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Abstract
The paper developing a resilient speech classification system for individuals with voice disorders poses a formidable chal-
lenge due to the significant variability and distortions inherent in vocal signals. This article outlines the steps to create an 
effective classification system for pathological speech. The first step involved applying speech enhancement processing 
using the minimum mean square error (MMSE) enhancer to improve voice input data quality and intelligibility. Secondly, a 
multi-stream approach combined various acoustic vectors based on human auditory perception, including mel-spectrogram 
images, mel frequency cepstral coefficients (MFCC), power normalized cepstral coefficients (PNCC), and prosodic param-
eters like F0, Jitter, and Shimmer. Finally, a deep machine learning incorporating both a convolutional neural network (CNN) 
and a bidirectional long short-term memory (BiLSTM) network was employed to process these enhanced characteristics in 
a multi-stream framework, resulting in a powerful classification system architecture. In our experiments, we utilized two 
subsets from the Massachusetts Eye and Ear Infirmary (MEEI) database, each involving distinct causes of voice disorders. 
The first subset consisted of voice recordings from patients with vocal nodules, paralysis, and polyps, while the second sub-
set included recordings from patients with mild ventricular compression, A–P squeezing, and gastric reflux. The results we 
obtained reveal that the CNN-BiLSTM system, coupled with a robust speech analysis interface based on the multi-stream 
approach and enhanced by the minimum mean square error (MMSE) processing, achieved the highest accuracy rates.

Keywords Convolutional neural network · Bidirectional long short-term memory · Mel-frequency cepstral coefficient · 
Power normalized cepstral coefficients · Multi-stream approach · Minimum mean square error

1 Introduction

Speaking is a complex process that requires precise coordi-
nation and control of various elements such as articulation, 
breathing, voicing, and prosody (Zhaoyan, 2016). However, 
any damage to the previous elements or any part of them 

results in articulation, fluency, or voice disorders (American 
Speech-Language-Hearing Association, 1993). Speech and 
voice disorders, although distinct, can sometimes overlap. 
Speech disorders affect the production of sounds and the 
sequence of words, while voice disorders concern abnor-
malities in vocal production. Several categories exist such as 
neurological, muscular, structural, functional, and psycho-
genic disorders. Certain disorders, such as dysarthria, can 
affect both speech and voice. Dysarthria is a motor speech 
disorder that can affect the clarity, fluency, intelligibility, 
pitch, volume, quality, or resonance of an individual’s voice. 
It can be classified into different types based on its character-
istics and underlying causes. Functional disorders are caused 
by an inability to use the vocal cord muscles (Chung et al., 
2018). Organic disorders may result from structural issues, 
such as abnormal growths on the larynx, or neurological 
problems that affect the nerves controlling the larynx (Card-
ing et al., 2016). On the other hand, psychogenic disorders 
are caused by emotional stress or trauma and may result 
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from anxiety, depression, or conversion disorder (Zabret 
et al., 2018).

Although significant progress has been made in automatic 
speech classification system technologies over the past few 
decades, labeling disordered speech remains a challenging 
task (Duffy, 2019). Disordered speech poses a wide range of 
difficulties for current data-intensive deep neural networks 
(DNN) based speech classification system technologies, 
which mostly target normal speech. These challenges arise 
due to the variability in speech characteristics, the limited 
number of available recordings, and the use of traditional 
acoustic features that may not effectively capture the unique 
characteristics of pathological speech. These differences 
make the acoustic classifier components ineffective in cor-
rectly mapping pathological speech signals to labels. Devel-
oping pathological speech classification systems requires 
advanced machine-learning techniques, expertise in speech 
pathology, collaboration with healthcare professionals, and 
access to diverse and well-annotated datasets. Despite the 
challenges, progress is being made, and these systems hold 
immense potential to help individuals with voice disorders 
by improving their communication and quality of life (Jayar-
aman & Das, 2023).

1.1  Related work

Pathological speech classification refers to an automatic 
speech processing system to categorize and label speech 
from individuals with voice disorders. This area of research 
and its applications in speech technology holds significant 
clinical importance, with extensive prior research focused on 
voice disorder detection addressing the processing of patho-
logical speech in various aspects.

To cope with the high variability of voice disorders, a 
study in Souissi and Cherif (2015) proposed an effective 
algorithm for voice pathologies detection, using short-term 
cepstral parameters, Linear Discriminant Analysis (LDA) for 
dimensionality reduction, and the Support Vector Machine 
(SVM) classifier. This study demonstrated that the detection 
of voice disorders can be efficient using only the original 
Mel Frequency Cepstral Coefficients (MFCC) ignoring their 
first and second derivative. Another aspect of improving the 
voice pathology classification systems consists of combin-
ing various machine learning techniques, (Amara et al., 
2016) investigated the combined classifier GMM-SVM to 
distinguish normal voice from pathological speech arising 
from vocal tract pathologies, utilizing MFCC coefficients 
and modified Kullback–Leibler and Bhattacharyya distance 
approaches to enhance results. (Hossain & Muhammad, 
2016) performed a fusion of the decisions of an extreme 
learning machine, Gaussian Mixture Model (GMM) and 
SVM, which had as input the fusion of MPEG-7 audio 
parameters and interlaced derivative pattern parameters. In 

Kadi et al. (2016), a model that simulates various aspects 
of the ear was introduced to enhance speech identification. 
This model’s characteristics were integrated with MFCC to 
represent data from the Nemours and Torgo databases. The 
data was subsequently analyzed using GMM, SVM, and the 
combined GMM-SVM machine learning architectures.

Investigating the Acoustic Voice Analysis methods (AVA) 
based on adaptive features is the major goal of the work pre-
sented in Emary et al. (2014), the Mel-Frequency Cepstral 
Coefficients (MFCCs with different variations in frequencies 
and amplitudes: Jitter and Shimmer), and the flux model 
mixture (GMM) was used in the AVA. A multivariate analy-
sis of parameters that measure the various problems in the 
process of phonation is applied to analyze the importance of 
finding and sorting features that provide more information. 
In this work, the accuracy of the voice disorder classifica-
tion system increased with the number of parameters (best 
accuracy with coefficients including 39 MFCCs, Jitter, and 
Shimmer), which means that the difference between normal 
and abnormal voices becomes noticeable using multiple 
parameters, also, the effect of the number of Gaussian which 
makes up the model is important, where a sufficient number 
of mixtures allows to represent data (features) optimally.

Several deep learning models have been explored for 
pathological speech domains. Deep leaning exploits data 
driven approaches to learn abstract pathological cues 
and improves the state-of-the-art performance in differ-
ent classification tasks remarkably. These models require 
more complex architectural components [e.g., convolu-
tional neural networks (Narendra et al., 2021; Shakeel 
et al., 2021, 2023; Vaiciukynas et al., 2018), long short-
term memory networks (Mayle et al., 2019), autoencod-
ers (Janbakhshi & Kodrasi, 2022a; Vásquez-Correa et al., 
2017), etc.] and more data to be trained. As a result, they 
often achieve significantly higher performance. Main-
stream deep learning-based dysarthric speech detection 
approaches typically rely on processing the magnitude 
spectrum of the short-time Fourier transform of input sig-
nals, while ignoring the phase spectrum that also contains 
inherent structures that are not immediately apparent due 
to phase discontinuity, (Janbakhshi & Kodrasi., 2022b) 
investigated the applicability of the unprocessed phase and 
the alternative phase representations such as the modi-
fied group delay (MGD) and instantaneous frequency (IF) 
spectra, it was shown that using phase representations as 
complementary features to the magnitude spectrum is ben-
eficial for deep learning-based dysarthric speech detec-
tion and yielding a high performance. In Joshy and Rajan 
(2021), authors explored dysarthria severity classification 
using various deep learning architectural such as DNN, 
CNN, and LSTM, with MFCCs and their derivatives as 
features. Performances of these models are compared with 
a baseline support vector machine (SVM) classifier using 
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the UA-Speech corpus and the TORGO database. The 
analysis of the results showed that a proper choice of a 
deep learning architecture can ensure better performance 
than the conventionally used SVM classifier.

