesus 
et al., 2009). In our investigation, we utilized data from the 

spontaneous-speech data. The sampling frequency of all 
audio files in this dataset remained at 48 kHz.

The dataset consists of a total of 709 individuals, with 
346 clinically diagnosed with vocal pathology and 363 with-
out any vocal alterations. We used data from 706 samples 
because we encountered problems with the files of three 
samples and decided to remove them from the data set 
entirely.1 For our study, we partitioned the data into train-
ing, test, and evaluation sets with ratios of 65%, 20%, and 
15%, respectively (Appendix 1). The aim of this partitioning 
is to achieve the optimal balance among these sets regarding 
the gender distribution and the proportion of impaired and 
healthy people. The distribution of data based on gender and 
health status is presented in Table 1. In total, 460 individu-
als' audio files were utilized for training, 105 for validation, 
and 141 for testing purposes.

The minimum time interval for the spontaneous-speech 
data files is approximately 20 s, while their maximum dura-
tion extends to about 338 s, roughly equivalent to 5 min. On 
average, these files span about 54 s, or about one minute.

3.2  Feature extraction

In this study, we extracted the first 13 coefficients of MFCCs 
as input features from the voice signals of the samples. 
MFCCs are widely recognized as essential features in the 
field of voice pathology detection. To obtain the MFCCs 
from the audio signals, we employed a series of signal pro-
cessing steps. These steps involved applying a pre-empha-
sized filter, windowing the signal, performing a fast Fourier 
transformation, applying a Mel filter bank, and subsequently 
applying nonlinear step and Discrete Cosine transformations 
(DCT). We utilized the Librosa library in Python to com-
pute the MFCC features.2 Each voice frame had a size of 
42 ms, with a hop length of 512 samples. Furthermore, the 
sampling frequency of each audio file was set to 48,000 Hz. 
Mathematically, the MFCC computation using a filterbank 
with M filters can be represented as follows:

(1)

MFCC[i] =
∑M−1

j=0
log

(
N−1∑

k=0

|X[k]|2Hm[k]

)
cos(

�i(j + 0.5)

N
)

Table 1  Data division 
methodology of the AVFAD 
dataset

Data Train Test Validation

Gender Male Female Male Female Male Female

Normal 73 162 22 50 18 37
Pathologic 64 161 20 49 13 37

1 Three files’ name that were excluded: MBC, MEX,MLF.
2 Available at: https:// libro sa. org/.

https://librosa.org/
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where MFCC[i] is the i-th coefficient, X[k] is the k-th bin 
of Fourier transform of the signal, N is the number of FFT 
points, Hm[k] is the Mel filterbank, and cos(.) denotes the 
cosine function.

We have also used Mel-Spectrograms from the wave 
audio files as another type of input feature for our pro-
posed DL models. We examined which input feature 
worked better for our goal. Initially, we divided the audio 
signals into short overlapping frames, typically using a 
frame size of 42 ms with an approximately 10-ms over-
lap. For each frame, we calculated the Short-Time Fourier 
Transform (STFT) to obtain the magnitude spectrum. From 
there, we applied a Mel filter bank with 128 frequency 
bins, capturing the relevant spectral information across a 
wide frequency range. These Mel-spectrograms serve as a 
compact informative representation of the speech signals, 
preserving its essential spectral characteristics. We utilized 
the Librosa library in Python to extract Mel-spectrograms.

Given that the duration of the spontaneous-speech audio 
files varies across different individuals in the dataset, we 
adopted a strategy to address this variability. We calcu-
lated the value of S, which represents the sum of the value 
of average number of frames and the value of standard 
deviation of the number of frames for all files.

Therefore, in this study, the first 83 s of the sponta-
neous-speech of each individual are used for our mod-
els. Consequently, the number of frames for which we 
extracted coefficients might be less than the total number 
of frames in some files. Conversely, for certain files, the 
value of S exceeded the original number of frames. In such 
cases, we padded each frame with zeros to compensate for 
the missing values.

All input data are normalized, a crucial preprocessing 
step that ensures uniformity in the data's scale. Normaliza-
tion significantly enhances the training process by allowing 
the model to learn more effectively from the features, con-
tributing to improved overall performance. Therefore, in this 
study, to increase the learning of the models, the data are 
normalized using the z-score normalization method.