To enhance pathological speech classification accu-
racy, researchers experimented with various methods. One 
approach involved using deep belief networks (DBN) to 
extract acoustic parameters, which was shown to be supe-
rior to Mel Frequency Cepstral Coefficients in a referenced 
study (Farhadipour et al., 2018). In another study (Souli 
et al., 2021), using scatter wavelet features in conjunction 
with a deep convolutional neural network (DCNN) improved 
performance for pathological classification.

In Chaiani et al. (2022), authors developed a voice disor-
der classification system employing a two-stage framework. 
The first stage incorporated a speech enhancement technique 
based on the minimum mean square error (MMSE). In the 
second stage, a CNN-LSTM network with the SinRU acti-
vation function was implemented. This system significantly 
improved the automatic classification of investigated voice 
disorders and the assessment of dysarthria severity levels, 
surpassing the performance of SVM, GMM, and GMM-
SVM models presented in Kadi et  al. (2016). In recent 
work (Mohammed et al., 2023), a novel method named the 
deep Multi-Modal and Multi-Layer Hybrid Fusion Network 
(MMHFNet) was introduced for extracting deep features. 
The authors conducted experiments using a deep learning 
algorithm based on the LSTM model, employing the Saar-
bruecken Voice Database SVD with both complete and bal-
anced samples.

The classification of voice disorders based on a machine 
learning algorithm requires a large number of samples data 
for the training step. However, due to the sensitivity and 
particularity of medical data, it is difficult to obtain suffi-
cient samples for model learning. To address this challenge, 
authors in Peng et al. (2023) proposed a pretrained OpenL3-
SVM transfer learning framework for the automatic recogni-
tion of multi-class voice disorders. The framework combines 
a pre-trained convolutional neural network, OpenL3, and a 
support vector machine (SVM) classifier. The first step was 
to extract the Mel spectrum of the given voice signal and 
then input it into the OpenL3 network to obtain high-level 
feature embedding. Considering the effects of redundant 
and negative high-dimensional features, model overfitting 
easily occurred. Therefore, linear local tangent space align-
ment (LLTSA) was used for feature dimension reduction. 
The obtained dimensionality reduction features were used 
to train the SVM for voice disorder classification. Fivefold 
cross-validation was used to verify the classification per-
formance of the OpenL3-SVM. The experimental results 
showed that OpenL3-SVM can effectively classify voice 
disorders automatically, and its performance exceeds that 
of the existing methods.

In Suresh and Thomas (2023), it was discovered that 
diverse feature selection strategies, machine learning clas-
sification algorithms and auditory feature combinations 
provided variations in the accuracy values of dysarthric 
speech severity level classification. Combining the Ran-
dom Forest classifier with the Relief feature selection 
method and PCM-Other Spectral properties led to the 
highest classification accuracy. This work discussed a 
comparison study on the severity of dysarthric level clas-
sification utilizing various deep learning methods. For the 
UA-Speech and TORGO datasets, MFCCs were employed 
as features and analysis of the SVM-based classifier has 
been done. The outcomes showed that CNN and DNN both 
performed better than LSTM-based systems and are con-
siderably superior to the often used SVM-based classifier.

The study in Ankışhan and İnam (2021) aims to intro-
duce the new feature vector in the hybrid axis and multi-
model in order to diagnose these disorders with more 
conventional methods. Two types of fusion models (fea-
ture and decision level fusion) are used to increase the 
classification accuracy of the multi-model. It is seen from 
the experimental results that the proposed feature vector 
helps to classify pathological data successfully, depend-
ing on their pathological conditions. Together with the 
proposed multi-model, both LSTM and CNN are found 
to be similarly successful in the classification of data in 
multi-model architecture. Also in Ksibi et al. (2023), a 
multi-model architecture which is a coupled CNN–RNN 
machine learning algorithms for the classification of 
healthy and pathological audio samples, and a two-level 
cascaded architecture that enables the accurate identifi-
cation of pathological voices from the input dataset by 
incorporating gender information and manually extracted 
features are proposed.

A study introduced a novel approach for categorizing 
four common voice disorders (functional dysphonia, neo-
plasm, phonotrauma, and vocal palsy) (Wang et al., 2022). 
Instead of a single vowel, this approach utilizes continu-
ous Mandarin speech. The researchers first transformed 
acoustic data into Mel-frequency cepstral coefficients and 
then employed a bi-directional long short-term memory 
network (BiLSTM) to capture the sequential traits of the 
signal. The results of the experiments demonstrate that this 
proposed framework yields notable improvements in accu-
racy and unweighted average recall, compared to systems 
that only utilize a single vowel.

Our study builds upon these previous works by propos-
ing a system classifying general voice disorders and based 
on a three-stage framework integrating speech enhance-
ment techniques, a multi-stream approach, and a combined 
CNN-LSTM architecture to enhance pathological voice 
classification.
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1.2  Objective and contribution

In our recent research, we introduced an efficient approach 
to develop a precise pathological voice classification sys-
tem, we used speech enhancement techniques to improve 
the quality and intelligibility of pathological voice and 
then, we optimized the acoustic analysis by exploiting 
robust algorithms to identify a set of combined acoustic 
parameters which are used as input to a classifier combin-
ing two machine learning architectures, namely CNN-BiL-
STM, to characterize voice disorders. Our ultimate goal is 
to create a robust and efficient system for voice pathology 
classification that can be of assistance to individuals with 
voice disorders. Here's how we addressed this objective:

 (i) Preprocessing for Enhanced Feature Extraction: We 
implemented a preprocessing step to improve the 
quality of the audio signal, focusing on preparing it 
for effective feature extraction. This step is crucial for 
improving the model's ability to learn from the data.

 (ii) Multi-Stream Feature Integration: We employed 
a multi-stream approach that incorporates various 
relevant acoustic features, such as Mel-frequency 
cepstral coefficients (MFCCs), Power normalized 
cepstral coefficients (PNCCs) and prosodic features. 
This allows the model to capture a wider range of 
information within the pathological speech signal, 
leading to more comprehensive classification of dis-
orders.

 (iii) CNN-BiLSTM Classification Model: We designed 
a classification system using a combination of a 
CNN and a BiLSTM network. The CNN effectively 
captures local patterns within the acoustic features, 
while the BiLSTM leverages the sequential nature 
of speech data. This combination enables the model 
to learn complex relationships between features and 
disorders.

We evaluated the performance of our system on the MEEI 
pathological database. This database is a well-established 
resource for voice disorders research and allows us to 
assess the effectiveness of our system in classifying this 
specific voice disorder.

The paper’s structure is as follows: In Sect. 2, we outline 
the three-stage voice disorders classification process, encom-
passing a voice enhancement algorithm, a multi-stream 
approach employing various parameters, and a presenta-
tion of the combined deep learning architectures. Section 3 
delves into the database utilized, the algorithms employed 
for improving the pathological speech classification, the 
different activation functions proposed, and the evaluation 
outcomes concerning two sets of pathological voice severity 
levels. The experimental findings are deliberated in Sect. 4. 
Finally, we present our conclusions in Sect. 5.

2  Proposed approach

Our proposed system for classifying pathological speech is 
built upon a robust architecture consisting of three primary 
components, as depicted in Fig. 1. The initial component 
primarily focuses on speech quality, to improve the sig-
nal’s relevance through the application of an enhancement 
technique. Our research postulates that the speech signal 
in pathological conditions, shares similarities with signals 
produced in noisy environments or with added noise. Con-
sequently, we employ the enhancement methods to improve 
the efficiency and intelligibility of the pathological speech 
signal, there by mitigating the impact of voice disorders. 
The second component of our system amalgamates the set 
of enhanced streams into a multidimensional acoustic vec-
tor, contributing to an increased accuracy rate for the trained 
system. Finally, the set of enhanced and amalgamated fea-
tures is passed through the deep neural network architecture, 
which combines both the Convolutional Neural Network and 
the BiLSTM models. The combined model CNN-BiLSTM 
yields efficient classification parameters. 