In z-score normalization, values are adjusted relative 
to the mean and standard deviation of attribute A . For a 
given value Vi of attribute A, the normalized value Ui is 
calculated as follows:

where Vi is the original value of attribute A, Avg (A) repre-
sents the average (mean) of all values of attribute A, Std (A) 
denotes the standard deviation of all values of attribute A.

S =Averagenumberof frames

+Standarddeviationof thenumberof frames

(2)Ui =
Vi − Avg(A)

Std(A)

As a result, our data were formed as two-dimensional 
(2D) matrices (S × 13) for MFCCs and (S × 128) for Mel-
Spectrograms, where 13 is the number of MFCCs and 128 
is the number of Mel frequency bands. Figure 2 shows 
the Mel-Spectrogram of a healthy and a pathologic sam-
ple's spontaneous-speech signal from the AVFAD dataset, 
and Fig. 3, shows the MFCCs heatmap of a healthy and a 
pathologic sample's spontaneous-speech signal From the 
AVFAD dataset.

3.3  Deep learning models

In this study, we employed a Convolutional Neural Net-
work (CNN), a Bidirectional Long Short Term Memory 
(Bi-LSTM) model, and a Deep Neural Network (DNN) 
for learning data and classification (Bengio et al., 2017; 
Zhang et al., 2023). The structure and parameters of these 
models have been selected after many tests on our data-
set to get the best results. In all three models, to prevent 
overfitting, we applied dropout layers (Srivastava et al., 
2014). Also, we employed binary cross-entropy as the loss 
function. This loss function is commonly used for binary 
classification tasks, facilitating the differentiation between 
healthy and unhealthy samples with greater accuracy. We 
also employed the popular Adam optimizer for the train-
ing process.

3.3.1  Convolutional neural network (CNN)

CNNs have shown remarkable performance in various 
domains, including image and speech processing (Gu 
et al., 2018; Li et al., 2021; Mohammed et al., 2020). 
They excel at capturing the spatial hierarchies of features 
in the data, which makes them well-suited for analyzing 
our 2D-MFCC features and Mel-Spectrograms. The con-
volution layers in the CNNs are able to automatically learn 
the relevant patterns in the spectrogram and MFCCs, help-
ing to identify distinctive features associated with voice 
pathology. We utilized three convolutional layers along 
with two 2D-maxpooling layers for the feature extraction. 
A 2D-global average pooling layer was employed to aggre-
gate the extracted features. Based on our evaluations, using 
the Global Average Pooling layer instead of the Flatten 
layer in the convolutional neural network using the data of 
this study has improved the performance of final networks 
(Al-Sabaawi et al., 2020). Subsequently, two dense layers 
were implemented, with the last one incorporating a sig-
moid activation function for the final classification. The 
proposed model is implemented using the Keras library 
and TensorFlow framework in Python. Our proposed CNN 
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Fig. 2  Mel-spectrogram and waveform comparison of the spontaneous-speech data for a pathological individual (up) and a healthy individual 
(bottom) for their first 60 s

Fig. 3  MFCCs heatmap and waveform comparison of the spontaneous-speech data for a pathological individual (right) and a healthy individual 
(left) for their first 60 s
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model is shown in Fig. 4, and its details are explained in 
Table 2.

3.3.2  Bidirectional long short‑term memory (Bi‑LSTM)

The bidirectional LSTM (Bi-LSTM) architecture is selected 
for its ability to effectively capture temporal dependencies in 
sequential data (Graves & Schmidhuber, 2005; Graves et al., 
2005; Syed et al., 2021), a quality that proves highly ben-
eficial when working with the MFCCs. This is particularly 
relevant as the MFCCs, like the Mel-spectrograms, repre-
sent a type of sequential data, encapsulating the coefficients 
of each frame within a speech signal. Our proposed LSTM 
model consists of a single layer of bidirectional LSTM with 
128 neurons, accompanied by a dropout layer. Addition-
ally, the architecture incorporates two dense layers: the first 
with 32 neurons and the second with 1 neuron, serving the 
specific purpose of the binary classification. The proposed 
model was implemented using the Keras library and Ten-
sorFlow framework in Python. Figure 5 shows the proposed 
Bi-LSTM model, and its details are explained in Table 3.