2.1  Enhancement of pathological voice

Speech enhancement is a specialized approach for miti-
gating noise in audio recordings. While The term ‘noise 
reduction’ can have a broader scope, speech enhancement 
specifically targets the detection and removal of unwanted 
noise in audio to enhance clarity, intelligibility, or over-
all listening experience, Fig. 2 shows the Basic steps of 
a speech enhancement system (Kulkarni et  al., 2016). 

Fig. 1  Synoptic system for clas-
sifying pathological speech
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Numerous algorithms are employed for speech enhance-
ment, with signal processing historically being the most 
prevalent denoising method.

The Minimum Mean Square Error MMSE algorithm 
is a widely adopted technique in speech enhancement 
(Gupta et al., 2011), primarily focused on noise reduc-
tion in speech signals while preserving speech quality. The 
primary goal is to minimize the Mean Square Error (MSE) 
through the utilization of an estimator. The MMSE estima-
tor of the short-term power spectrum is given by Ephraim 
and Malah (1985), and the calculation is detailed below:

The MMSE algorithm functions in the time–frequency 
domain and is typically applied to short-time segments of 
the signal, utilizing techniques such as Short-Time Fourier 
Transform (STFT). It is given by:

here n corresponds to the time domain, while k pertains to 
the spectral domain. S(n,k) represents the noisy signal, which 
is the sum of the clean signal X(n,k) and the additive noise 
signal D(n,k).

To estimate the clean voice signal X̂ , a gain function 
is utilized to attenuate the noisy signal and it is expressed 
as follows:

The signals are enhanced by the MMSE estimator, 
which minimizes the mean-square error between the mag-
nitude spectra of the clean and estimated signals, leading 
to noise attenuation without distorting the signal too much 
(Loizou, 2007). Its spectral gain function denoted as G(�,�) 
and �(n,k) are calculated as:

(1)S(n,k) = X(n,k) + D(n,k)

(2)X̂(n,k) = S(n,k) × G

Among the methods used to estimate the noise power 
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 are:

• External noise estimation

This method involves obtaining an estimate of the noise sig-
nal, D(n,k) , from an external source or a non-speech segment 
of the recording. This noise estimate can then be used to cal-
culate the power spectral density PSD of the noise, which is 
the average power of the noise signal at each frequency bin.

The E
[
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||

2
]

 can be approximated by the average value 

of the noise PSD across the desired frequency range.

• Voice activity detection (VAD) and spectral subtraction

This method leverages the fact that speech and noise often 
occupy different regions in the time–frequency domain. A 
Voice Activity Detection (VAD) algorithm can be used to 
identify speech segments in the signal. VAD plays a crucial 
role in noise estimation for speech processing applications, 
ensuring accurate estimation of noise characteristics by iden-
tifying and utilizing noise-only segments of the audio signal.

During non-speech segments (assumed to be dominated 
by noise), the estimated noise PSD can be calculated.

During speech segments, the estimated noise PSD can be 
subtracted from the noisy signal's spectrum to obtain an esti-
mate of the clean speech spectrum. This estimated clean 

speech spectrum can then be used to calculate E
[
|
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X(n,k)

|
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2
]

 , 

the power spectral density of the clean signal.
The a priori Signal-to-Noise Ratio SNR �(n,k) represents 

the specific spectral bin k at a given time n and is determined 
by calculating the ratio of the power of the clean signal to 
the power of the noise signal, defined by:

The a posteriori SNR �(n,k) represents the measured SNR 
of the given specific spectral bin ‘k’ at a given time ‘n’ and 
is determined by calculating the ratio of the squared magni-
tude of the noisy signal to the power of and the noise signal, 
defined by:
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The a priori SNR �(n,k) is calculated using the decision-
directed approach, expressed as:

where a represents the weighting factor.
For the first frame l =0, the expression is as follows:

The MMSE algorithm employed in our system utilizes 
a priori SNR �(n.k) , to estimate the noise level and attenu-
ate it in the signal. This a priori SNR is crucial for calcu-
lating the gain function that minimizes the mean squared 
error between the estimated clean signal and the original 
clean signal. Common methods for estimating a priori SNR 
include external noise estimation and Voice Activity Detec-
tion (VAD) with spectral subtraction. In our system, we 
implemented the Voice Activity Detection (VAD) approach 
because this algorithm accurately detects and differentiates 
speech from non-speech segments, contributes to enhanced 
speech quality, reduces bandwidth usage, improves energy 
efficiency and increases automation in speech-related tasks. 
These advantages make VAD a valuable tool in audio pro-
cessing, speech recognition and classification.

2.2  Multi‑stream approach

In our research, we introduced an effective acoustic param-
eterization method known as the multi-stream approach. 
This method involves the consolidation of various relevant 
acoustic parameters into a combined parametric vector. This 
vector is subsequently employed as input for our pathologi-
cal voice classifier. The primary advantage of this approach 
lies in its straightforward integration within the classifica-
tion system's architecture. Within our application, we have 
integrated multiple parameters to enhance the relevance of 
our voice disorders classification system. These parameters 
encompass MFCC (Davis & Mermelstein, 1980), PNCC 
(Kim & Stern, 2016), Mel-Spectrogram (Kishore, 2011), 
parameters reflecting variation in frequency and amplitude 
(Jitter and Shimmer), and the prosodic parameter F0.

The acoustic analysis plays a pivotal and important role 
as it yields parameters that capture essential aspects of 
speech signals. The MFCC coefficients are highly pro-
ficient in representing the distinctive characteristics of 
speech sounds and phonemes since they are derived from 
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X2
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E
[
D(n,k)(l − 1)2

] + (1 − a)max
[
�(n,k)(l) − 1,0
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(8)�(n,k)(0) = a + (1 − a)max
[
�(n,k)(0) − 1,0

]

models of human auditory perception. Their performances 
are further enhanced when combined with the robust coef-
ficients PNCC.

The PNCC features are obtained through a gammatone 
filter bank emphasizing lower frequencies akin to the mel 
frequency filter bank utilized in MFCC coefficients. The 
processing features include additional steps compared to 
MFCC. These steps include the replacement of the loga-
rithmic nonlinearity in MFCC processing by a power-law 
nonlinearity to remove small signals and variability, the 
use of medium-time processing with a duration of 50–120 
ms to analyze the parameters that characterize environ-
mental degradation, which makes it possible to estimate 
the degradation of the environment more accurately, the 
use of a form of asymmetric nonlinear filtering to estimate 
the acoustic noise level for each time slot and frequency 
bin, this approach removes slowly changing variables, the 
development of computationally-efficient realizations of 
the algorithms above that support ‘online’ real-time pro-
cessing, and finally, a signal processing block that per-
forms temporal masking is implemented. The diagram 
in Fig. 3 illustrates the sequential stages in calculating 
MFCC, PNCC, and Mel Spectrogram coefficients.

Furthermore, Mel-Spectrogram coefficients, known 
as a time–frequency representation, seamlessly align 
with machine learning architectures and excel at captur-
ing diverse spectral characteristics within speech signals. 
MFCC coefficients, which stem from Mel Spectrogram 
coefficients, involve an additional step that entails the 
computation of the Discrete Cosine Transform (DCT) 
(Sumin et al., 2021).

Jitter and Shimmer coefficients serve as two essential 
metrics for vocal signal analysis. The Jitter coefficient rep-
resents the variation of the fundamental frequency (F0) 
throughout the temporal evolution of the utterance. It indi-
cates the variability or disturbance of the time period (T0) 
across several oscillation cycles (Westzner et al., 2005).

The values for Jitter can be measured in different param-
eters, such as absolute, relative, relative average perturbation 
(rap), and the period perturbation quotient (ppq5) (Brock-
mann et al., 2011; Teixeira et al., 2013). The Jitter absolute 
is the cycle-to-cycle variation of fundamental frequency, it is 
the average absolute difference between consecutive periods, 
expressed as:

where Ti is the extracted glottal period lengths and N: is the 
number of extracted glottal periods.