3.3.3  Deep neural network (DNN)

A DNN model with multiple dense layers can be advan-
tageous for voice pathology detection (Ankışhan & İnam, 
2021; Chen & Chen, 2022; Chuang et  al., 2018; Zaka-
riah et al., 2022). While it may not have the same level of 
sequence modeling capabilities as RNNs like Bi-LSTM, 

the DNNs can still learn complex relationships within high-
dimensional feature vectors derived from the MFCCs or 
Mel-Spectrograms. By utilizing multiple dense layers, the 
DNN can capture intricate patterns and non-linear relation-
ships in the data. Our DNN model starts with a flattened 
layer to input the model, followed by five dense layers. We 
have also added a dropout layer to improve the model's 
robustness. The proposed model was implemented using 
the Keras library and TensorFlow framework in Python. 
The proposed DNN is shown in Fig. 6, and its details are 
explained in Table 4.

4  Evaluation and results

To ascertain the robustness and reliability of our experi-
mental findings, we developed a rigorous validation proto-
col. Each model was subjected to three independent execu-
tions on our dataset. For each run, the models processed 
the data and performance metrics were recorded. After 
completion of the runs, we aggregated the results to cal-
culate the mean performance metrics, expressed as aver-
age values ± standard deviation. This statistical approach 

Fig. 4  The proposed CNN Model for VPD detection

Table 2  The proposed CNN 
model’s parameters and details

Input Layer Input shape: (n_frames, 13 or 128, 1)

Convolutional Layer 1 Kernel size: 3 × 3, Filters: 16, Activation: ReLU, Padding: same
MaxPooling Layer 1 Pool size: 2 × 2
Convolutional Layer 2 Kernel size: 3 × 3, Filters: 32, Activation: ReLU, Padding: same
MaxPooling Layer 2 Pool size: 2 × 2
Convolutional Layer 3 Kernel size: 3 × 3, Filters: 64, Activation: ReLU, Padding: same
2D Global Average Pooling
Dropout Layer 1 Dropout rate: 0.5
Dense Layer 1 Units: 128, Activation: ReLU
Dropout Layer 2 Dropout rate: 0.3
Dense Layer 2 Units: 1, Activation: Sigmoid
Optimizer: Adam, Learning rate: 0.001
Loss Function: Binary Cross-Entropy

Fig. 5  The proposed Bi-LSTM Model for VPD detection
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provides a measure of central tendency and variability and 
provides insights into the consistency of the model's per-
formance across multiple experiments.

The adoption of this methodology is pivotal in mitigat-
ing the influence of outliers and anomalies, thereby yield-
ing more stable and representative metrics. It also allows 
for a detailed evaluation of the models' performance, par-
ticularly in their ability to process and analyze two distinct 
types of acoustic features: the MFCCs and Mel-Spectro-
grams. By conducting a comparative analysis of the models' 

performance on these two feature types, we can draw com-
prehensive conclusions about their respective strengths and 
limitations. Table 5 shows the accuracy metric obtained 
from our models on two types of input data for the DL-
based models.

The outcomes of our experiments demonstrate that 
the proposed CNN is superior to the other two network 
architectures we investigated. Across both the evalua-
tion and test datasets, the CNN consistently outperforms 
these models showing its strength and effectiveness in our 

Table 3  The proposed 
Bi-LSTM Model’s parameters 
and details

Input Layer Input shape: (n_frames, 13 or 128)

Bidirectional LSTM Layer Units: 128, Return sequences: False
Dropout layer Dropout rate: 0.2
Dense layer Units: 32, Activation: ReLU
Dense layer Units: 1, Activation: Sigmoid
Optimizer: Adam, Learning rate: 0.001
Loss function: Binary Cross-Entropy

Fig. 6  The proposed DNN 
model for VPD detection

Table 4  The proposed DNN 
Model’s parameters and details

Input layer Input shape: (n_frames, 13 or 128)

Flatten layer –
Dense layer Units: 100, Activation: ReLU
Dense Layer Units: 200, Activation: ReLU
Dense layer Units: 100, Activation: ReLU
Dropout layer Dropout rate: 0.2
Dense layer Units: 100, Activation: ReLU
Dense layer Units: 1, Activation: Sigmoid
Optimizer: Adam, Learning rate: 0.001
Loss function: binary cross-entropy

Table 5  Classification 
results of three proposed 
DL-based models using the 
Mel-spectrogram and MFCC 
features for the spontaneous-
speech data

The best evaluation values are in bold

Feature Model Accuracy of validation data
(mean ± std)

Accuracy of test data
(mean ± std)