While the relative Jitter or local Jitter is the average abso-
lute difference between consecutive periods, divided by the 
average period, it is expressed as a percentage:

(9)Jitter(Absolu) =
1

N − 1

N−1∑

i=1

||Ti − Ti+1
||
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The Shimmer (dB) is expressed as the variability of the 
peak-to-peak amplitude in decibels (Brockmann-Bauser, 
2012), it is the average absolute base-10 logarithm of the dif-
ference between the amplitude of consecutive periods, multi-
plied by 20:

(10)Jitter(relative) =

1

N−1

∑N−1

i=1
��Ti − Ti+1

��
1

N

∑N

i=1
Ti

× 100

(11)Shimmer(dB) =
1

N − 1

N−1∑

i=1

||
|||
20 × log

(
Ai+1

Ai

)||
|||

where Ai is the extracted peak-to-peak amplitude data and N 
is the number of extracted fundamental frequency periods.

The Shimmer relative is defined as the average absolute 
difference between the amplitudes of consecutive periods, 
divided by the average amplitude, expressed as a percentage:

(12)Shimmer(Relative) =

1

N−1

∑N−1

i=1
��Ai − Ai+1

��
1

N

∑N

i=1
Ai

× 100

Fig. 3  Comparative analysis of 
three feature extraction tech-
niques: PNCC, MFCC, and Mel 
Spectrogram
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2.3  CNN‑BiLSTM stacking architecture

Our application introduces a system that leverages a combined 
deep learning architecture CNN-BiLSTM to improve the accu-
racy of pathological voice classification. The overall system 
architecture is depicted in Fig. 4. The system takes as input a 
matrix of combined streams encompassing different param-
eters like MFCC, PNCC, and parameters reflecting variation in 
frequency and amplitude (Jitter and Shimmer). These param-
eters are processed through a convolutional neural network 
(Albawi et al., 2017), which comprises a convolutional and 
max-pooling layer. Each convolution layer employs filters to 
extract relevant features from the input sequence, producing a 
feature map as defined in Eq. (13). The advantage of convolu-
tional operations is that nodes in each layer connect to specific 
node regions in the adjacent layer.

where ℎ corresponds to the feature maps, c represents the 
convolution kernel, x is the input image and n denotes the 
width and height of the kernel.

Max pooling layers offer the advantage of dimensionality 
reduction by selecting the maximum value within each win-
dow, thus retaining essential information (Gholamalinezhad 
& Khosravi, 2020). Following the convolutional operation, 
the CNN-based system applies a Rectified Linear Unit ReLU 
transformation to the resulting feature map. This introduces 
non-linearity to the model, facilitating rapid learning. Despite 
its simplicity, the ReLU activation function proves highly 
effective in various models, making it the preferred choice for 
hidden layers. The ReLU activation function is represented 
by Eq. (14):

(13)hi,j =

n∑

k=1

n∑

l=1

ck,lxi+k−1,j+1

(14)ReLU(x) =

{
0 if x < 0

x if x ≥ 0

The data from the max-pooling layer of the CNN net-
work is then processed by a Bi-directional Long Short- Term 
Memory system (Staudemeyer & Morris, 2019). The Bidirec-
tional Long short-term memory BiLSTM is a type of recur-
rent model that processes the sequence input in both forward 
and backward track. The BiLSTM layer is capable of cap-
turing short and long-term contextual dependencies of the 
sequence input. According to the Eqs. (15–20), The forward 
track unfolds the network from the first time instance to the 
last instance, whereas the backward track does the reverse by 
changing all t − 1 to t + 1 . The two tracks work in parallel, 
each keeps separate weights and biases. Their hidden states 
h are simply stacked together at each time t and are transmit-
ted as input to the two tracks of the higher layer. BiLSTM 
is designed to mitigate the vanishing and exploding gradient 
problems often encountered when training on long sequences 
in Recurrent Neural Networks (RNNs). This feature makes 
BiLSTM an ideal choice for speech modeling. Furthermore, 
stacking BiLSTM layers on top of one other results in two- 
dimensional depth for learned patterns, considering both the 
time dimension and the feature hierarchy dimension. Within 
each layer, BiLSTM progresses over time t as follows (Alhus-
sein & Muhammad, 2019; Xiaoyu, 2018):

(15)it = �
(
Wxixt +Whiht−1 + bi

)

(16)gt = ���h
(
Wxcxt +Whcht−1 + bc

)

(17)ct = ft o ct1 + it o gt

(18)ot = �
(
Wxoxt +Whoht−1 + bo

)

(19)ht = ot o tanh
(
ct
)

(20)zt = softmax
(
Whzht + bz

)
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where ft represents the forget gate. The parameters it and ot 
denote the input and output of the gate respectively, while 
gt represents the modulation gate. The forget gate addresses 
the vanishing gradient problem by ensuring that the prob-
lematic product component has elements close to one (Xing 
Luo, 2019).

Lastly, an output layer using Softmax function with mul-
tiple classes is essential and it is expressed by Eq. (21) as 
follows (Xing Luo, 2019):

Subsequently, the cross-entropy loss is computed by 
measuring the discrepancy between the actual labels and 
the predicted ones.

Figure 5 below summarizes the different methods pro-
posed in our research to build the pathological speech clas-
sification system.

3  Experimental configuration and outcomes

In this section, we will offer an insight into the datasets 
employed to assess the proficiency of our pathological 
speech classification system. We will delve into the different 
speech enhancement techniques employed and elucidate how 
amalgamating acoustic parameters augmented our system’s 
performance. Our system is grounded in the CNN-BiLSTM 
network, and we have adopted distinct activation functions 
to enhance accuracy. Furthermore, we will disclose the find-
ings of our pathological classification experiments, based on 
two sets of pathological data.

3.1  Data source

The datasets employed in our study originated from the 
MEEI Voice Disorders database, which was developed by 
the MEEI Voice and Speech lab. This database comprises 

(21)softmax(x)i =
exi

∑k

j=1
exj

more than 1400 voice samples and has become a valuable 
resource in the field of voice pathology detection and classi-
fication, despite some inherent limitations (Disordered Voice 
Database, 1994). Notably, it is commercially accessible 
through Kay Elemetrics. A notable limitation of this data-
base is that normal and pathological voices were recorded in 
dissimilar environments and at varying sample frequencies. 
The recordings within this database encompass sustained 
phonation of the vowel /ah/ including 53 samples from nor-
mal voices and 657 from pathological voices, as well as the 
first sentence of the rainbow passage, comprising 53 normal 
voice samples and 662 pathological voice samples. Of these 
samples, 77 pathological vowels and all normal vowels were 
recorded at a 50 kHz sample rate, while the remaining 580 
pathological vowels were sampled at 25 kHz. Additionally, 
36 of the normal rainbow sentences were recorded at 25 
kHz and 17 at 10 kHz. Among the pathological sentences, 
648 were sampled at 25 kHz, 13 at 10 kHz, and one at 50 
kHz. The database encompasses various tools for voice con-
dition assessment, including stroboscopy, acoustic aerody-
namic measures, and a physical examination of the neck and 
mouth, with the information provided by Kay Elemetrics. 
For our study, we specifically selected only sustained vowel 
/a/ samples.

3.2  Overview of selected pathologies

Within the medical domain, voice disorder databases serve 
as a crucial resource for the development of pathologi-
cal speech classification systems designed to distinguish 
between various pathologies afflicting individuals with 
vocal disorders. In this classification system, pathologi-
cal voice is considered as a noisy signal. Table 1 provides 
the initial set of data, highlighting the voice pathologies 
that can adversely affect the vocal cords, leading to voice-
related challenges. Vocal cord nodules, for instance, rep-
resent non-cancerous growths that manifest as a result of 
vocal strain, misuse, or abuse. These growths are com-
monly observed in individuals who extensively use their 

Fig. 5  Proposed approach steps
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voices, such as singers, actors, teachers, and public speak-
ers. Vocal cord nodules can bring about symptoms such as 
hoarseness, breathiness, and rough or raspy voice quality 
(Karkos & McCormick, 2009). Vocal cord paralysis, on 
the other hand, occurs when nerve damage impairs the 
proper movement of one or both vocal cords to move 
properly. This condition can stem from various factors, 
including viral infections, neurological disorders, surgical 
trauma, or nerve injuries affecting the vocal cords. Vocal 
cord paralysis often leads to voice problems, difficulties 
in breathing, and swallowing issues. It may result in a 
weak, breathy, or strained voice (Toutounchi et al., 2014). 
Polypoid lesions, also known as vocal cord polyps, are 
benign growths that form on the vocal cords, typically as 
a consequence of vocal abuse or trauma, such as chronic 
coughing, screaming, or excessive yelling. These polyps 
come in various sizes and shapes and are known to induce 
voice changes, including hoarseness, roughness, and a 
reduction in vocal range (Zhuge et al., 2016).