MFCCs CNN 0.9206 ± 0.0119 0.8510 ± 0.0100
Mel-Spectrogram CNN 0.8578 ± 0.0005 0.8301 ± 0.0266
MFCCs Bi-LSTM 0.8793 ± 0.0045 0.7872 ± 0.0116
Mel-Spectrogram Bi-LSTM 0.7364 ± 0.0273 0.6926 ± 0.0261
MFCCs DNN 0.8444 ± 0.0119 0.7399 ± 0.0203
Mel-Spectrogram DNN 0.7142 ± 0.0155 0.6500 ± 0.0066
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study. Moreover, our analysis of feature representations has 
provided insights. When comparing the effect of the Mel-
Spectrogram and MFCCs as the models’ features, it is clear 
that the model trained on the MFCCs excels in classifying 
healthy and unhealthy samples.

Among the three runs of our CNN on the MFCCs, the 
best accuracy achieved for the test dataset is approximately 
87%. Table 6 shows the performance metrics of the best-
performing runs of CNN model with MFCCs among three 
runs on the test dataset for healthy and pathologic samples. 
The metrics we obtained highlight our model effectiveness, 
in categorizing individuals as either 'Healthy Speech' or 
'Pathological Speech'.

The precision value of 0.91 for the 'Healthy Speech' class 
demonstrates the model’s accuracy in identifying healthy 
subjects, indicating that 91% of the instances predicted as 
'Healthy Speech' were indeed healthy. Similarly, the model 
exhibited a precision of 0.83 for the 'Pathologic' class, sig-
nifying its ability to correctly identify 83% of the instances 
predicted as 'Pathological Speech'.

Regarding recall, with a value of 0.82 for the 'Healthy 
Speech' class, the model successfully identified 82% of all 
actual healthy instances out of the total healthy instances 
in the test dataset. For the 'Pathological Speech' class, the 
recall value of 0.91 indicates that the model accurately 
detected 91% of all actual pathological instances out of the 
total pathological instances in the test dataset, indicating its 
ability to comprehensively identify positive cases.

The F1-score, which balances precision and recall, pro-
vides a consolidated measure of the model's overall perfor-
mance. Based on the results of Table 3, the F1-score of 0.86 
for the 'Healthy Speech' class and 0.87 for the 'Pathological 
Speech' class signifies a robust balance between precision 

and recall, indicating a high level of accuracy and reliability 
in the models' predictions for the spontaneous-speech data.

In this experiment, the best-performing run of the CNN 
model on the MFCCs achieved an accuracy of approximately 
87%. However, six genuinely pathological cases in the test 
dataset were misclassified as healthy by our model. Table 7 
presents the disease names of these misclassified pathologi-
cal samples, along with the percentage ratio of the frequency 
of misclassification to the occurrence of these diseases in the 
test dataset and the occurrence of the corresponding diseases 
in the training dataset.

As shown in Table 7, the highest misclassification rate 
occurred for “Vocal Varices and Ectasia”. This is justified 
by the extremely low occurrence of this disease in the train-
ing dataset, accounting for only 4.4%. Consequently, the 
model's error rate for identifying this specific condition is 
reasonably higher than for other diseases. On the other hand, 
the lowest misclassification rate was for “Laryngopharyn-
geal Reflux”. Approximately 30% of the samples in the test 
dataset were affected by this disease, and the model was 
trained on a sufficient number of instances representing this 
condition. Therefore, the low misclassification rate for this 
disease is justifiable, given sufficient training data available 
for the model to learn from.

In summary, these misclassification patterns highlight the 
influence of disease prevalence in both the training and test 
datasets on our model's performance. Rare diseases in the 
training dataset can lead to higher misclassification rates, 
while diseases with adequate representation in the training 
data result in more accurate predictions. This analysis pro-
vides valuable insights into the challenges faced in voice 
pathology detection and emphasizes the importance of bal-
anced and representative training datasets for robust model 
performance.