The second subset of pathologies includes A–P squeez-
ing, gastric reflux, and mild ventricular compression, with 
an equal distribution of male and female speaker files as 
detailed in Table 2. To ensure comparability, groups with 
similar average ages were carefully selected.

Gastric reflux can lead to voice disorders when stomach 
acid enters the esophagus and larynx, causing irritation and 
inflammation. This can result in symptoms such as hoarse-
ness, throat clearing, and a sensation of a lump in the throat. 
Chronic reflux can lead to more severe vocal fold damage 
over time (Vakil et al., 2006).

A posterior-anterior squeezing typically occurs due to 
improper vocal fold closure. The vocal folds are not coming 
together evenly, resulting in a squeezing sensation during 
phonation. Etiologies may include vocal fold nodules, pol-
yps, muscle tension dysphonia, or neurological conditions 
affecting vocal fold movement (Behrman et al., 2003).

This ventricular compression disorder involves compres-
sion of the ventricular folds (false vocal folds) during phona-
tion, often resulting in a strained or breathy voice quality. 
People with ventricular compression disorder may have a 
voice with the following qualities: severe dysphonia (abnor-
mal voice), low pitch, roughness, and strain. Ventricular 
compression disorder can have various etiologies, including 
excessive muscle tension, vocal fold misalignment, laryngeal 
pathology, neurological conditions, and psychological fac-
tors (Bailly et al., 2014).

These disorders affect vocal mechanisms differently and 
can result in various changes and difficulties in voice quality, 
potentially leading to dysarthria. The severity of dysarthria 
depends on the specific characteristics and severity of the 
underlying disorder, as well as the individual's overall health 
and any pre-existing neurological conditions. Severe dysar-
thria, such as that caused by significant A–P squeezing or 
ventricular compression, can markedly impact speech intel-
ligibility due to pronounced changes in voice quality (Kent 
& Kim, 2008). Symptoms of gastric reflux can exacerbate 
throat irritation and voice quality issues in cases of severe 
dysarthria.

3.3  Experimental setup

To improve the performance of our pathological speech clas-
sification system, we employed a multi-stream approach. 
This approach entails the amalgamation of diverse acous-
tic parameters that aptly represent the characteristics of the 
speech signal. We selected parameters that demonstrated 
high efficiency and resilience, primarily based on models of 
human auditory perception. Subsequently, we adapted these 
parameters to our classification task by incorporating them 
into a combined CNN-BiLSTM system.

The calculation of these parameters was carried out utiliz-
ing a Hamming window with a duration of 25 ms and a shift 

Table 1  Number of female and 
male records and average age 
for the first dataset

Diseases Female 
records

Average female age ± std Male records Average male age ± std Total

Nodules 19 28.47 ± 9.87 1 47 ± 0 20
Paralysis 27 52.56 ± 16.94 31 53.48 ± 19.12 58
Polypoid 21 46.43 ± 12.39 4 51.5 ± 16.84 25

Table 2  Number of female and 
male records and average age 
for the second dataset

Diseases Female 
records

Average female age ± std Male records Average male age ± std Total

A–P squeezing 15 49.87 ± 18.62 15 46.8 ± 22.19 30
Gastric reflux 15 46.6 ± 17.37 15 44 ± 14.71 30
Ventricular 

compression 
(mild)

12 41.25 ± 12.83 13 46.46 ± 13.40 25
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of 10 ms. For optimal training of our system, we established 
the learning parameters, which are detailed in Table 3 below. 
The number of the BiLSTM units used in our application 
differs depending on the evaluated systems.

3.4  Impact of multi‑stream approach

In our study, we developed a CNN-BiLSTM network and 
integrated robust acoustic parameters as inputs into the 
system. To enhance the performance of our system, we 
employed a multi-stream approach, which involved amal-
gamating various acoustic parameters into a single feature 
vector. This vector was created by concatenating the MFCC 
coefficients including the energy, and their first and second 
derivatives, along with the 13 PNCC coefficients and param-
eters measuring vocal signal perturbations like Jitter, and 
Shimmer.

The selection of acoustic parameters significantly influ-
ences the performance of pathological speech classification 
systems. In our study, we incorporated a range of acoustic 
parameters, each chosen for its specific contributions:

• MFCC (Mel-frequency cepstral coefficients): These coef-
ficients capture the spectral envelope of speech signals 
and are widely used in speech processing tasks due to 
their effectiveness in representing spectral characteristics 
and facilitating tasks such as speaker identification and 
speech recognition.

• PNCC (Power normalized cepstral coefficients): PNCC 
coefficients aim to capture perceptually relevant aspects 
of speech signals and have demonstrated superior robust-
ness in noisy environments and voice disorder contexts 
compared to MFCCs.

• Jitter and Shimmer: These acoustic measures are fun-
damental in voice quality analysis, providing insights 
into vocal fold stability, regularity, and vibratory char-

acteristics. They are particularly valuable for detect-
ing pathological voice disorders and distinguishing 
between normal and disordered speech.

A statistical evaluation of each parameter's contribution to 
the classification task would further enhance the empirical 
foundation of our study. This analysis could provide valu-
able insights into the relative importance of these param-
eters, strengthening the reliability of our conclusions.

The normalization of the extracted parameters MFCC 
and PNCC is a crucial step to ensure their robustness and 
reduce their sensitivity to speaker variability and record-
ing conditions. In our application, we employed variance 
normalization (or standardization), which is typically per-
formed to scale the coefficients to a standard range. This 
step ensures that coefficients with larger variances do not 
dominate the feature vector. The normalized coefficient ĉi 
is computed as (Berouti et al., 1979):

where �i is the standard deviation and ui is the mean of the i
-th coefficient across all frames.

Normalization of MFCC and PNCC coefficients is par-
ticularly crucial in speech-related applications as it mini-
mizes the impact of speaker variations, recording condi-
tions, and acoustic environments on feature representation. 
This standard preprocessing technique is widely adopted 
in tasks such as speech recognition, speaker identification, 
and speech classification.

The combination of all these valuable acoustic param-
eters MFCCs, PNCCs, jitter, and shimmer using the multi-
stream approach allows to achieve high performance since 
each provides unique information about the spectral and 
temporal characteristics of speech signals.

We evaluated the system based on the multi-stream 
approach using the MEEI database and observed that it 
achieved impressive classification accuracy values com-
pared to the systems based on a single data stream. The 
results are presented for Nodules, Paralysis, and Polypoid 
voice pathologies, as shown in Table 4 below.

The results in Table 4 indicate that the multi-stream 
approach yielded a high level of accuracy in the patho-
logical speech classification system. Specifically, the 
concatenated vector comprising MFCC, Jitter, Shimmer, 
and PNCC (a total of 54 coefficients) achieved an efficient 
accuracy rate of 85.71%. This outperformed the combined 
vector containing MFCC-F0-Jitter-Shimmer, and PNCC, 
which included the fundamental frequency F0. In contrast, 
the classification based on the use of only the MFCCs, 
PNCCs, and the coefficients Mel-Spectrograms with a size 
of 243 × 50, where 50 represents the frequency bin and 243 

(22)ĉi =
ci − ui

�i

Table 3  Configuration of various parameters comprising the CNN-
BiLSTM network

Optimized parameters for 
the CNN- BiLSTM system

Input dimensions 243 frames, 54 coefficients
Batch size 10
Number of epochs 320
Dropout rate 0.2
Number of filters of each convolutional 

hidden layers
[12, 24, 48, 96, 192, 384]

Filter size dimension 3 × 3
Learning rate 0.0003
LSTM units Variable
Hamming window size 25 ms
Optimization algorithm Adam
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denotes the number of frames produced a lower accuracy 
rates, except when supplementing the Mel-Spectrogram 
with Jitter and Shimmer coefficients, the accuracy reach 
76.19%. However, this accuracy rate was slightly lower 
than that achieved by the multi-stream concatenation 
method based on the MFCC- F0-Jitter-Shimmer-PNCC 
vector. From the results, we concluded that the coefficients 
Jitter and Shimmer are well suited in combination with 
the PNCC and MFCC coefficients than with Mel-Spec-
trograms parameters. The multi-stream approach notably 
outperformed the speech disorder classification systems, 
resulting in a 24% improvement in accuracy value when 
compared to the original system based solely on PNCC 
coefficients.

Multiple experiments were carried out with different 
data partitions to identify the most effective configuration 
for the test subsets. As indicated in Table 5, the CNN-BiL-
STM system trained and tested using the combined acoustic 
features MFCC-Jitter-Shimmer-PNCC vector of 54 coeffi-
cients exhibited the highest performance split configuration 
(70/30).

3.5  Pathological voice enhancement

To improve the performance of the pathological speech 
classification system and improve accuracy rates, we have 
introduced speech enhancement techniques to our datasets 
such as the MMSE algorithm, Wiener filter, and spectral 
subtraction.

In the context of the Minimum Mean Square Error 
(MMSE) algorithm, particularly for noise estimation and 
subsequent noise reduction in speech or signal process-
ing, dividing the frequency spectrum into sub-bands serves 
several important roles, the MMSE algorithm can adapt its 
noise estimation and subsequent processing strategies to 
better suit the characteristics of speech signals in each fre-
quency band. Also, the MMSE algorithm can selectively 
enhance speech components while suppressing noise in a 
more targeted manner, which allows for more precise noise 
estimation and adaptive processing tailored to the spectral 
characteristics of speech and noise. This approach investi-
gated in Brijesh Anilbhai and Kinnar (2017) helps to mini-
mize the impact on perceived speech quality. In particular, 
we have performed the enhancement technique based on the 
MMSE algorithm considering the noise estimation in the 
frequency ranges of 0–1.5 kHz, 0–2.5 kHz, and 0–3.5 kHz. 
These specific frequency ranges chosen for noise reduction 
were selected based on the understanding that speech infor-
mation is primarily concentrated in lower and mid-frequency 
ranges, while noise can be present across a wider spectrum.

For comparative purposes, we have also utilized the Wie-
ner algorithm and Berouti's spectral subtraction method 
(Strand & Egeberg, 2004).

Spectral subtraction is a commonly used method in 
speech enhancement due to its simplicity (Kaladharan, 
2014). The Berouti algorithm extends spectral subtraction 
by subtraction of not only amplitude spectra but also power 
spectra. The power spectra of the estimated clean signal, the 
noisy signal, and the noise are represented as Ps, Px, and Pd,

respectively. The spectral subtraction estimator can be 
defined as follows (Brijesh Anilbhai & Kinnar, 2017):

σ and β are the two parameters allowing the overestimation 
of the power spectrum of the noise signal and raising the 
power spectrum before subtraction respectively.

The Wiener filter is a method designed to minimize the 
average squared error between the desired signal and the 
estimated signal by leveraging the spectral characteristics 
of both the desired signal and the noise (Lim & Oppenheim, 
1979). It calculates a gain for each frequency bin based on 
the ratio of the estimated signal power to the estimated noise 
power.

(23)P̂s =
(
P�
x
− �P�

d

)1∕�

Table 4  CNN-BiLSTM network accuracy with various acoustic fea-
tures for the classification of nodules, paralysis, and polypoid voice 
pathologies

Bold indicates the highest accuracy

Acoustic feature Accuracy (%)

PNCC(39) 61.90
MFCC(39) 66.67
Mel-Spectrogram 71.43
Mel-Spectrogram-Jitter-Shimmer 76.19
Mel-Spectrogram-Jitter-Shimmer-PNCC 71.43
MFCC(39)-F0-Jitter-Shimmer-PNCC(13) 80.95
MFCC(39)-Jitter-Shimmer-PNCC(13) 85.71

Table 5  Corpus splitting 
techniques employed in the 
CNN-BiLSTM system utilizing 
MFCC-Jitter-Shimmer-PNCC 
features for the first subset

Bold indicates the highest accuracy

Technique splitting 90/10 80/20 70/30 60/40 50/50 Three-fold

Training + validation 90% 80% 70% 60% 50% 67%
Test 10% 20% 30% 40% 50% 33%
Accuracy (%) 80 85.71 86.67 75.61 76.47 68.91
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This factor can be expressed as:

where G(k) represents the wiener gain calculated for the k 
frequency bin, S(k) represents the estimated power spectral 
density of the clean speech and N(k) denotes the estimated 
power spectral density of the noise. This formula can be 
derived considering the signal x and the noise d as uncor-
related and stationary signals. The SNR is defined by Picone 
(1993):

This definition can be integrated into the Wiener filter 
equation as follows:

 
The fixed frequency response at all frequencies and the 

requirement to estimate the power spectral density of the 
clean signal and noise prior to filtering is the drawback of 
the Wiener filter.

(24)G(k) =
X(k)

X(k) + D(k)

(25)SNR =
X(k)

X̂(k)

(26)G(k) =
[
1 +

1

SNR

]−1

We conducted tests to assess the performance of our sys-
tem, which is based on the multi-stream paradigm consist-
ing of the MFCC- Jitter- Shimmer-PNCC combined vector. 
Table 6 displays the accuracy results of the CNN-BiLSTM 
system when various speech enhancement methods were 
applied to a dataset involving nodules, paralysis, and poly-
poid pathologies.

Our findings indicate that the wiener filter maintains a 
recognition rate of 85.71%, while the spectral subtraction-
based Berouti algorithm demonstrates a 4.77% improvement 
in accuracy. Moreover, the MMSE-based enhancement, with 
noise estimation over different frequency ranges, such as 
(0–1.5 kHz), (0–2.5 kHz), and (0–3.5 kHz) referred to as 
MMSE 15, MMSE 25, and MMSE 35 respectively, results 
in high recognition rates. MMSE 15 and MMSE 25 achieve 
a recognition rate of 90.48%. However, the best recognition 
rate is achieved when using MMSE 35, showing an improve-
ment of 9.53%. This frequency range contains information 
highly suitable for dysphonia classification (Pouchoulin 
et al., 2007).

3.6  Effect of activation function

Activation functions play a crucial role in speech classifica-
tion as they help capture intricate patterns in the data. They 
are applied to the output of the network layer neuron. To 
understand their impact on the classification of pathologi-
cal speech, we evaluated various standard activation func-
tions, including GELU (Gaussian Error Linear Unit) (Lee, 
2023), SELU (Scaled Exponential Linear Unit) (Klambauer 
et al., 2017), AReLU (Asymmetric Rectified Linear Unit) 
(Mediratta et al., 2021), and SinRU (a combination of the 
RELU activation function and the sinus periodic function) 
(Chaiani et al., 2022).

Table 7 displays these activation functions along with 
their corresponding mathematical equations. We used these 
activation functions to train our application systems, as out-
lined in Table 8.