5  Discussion and conclusions

To the best of our knowledge, our study represents a pioneer-
ing effort in utilizing the spontaneous-speech data for the 
task of automatic voice pathology detection and classify-
ing healthy individuals from those potentially experiencing 

Table 6  Performance metrics of the Best-Performing run of CNN 
model with MFCCs for healthy and pathological speech classes on 
the test dataset for the spontaneous-speech data

Label Precision Recall F1-Score

Healthy speech 0.91 0.82 0.86
Pathological speech 0.83 0.91 0.87

Table 7  Analysis of pathologic samples misclassified as healthy by the best-performing CNN

Disease Number of misclas-
sification

Percentage ratio of misclassification repetition to 
disease occurrences in the test dataset

Percentage of disease occur-
rences in the training dataset

Vocal Cord Nodules 1 16.7% 8.0%
Vocal Hemorrhage 1 33.3% 2.7%
Laryngopharyngeal Reflux 2 10.5% 30.2%
Vocal Cord Cyst 1 14.3% 5.3%
Vocal Varices and Ectasia 1 50.0% 4.4%
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voice disorders. The absence of prior research in this spe-
cific domain makes direct comparisons challenging. How-
ever, our achieved accuracies provide compelling evidence 
for the efficacy of utilizing the spontaneous-speech data in 
this context.

Our results strongly indicated that incorporating the spon-
taneous-speech as a speech type for analysis provided sig-
nificant benefits. The use of this most natural type of speech 
increased the accuracy and robustness of voice pathology 
diagnosis. The novel approach presented in this study not 
only contributes to the advancement of the field but also 
emphasizes the potential of the spontaneous-speech data in 
improving the accuracy and reliability of voice pathology 
detection methodologies.

Looking forward, there are promising avenues for future 
research. Exploring more robust machine learning models 
and incorporating diverse types of features derived from 
the speech signals can further enhance the performance of 
voice pathology classification. By exploring the application 
of advanced models and using a wider range of features, 
we anticipate significant improvements in the accuracy and 
sophistication of voice pathology detection systems.

Appendix 1

Files extracted and their data division from the AVFAD 
dataset.

Train set files’ name (460 files):

Normal samples’ file name (235 
files)

Pathological samples’ file names 
(225 files)

'ABR' 'AAF' 'ACN' 'ACA' 'AAP' 
'AFP' 'AFS' 'AFB' 'AGQ' 'AFF' 
'ACV' 'AJO'

'AAM' 'AAC' 'ACM' 'AAY' 'AAX' 
'ADM' 'AJS' 'AJB' 'AJX' 'AJC' 
'ALX' 'ALF'

'AIA' 'AJP' 'ALK' 'AMF' 'ALY' 
'AMN' 'AMW' 'AMX' 'APN' 
'APP' 'APH' 'ANA'

'ALR' 'APM' 'AMZ' 'ARX' 'AQC' 
'ARP' 'APX' 'APZ' 'ASX' 'ASR' 
'ATA' 'AVC'

'ASM' 'ARV' 'ARK' 'ARS' 'ASP' 
'ASF' 'AVG' 'BMA' 'CAX' 
'AXM' 'CCW' 'CCS'

'CMF' 'DFC' 'DOX' 'DMG' 'DGM' 
'ECF' 'EJA' 'FFS' 'FAX' 'FAS' 
'FMA' 'FMX'

'CCO' 'CGM' 'CFW' 'CMD' 
'CLR' 'CJG' 'COF' 'CMS' 
'CMT' 'CSF' 'CRR' 'CSM'

'FMP' 'FMC' 'FOL' 'FRL' 'FRM' 
'GFN' 'HFV' 'ICX' 'JAB' 'JBG' 
'JCS' 'JAS'

'CSY' 'CSR' 'CSX' 'DCS' 'DCC' 
'DRX' 'DMR' 'DGF' 'DFR' 
'EAS' 'ELM' 'ECC'

'JCA' 'JAO' 'JAM' 'JAP' 'JDM' 
'JLF' 'JGC' 'JJF' 'JMB' 'JMJ' 
'JML' 'JMF'

'ERS' 'FCG' 'FCS' 'ESR' 'ESB' 
'FFX' 'GHA' 'GCR' 'GJM' 
'GRS' 'GJG' 'HCB'

'JOL' 'JMM' 'JMX' 'JMP' 'AAS' 
'ACS' 'ABS' 'AFL' 'ACC' 'ACO' 
'AAO' 'AFR'

'HCC' 'HCS' 'HGP' 'ICA' 'HMR' 
'ICV' 'IDB' 'ICM' 'IFG' 'IMN' 
'ISM' 'IJM'

'AGC' 'AIT' 'ALB' 'AGA' 'AFQ' 
'AMA' 'AMB' 'AML' 'AMT' 
'AMP' 'AMS' 'AMO'

Normal samples’ file name (235 
files)