The comparison of accuracy rates between the meth-
ods MMSE 15, MMSE 25, and MMSE 35 incorporated to 

Table 6  Accuracy comparison of CNN-BiLSTM network using vari-
ous voice signals in the classification of Nodules, Paralysis, and Poly-
poid voice pathologies

Bold indicates the highest accuracy

Signals Accuracy (%)

Signal based on multi-stream approach 85.71
Enhanced signal
 Wiener filter 85.71
 Spectral Subtraction (Berouti Algorithm) 90.48
 MMSE 15 90.48
 MMSE 25 90.48
 MMSE 35 95.24

Table 7  Different activation 
functions

Activation function Expression

Asymmetric Rectified Linear Unit (AReLU)
AReLU(x, 𝛼, 𝛽) =

{
C(𝛼)x if x < 0

(1 + 𝜎(𝛽))x ifx ≥ 0

Scaled Exponential Linear Unit (SELU)
SELU(x) =

{
𝜆x if x > 0

𝜆𝛼(ex − 1) ifx ≤ 0

� = 1.67 and � = 1.05

Gaussian Error Linear Unit (GELU)
GELU(x) =

x

2
(1 + tanh(

√
2

�

(
x + 0.044715x3

)
))

Sinus Rectified Linear Unit (SinRU)
SinRU =

{
0 if x ≤ 0

x + sin(x) if x > 0



496 International Journal of Speech Technology (2024) 27:483–502

the system based on the multi-stream approach revealed 
overall improvements. Notably, The ReLU (Hara et al., 
2015), SELU, and SinRU activation functions enhanced 
the MMSE 15 signal-based accuracy by 4.77% when com-
pared to the original signal. A similar enhancement (Accu-
racy rate = 4.77%) was observed with the ReLU and SELU 
activation functions in the case of MMSE 25 signal-based 
accuracy. However, the MMSE 35 signal-based accuracy 
saw a substantial 9.53% improvement when employing 
the ReLU and AReLU activation functions, with a 4.77% 
boost achieved using the SELU activation function. In the 
context of assessing activation functions, we observed 
that the use of the ReLU and AReLU activation functions 
led to a significant improvement in the accuracy rate of 
the MMSE 35 enhancement compared to the signal based 
on the multi-stream approach. Figures 6 and 7 provide 
the confusion matrix details for the system using only 
PNCC coefficients and the system integrating the multi-
stream approach based on MFCC-Jitter-Shimmer-PNCC 

coefficients, and the enhancement method based on MMSE 
35. The results underscore the substantial improvement 
brought about by the multi-stream approach and the speech 
enhancement technique, particularly for the paralysis and 
polypoid classes, where the improvement amounted to 
33% over the original system relying solely on PNCC coef-
ficients, as illustrated in Fig. 8.

To demonstrate the effect of the activation function 
AReLU and the efficiency of our proposed system in clas-
sifying voice disorders, we conducted a series of addi-
tional experiments using the second subset of data, which 

Table 8  Pathology classification rate (%) using original and enhanced 
signals with different activation functions for three pathologies 
classes: Nodules, Paralysis, and Polypoid

Bold indicates the highest accuracy

Activation function ReLU SELU GELU SinRU AReLU

Signal based on 
multi-stream 
approach

85.71 76.19 90.48 80.95 85.71

MMSE 15 90.48 80.95 90.48 85.71 80.95
MMSE 25 90.48 80.95 80.95 80.95 80.95
MMSE 35 95.24 80.95 90.48 76.19 95.24

Fig. 6  Confusion matrix of original system-based MFCC coefficients

Fig. 7  Confusion matrix of the improved system based on the two 
techniques: multi-stream approach and speech enhancement MMSE 
35

61.9

85.71 85.71 90.48 95.24
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Fig. 8  Accuracy comparison of the different approaches performed 
by the CNN-BiLSTM classifier using three pathological classes: 
Nodules, Paralysis, and Polypoid
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combines the pathologies: A–P squeezing, Gastric reflux, 
and mild Ventricular compression.

This subset was carefully balanced with an equal number 
of files from male and female speakers. We compared the 
baseline system based on the multi-stream approach and the 
CNN-BiLSTM model, with those employing the enhance-
ment technique based on the MMSE 35 utilizing the ReLU 
and AReLU as activation functions. The performance of 
these systems was evaluated and the results are outlined in 
Table 10.

To ensure the validity of our approach, we first explored 
various data-splitting configurations on the second subset of 
our system. The best classification rate was reached when 
using (80/20) split configuration, the results are presented in 
Table 9. The improvement of the performance of the base-
line system was performed and the best accuracy achieved 
was 52.94% compared to other splitting.

Then, we proceeded to enhance the baseline system’s per-
formance, resulting in the best accuracy rate of 64.71% as 
shown in Table 10.

The results obtained in Table 10 demonstrate that both the 
incorporation of the enhancement technique and utilization 
of the AReLU function lead to notable improvements in the 
severity level classification system. In direct comparison to 
the system based on the multi-stream approach, the MMSE 
35 signals exhibited an accuracy improvement of 5.88% for 
the ReLU function and an even more substantial 11.77% 
improvement for the AReLU function as shown in Fig. 9.

3.7  Assessment of the proposed approach

To evaluate the performance of the proposed system, we 
have conducted an experiment using the same experimental 

conditions as those established in the work presented in 
Hamdi et al. (2018) based on the MEEI database. Four 
classes were tested: (Nodules, Spasmodic, Polypoid, and 
normal). The performance of our system based on the CNN-
BiLSTM network using the enhancement technique and the 
multi-stream approach and those of the system of Hamdi 
et al. (2018) are shown in Table 11. As indicated in Hamdi 
et al. (2018), the system is based on the hidden Markov 
model associated with a Gaussian mixing density (HMM-
GM), and the accuracy rate increased to 94.44% using the 
combination vector MFCC_HNR_NHR_DFA_F0. As 
depicted in Table 11, our system based on the multi-stream 
approach only achieved an accuracy rate of 88.57% using 
the CNN model. However, after applying the enhancement 
technique, the accuracy increased to 91.67%. Then, this lat-
ter achieved an optimal value of 100% when concatenating 
the CNN network with the BiLSTM layer and improved the 

Table 9  Corpus splitting 
techniques used in the CNN-
LSTM system based on MFCC-
Jitter-Shimmer-PNCC features 
for the second subset

Bold indicates the highest accuracy

Technique splitting 90/10 80/20 70/30 60/40 50/50 Three-fold

Training + validation 90% 80% 70% 60% 50% 67%
Test 10% 20% 30% 40% 50% 33%
Accuracy (%) 37.5 52.94 48 41.18 40.48 29.47

Table 10  Comparison of voice disorders classification performance 
using ReLU and AReLU activation functions and the MMSE 35 
enhancement technique for three pathologies classes: A–P squeezing, 
Gastric reflux, and Ventricular compression (mild)

Bold indicates the highest accuracy

Method Accuracy (%)

Signal based on multi-stream approach
(MFCC-Jitter-Shimmer-PNCC)

52.94

MMSE 35 & ReLU 58.82
MMSE 35 & AReLU 64.71

Accuracy (%)

70

60

50

40

30

20

MULTI - STREAM MMSE 35 AND MMSE 35 AND

APPROACH ReLU AReLU

Fig. 9  Comparison of accuracy among different approaches for the 
combined CNN-BiLSTM system in classifying three pathological 
classes: A–P squeezing, Gastric reflux, and Mild Ventricular com-
pression

Table 11  Comparison of the performance of our system with those of 
HAMDI Rabeh et al. for multi-class classification of speech patholo-
gies

Bold indicates the highest accuracy

System Accuracy (%)

Our system (CNN network + multi-stream) 88.57
Our system (CNN network + multi-stream 

approach + MMSE 35)
91.67

Our system (CNN-BiLSTM network + multi-stream 
approach + MMSE 35)

100

System proposed in Hamdi et al. (2018) 94.44
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performance by 5.56% compared to the system presented in 
Hamdi et al. (2018).

4  Discussion

The system proposed in this study represents a significant 
advancement in the field of pathological speech classifi-
cation, demonstrating its effectiveness when compared to 
existing state-of-the-art systems. The architecture is based 
on a three-stage framework that is proposed to perform a 
precise classification of voice disorders. The first step com-
promises a robust acoustic analysis based on the multi-
stream approach that combines crucial vocal parameters, 
such as MFCC, PNCC, and coefficients representing varia-
tions in frequency and amplitude (Jitter and Shimmer). This 
combination of acoustic features allows to achieve optimal 
performance, since each acoustic parameter provide unique 
information about the spectral and temporal characteristics 
of speech signals.