Pathological samples’ file names 
(225 files)

'IMB' 'IGM' 'JCF' 'IVP' 'ISP' 
'JFF' 'JCX' 'JLS' 'JMR' 'JSF' 
'JTM' 'LCM'

'AMM' 'AMC' 'ALC' 'AMY' 
'AMV' 'APD' 'APA' 'APR' 'ASL' 
'BJA' 'ASS' 'ASN'

'LCB' 'LCG' 'LFB' 'LCS' 'LJC' 
'LML' 'LMM' 'LMS' 'MAB' 
'LSP' 'MAJ' 'MAN'

'CBT' 'BPB' 'CCR' 'CAS' 'CAC' 
'CAG' 'BPS' 'BVM' 'CFS' 'CAN' 
'CMG' 'DCV'

'MAC' 'MAM' 'MAD' 'MAW' 
'MAQ' 'MAP' 'MCG' 'MBZ' 
'MBY' 'MAZ' 'MAX' 'MBX'

'CSS' 'CMA' 'CMX' 'CMC' 'CMV' 
'EBF' 'DRS' 'DSM' 'DJS' 'ECO' 
'EDS' 'EML'

'MCP' 'MDS' 'MEV' 'MEM' 
'MCX' 'MFD' 'MFB' 'MEY' 
'MFZ' 'MFV' 'MGA' 'MGS'

'EMM' 'EMC' 'EJM' 'EMF' 'EMA' 
'EMS' 'EPS' 'ERG' 'ERV' 'FCC' 
'FAR' 'EMX'

'MGL' 'MGR' 'MHF' 'MGX' 
'MGB' 'MHG' 'MHM' 'MID' 
'MHX' 'MIB' 'MJJ' 'MJV'

'FMM' 'HMB' 'HMT' 'GCP' 'FTX' 
'HMF' 'HMC' 'FST' 'FTM' 'ISC' 
'HPM' 'IMM'

'MJG' 'MIN' 'MJZ' 'MJY' 'MLP' 
'MLB' 'MLR' 'MLX' 'MMK' 
'MLZ' 'MLW' 'MMM'

'IBS' 'ISG' 'HRM' 'IMS' 'IRP' 'ISS' 
'JMW' 'JFQ' 'JMC' 'JMS' 'JRS' 
'LCP'

'MMY' 'MMW' 'MMR' 'MNM' 
'MNA' 'MNC' 'AAW' 'ACL' 
'ACP' 'AAV' 'ACX' 'AFY'

'LCC' 'LCR' 'LMF' 'LFC' 'LMR' 
'MAK' 'LRS' 'LOS' 'LMX' 
'MAF' 'MAL' 'LMY'

'AFX' 'AFC' 'AFD' 'AFA' 'ADS' 
'AGR' 'AJR' 'AJT' 'ALS' 'AJJ' 
'APC' 'AMU'

'LMV' 'MAA' 'MBD' 'MAY' 
'MAO' 'MBN' 'MBF' 'MAR' 
'MBS' 'MCJ' 'MCD' 'MCB'

'AMK' 'AMR' 'ANC' 'ATM' 
'ATX' 'AXC' 'ATG' 'AWC' 
'BCS' 'CAM' 'CAZ' 'CMM'

'MCF' 'MCA' 'MCU' 'MCT' 'MCS' 
'MCR' 'MCV' 'MER' 'MCY' 
'MDG' 'MES' 'MEG'

'CMP' 'CAR' 'CPN' 'COX' 'CSL' 
'CRX' 'DAS' 'DEM' 'DFL' 
'DFO' 'DFB' 'DPP'

'MEF' 'MEP' 'MCW' 'MEZ' 'MFF' 
'MFC' 'MFG' 'MFA' 'MFS' 
'MFR' 'MFP' 'MFO'

'FEM' 'FJM' 'ENS' 'FVC' 'FJQ' 
'FJF' 'FSF' 'FOF' 'GTS' 'HMG' 
'HML' 'JAA'

'MFJ' 'MFM' 'MFW' 'MGM' 
'MFX' 'MGP' 'MIG' 'MHC' 
'MGF' 'MGC' 'MHR' 'MIF'

'JJS' 'JJA' 'JAX' 'JFR' 'JMG' 
'JGX' 'JDX' 'JJM' 'JMD' 'JMK' 
'JPY' 'JSB'

'MHH' 'MIM' 'MIP' 'MIR' 'MJC' 
'MJD' 'MJB' 'MIS' 'MJF'