The second critical step involves noise reduction tech-
niques to improve the efficiency and intelligibility of the 
pathological speech signal. This noise reduction process 
enhances the overall robustness of the voice disorders clas-
sification systems.

The classification system for voice disorders is improved 
by leveraging a feature extraction architecture that combines 
a Convolutional Neural Network (CNN) and a Bidirectional 
Long Short-Term Memory network (BiLSTM). This power-
ful feature extractor captures local patterns and sequential 
information within the acoustic features, enabling robust 
classification of voice disorders.

The integration of the multi-stream approach in our study 
significantly improved the system’s classification accuracy. 
As demonstrated in Table 4, this proposed paradigm proved 
its effectiveness and robustness, elevating the recognition 
rate to 85.71%. Employing a split configuration (70/30) 
for the train and test dataset further improved the model’s 
performance to 86.67%. The speech enhancement module, 
rooted in signal processing, emerged as a crucial denoising 
method, contributing to the enhancement of our pathological 
speech classification system. Various approaches, includ-
ing Wiener filtering, spectral subtraction, and the minimum-
mean square error (MMSE) enhancer were explored. The 
most notable recognition rate of 95.24% for classifying 
Nodules, Paralysis, and Polypoid pathologies was achieved 
through the MMSE approach over the frequency range of 
0–3.5 kHz.

During our study, we emphasized the impact of the acti-
vation function on the voice disorders classification system’s 
efficiency. Rectified Linear Unit (ReLU), a widely used acti-
vation function, is simple and easily implementable in vari-
ous classifier models, including CNN models. Additionally, 

the Asymmetric Rectified Linear Unit (AReLU) yielded 
satisfactory results. For instance, in the classification of 
three pathological voices A–P squeezing, Gastric reflux, 
and Ventricular compression, which represent the second 
and most severe dataset of the MEEI database compared to 
the first dataset, the highest accuracy achieved was 64.71% 
when using the AReLU activation function, as indicated in 
Table 10. The results obtained can be considered satisfac-
tory since the multiclass identification is a complicated task 
compared to the binary classification task. For instance, the 
multi-model CNN-LSTM proposed in Ankışhan and İnam 
(2021) reached an accuracy rate of 99.58% using the SVD 
database to classify pathological and healthy voices (binary 
classification), while our system based on more complex 
task, which consists of identifying three classes of pathologi-
cal voice reached significates results. However, the system 
developed by Ksibi et al. (2023) and based on multi-model 
CNN-RNN and two-level cascaded architecture reached 
accuracy rate of 88.83% for binary classification.

For the same context, researchers in Guedes et al. (2019) 
used the German Saarbrücken Voice Database to develop 
a system classifying four classes: dysphonia, laryngitis, 
paralysis of vocal cords, and healthy voices. Two mod-
els were developed based on Long-Short-Term-Memory 
and Convolutional Neural Network for classification of 
extracted embeddings and comparison of the best results, 
using cross-validation. The results showed an improvement 
of 40% f1-score for the four classes, 66% f1-score for Dys-
phonia x Healthy, 67% for Laryngitis x healthy and 80% for 
Paralysis x Healthy. By comparison, our system reached the 
best performance of 100% for classifying four classes: Nod-
ules, Spasmodic, Polypoid, and normal voice as presented in 
Table 10. Furthermore, our results found for the classifica-
tion of three classes.

In Harar et al. (2019), the system presented achieved an 
accuracy of 68.08% in voice pathology detection (binary 
task) using the SVD database and a 1D-CNN-LSTM archi-
tecture with segmented raw signals as inputs. (Wu et al., 
2018) used spectrograms features to identify organic dys-
phonia (binary task) by a network composed of 2D-CNN and 
fully connected layers pretrained by a convolutional deep 
belief network DBN. The accuracies achieved are 71% and 
77% with and without the pretraining process respectively.

The gammatone spectral latitude (GTSL) coefficients 
were proposed in Zhou et al. (2022) to improve the perfor-
mance of the classification system between healthy, neu-
romuscular and structural voices. The proposed features 
achieved an average accuracy of 99.6% in the Massachu-
setts Eye and Ear Infirmary (MEEI) database. The accura-
cies in other databases, Saarbruecken Voice Database (SVD) 
(Pützer & Barry, 2007) and Hospital Universitario Principe 
de Asturias (HUPA) were 89.9% and 97.4% respectively. 
On a more complex task, which consists of classifying four 
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classes: Nodules, Spasmodic, Polypoid, and normal voice, 
our proposed system achieved 100% accuracy.

The work investigated in Deli et al. (2022) used phase 
space reconstruction and convolution neural network to clas-
sify the normal and pathological voice. The phase space 
information of normal and pathological voice is recon-
structed using delay time and embedding dimension, the 
one-dimensional signal is converted to a two-dimensional 
matrix, and the reconstructed trajectory graph sample of the 
signal is generated. The trajectory graph samples are used 
as the input of the VGG-like convolutional neural network, 
and the graphical features are extracted to achieve a clas-
sification of normal and pathological voices. The average 
accuracy rates obtained are 96.04% and 92.27% for normal, 
vocal fold paralysis, and vocal fold non-paralysis voice in the 
MEEI database and SVD database respectively. By compar-
ing the performance of our system based on the classifica-
tion of three disordered classes achieving an accuracy rate 
of 95.24% and those of the systems demonstrated in Deli 
et al. (2022) we conclude that the proposed three-stage archi-
tecture of this study is effective in performing a multiclass 
identification of voice disorders.

The ultimate goal of this study is to provide an efficient 
system for people suffering from speech disorders. This 
study utilized the MEEI Voice Disorders database, provid-
ing a diverse range of disorders speech samples. However, 
variability in recording environments and conditions could 
potentially influence the classification results. Evaluating the 
system on additional databases with different recording char-
acteristics would be beneficial for assessing generalizability 
and robustness. In our future work, we aim to incorporate 
well-established databases like the Saarbruecken Voice 
Database SVD into the evaluation process to strengthen the 
validity of our findings and provide a more comprehensive 
assessment of the proposed classification system's perfor-
mance across diverse recording conditions.

5  Conclusion

In conclusion, this study presents a comprehensive approach 
to enhance the automatic classification of voice disorders 
through a three-stage voice pathology classification system.

The initial contribution involves a pre-processing step 
that leverages the Minimum Mean Square Error (MMSE) 
enhancer, to improve speech quality and intelligibility.

After, a multi-stream approach is introduced, combin-
ing various acoustic vectors to capture diverse patterns and 
characteristics in the vocal signal. This approach, grounded 
in robust acoustic parameters motivated by auditory process-
ing, yields efficient results.

Finally, to outperform the results, we suggested a sys-
tem that combines two deep learning architectures CNN 

and BiLSTM to improve the accuracy of pathological voice 
classification.

Following the results obtained, the multi-stream approach 
used in this work improved the accuracy rate of the voice 
classification system based on the PNCC features by 24% 
when using the efficient combined vector MFCC-Jitter-
Shimmer-PNCC. Besides, the enhancement techniques 
adopted in this research contributed effectively to the 
improvement of the system performance, particularly the 
MMSE technique with the range of frequency [0–3.5 kHz]. 
This metric allows improving the accuracy rates with a fac-
tor of 10%.

The experimental results confirm that the three-stage 
architecture proposed in this work underscores the effective-
ness and robustness of the proposed methods in performing 
multi-classes speech disorder identification, demonstrating 
its adaptability to the complexities of this task of voice dis-
orders classification compared to the related works including 
different methods.

The developed model in this research serves as a solution 
for improving pathological speech and addressing the chal-
lenges posed by this issue. The main objective of this work is 
to showcase the resilience of pathological speech classifica-
tion systems through the preformation of diverse approaches 
aimed at enhancing voice signal quality and intelligibility 
via denoising metrics, developing a robust acoustic speech 
analysis interface using the multi-stream method, and inte-
grating the efficient deep neural architecture CNN-BiLSTM.
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