'JSP' 'JMZ' 'JNS' 'JSG' 'JSV' 
'JPX' 'JPC'

Test set files’ name (141 files):
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Normal samples’ file name (72 
files)

Pathological samples’ file name 
(69 files)

'MOJ' 'MOO' 'MNY' 'MPF' 
'MRF' 'MSB' 'MRL' 'MRZ' 
'MRY' 'MSM' 'MSP' 'MSU'

'MSG' 'MSL' 'MTC' 'MTB' 
'MTO' 'MVA' 'MTR' 'MUR' 
'MTG' 'MVN' 'MVM' 'MVF'

'MXL' 'MWS' 'MXB' 'MWC' 
'MXF' 'MWL' 'MXR' 'MYF' 
'MYD' 'MYC' 'MXM' 'MZB'

'MYS' 'MZC' 'MYL' 'NMS' 
'MZS' 'OMA' 'PAC' 'PBS' 
'PCO' 'PCG' 'PFN' 'PDB'

'PGP' 'PIN' 'JSX' 'LBX' 'LAM' 
'JTB' 'LMD' 'LBC' 'LNR' 
'MFT' 'MFL' 'MJX'

'MJT' 'MLA' 'MMG' 'MPS' 
'MPV' 'MPX' 'MSX' 'NMP' 
'PFS' 'PMS' 'PCX' 'PDG'

'JPF' 'JPM' 'JPS' 'JRT' 'JRP' 'JSC' 
'JSS' 'LAS' 'JSW' 'LFS' 'LLR' 
'MAS'

'MCL' 'MCZ' 'MJS' 'MMF' 'MMX' 
'NHS' 'NVA' 'MVT' 'MJM' 
'MJR' 'MKF' 'MJO'

'MJL' 'MLY' 'MLK' 'MLS' 'MLM' 
'MMC' 'MMA' 'MMB' 'MNX' 
'MMS' 'MMN' 'MNS'

'MNF' 'MMV' 'MOC' 'MOF' 
'MPA' 'MOS' 'MOP' 'MOT' 
'MPR' 'MPB' 'MPP' 'MRC'

'MRA' 'MRM' 'MPT' 'MRB' 
'MRT' 'MRV' 'MSA' 'MRP' 
'MRS' 'MRX' 'MSC' 'MSS'

'MSV' 'MSF' 'MSW' 'MSZ' 'MTF' 
'MTA' 'MSY' 'MTS' 'MTM'

Validation set files’ name (105 files):

Normal samples’ file name (55 
files)

Pathological samples’ file name 
(50 files)

'SPS' 'PLS' 'PMC' 'RAS' 'POM' 
'PMF' 'REP' 'RBS' 'RFM' 
'RMG' 'ROM' 'RNG'

'RPS' 'SAF' 'RVS' 'SBM' 'SIC' 
'SIL' 'SCM' 'SCN' 'SIS' 'SRB' 
'TJM' 'TLL'

'TJS' 'TIP' 'TRT' 'TSS' 'TSP' 
'TMB' 'VDM' 'VCD' 'VAF' 
'VFM' 'VIR' 'VLF'

'VMM' 'RFF' 'PSM' 'RAC' 
'RRM' 'RBF' 'SEF' 'SMT' 
'SMG' 'RTG' 'RSS' 'TDF'

'TDS' 'SSS' 'TRM' 'TMT' 'TAS' 
'VPR' 'VMC'

'ZSQ' 'PAF' 'OMN' 'PJG' 'PJR' 
'PLB' 'RNA' 'RPA' 'RPM' 'SMF' 
'SMR' 'ZPM'

'VQC' 'VMR' 'MVC' 'MVG' 
'MXS' 'MXC' 'OFG' 'OAV' 'PCP' 
'PCC' 'OMV' 'PAT'

'PJP' 'RAO' 'PMX' 'PSC' 'RAA' 
'RFS' 'RDS' 'RCS' 'RCM' 'RFX' 
'RLB' 'RMR'

'SAP' 'SAS' 'SCA' 'SAD' 'SMS' 
'SPB' 'SMW' 'SMM' 'SRP' 'SRR' 
'SRG' 'TIR'

'TFS' 'VLC'

Data availability The AVFAD dataset was distributed through the ACSA 
https:// acsa. web. ua. pt/ AVFAD. htm platform.
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