
International Journal of Speech Technology (2024) 27:319–327
https://doi.org/10.1007/s10772-024-10107-7

scenarios, for example, detecting the emotional states of 
drivers to issue timely reminders in situations of hyperac-
tivity or fatigue (Requardt et al., 2020). It also applies in 
education (Tanko et al., 2022), aiding teachers in assessing 
students’ emotional states through their speech. Moreover, 
in the realm of medicine and healthcare, speech-emotion 
recognition can be employed to discern if a patient is expe-
riencing depression or anxiety (Hansen et al., 2021). For 
achieving intelligent and natural human-computer interac-
tion (Pandey et al., 2022), extensive research has been con-
ducted on emotion recognition in speech across different 
languages (Hu et al., 2021). Chattopadhyay et al. (2023) 
employed linear prediction coding and linear predictive 
cepstral coefficient extracted from speech signals as features 
and utilized clustering-based equilibrium optimizer and 
atom search optimization method for emotion recognition. 
They found that the method exhibited high classification 
accuracy. Guo et al. (2022) introduced a dynamic rela-
tive phase method for feature extraction. They employed a 
single-channel model and an attention-combined multi-
channel model to learn acoustic features, yielding favor-
able results in emotion recognition experiments. Qiao et al. 

1 Introduction

Beyond conveying textual information, the speaker’s 
speech inherently carries emotional nuances such as joy 
and sadness. Even if the speaker articulates the same text, 
varying emotional cues can significantly alter the intended 
meaning. Hence, recognizing the emotional aspects of a 
speaker’s speech is paramount (Liu et al., 2022). One of the 
differences between humans and computers is that humans 
have a good perception ability for emotions. The purpose 
of emotion recognition is to enable computers to simulate 
the process of human emotional perception, and speech, 
as a direct way of expressing emotions, plays an essential 
role in achieving human-computer interaction. Speech emo-
tion identification has significant application value in many 
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Abstract
English speech incorporates numerous features associated with the speaker’s emotions, offering valuable cues for emotion 
recognition. This paper begins by briefly outlining preprocessing approaches for English speech signals. Subsequently, 
the Mel-frequency cepstral coefficient (MFCC), energy, and short-time zero-crossing rate were chosen as features, and 
their statistical properties were computed. The resulting 250-dimensional feature fusion was employed as input. A novel 
approach that combined gated recurrent unit (GRU) and a convolutional neural network (CNN) was designed for emo-
tion recognition. The bidirectional GRU (BiGRU) method was enhanced through jump-joining to create a CNN-Skip-
BiGRU model as an emotion recognition method for English speech. Experimental evaluations were conducted using the 
IEMOCAP dataset. The findings indicated that the fusion features exhibited superior performance in emotion recognition, 
achieving an unweighted accuracy rate of 70.31% and a weighted accuracy rate of 70.88%. In contrast to models like 
CNN-long short-term memory (LSTM), the CNN-Skip-BiGRU model demonstrated enhanced discriminative capabilities 
for different emotions. Moreover, it stood favorably against several existing emotion recognition methods. These results 
underscore the efficacy of the improved method in English speech emotion identification, suggesting its potential practi-
cal applications.
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(2022) designed a Trumpet-6 method for the identification 
of emotions in Chinese speech, achieving a 95.7% accuracy 
in experiments on CASIA. Ocquaye et al. (2021) utilized 
a triple attentive CNN with asymmetric architecture for 
identifying emotion in cross-language speech. Experiments 
on English, German, and Italian datasets demonstrated the 
method’s higher prediction accuracy. Given the widespread 
use of English (Hyder, 2021), research on emotion recog-
nition in English speech holds significant practical value 
across various domains. The combination of CNN and 
long short-term memory (LSTM) or gated recurrent unit 
(GRU) has found extensive application in speech emotion 
recognition, such as CNN + LSTM (Ahmed et al., 2023), 
CNN-bidirectional gated recurrent unit (BiGRU) (Hu et al., 
2022), and CNN-n-GRU (Nfissi et al., 2022), but there is 
still potential for further improvement in its performance. 
Building upon the combination of CNN and GRU, this 
paper proposes a recognition method to enhance its perfor-
mance in English speech emotion recognition through fea-
ture fusion and structural improvements. By fusing features 
like energy and Mel-frequency cepstral coefficient (MFCC), 
richer emotional information was obtained. Furthermore, by 
incorporating skip connections, a Skip-BiGRU model was 
designed to combine with CNN, resulting in the CNN-Skip-
BiGRU method for English speech emotion recognition. Its 
effectiveness was validated through experiments on IEMO-
CAP, providing a novel approach to differentiate emotions 
in English speech. This article provides some directions for 
further research on the integration of CNN with LSTM or 
GRU in speech emotion recognition and demonstrates the 
importance of feature fusion, providing some references for 
extracting speech emotion features.

2 Feature fusion in english speech

2.1 Preprocessing of speech signals

English speech signals must first be preprocessed to provide 
higher-quality speech for subsequent recognition. First, pre-
emphasis is performed on original speech x (n) by a first-
order digital filter to make the spectrum flatter. The formula 
is written as:

y (n) = x (n)− µx (n− 1) (1)

where µ  is the pre-emphasis factor, generally 0.97.
Based on the short-time smoothness characteristic of the 

signal, it is also necessary to intercept the original signal 
into shorter signals by framing, generally using the method 
of overlapping framing. After the framing, the key wave-
forms are highlighted by adding windows frame by frame, 

and in this paper, the Hamming window is used (Tan et al., 
2020):

w (n) =

{
0.54− 0.46cos [2πn/ (N − 1)] , 0 ≤ n ≤ N − 1

0, other
 (2)

The signal after adding the window is:

y (n) =

N/2∑

n=−N/2+1

x (m)w (n−m)  (3)

where n  is the moment and N  is the frame length.

2.2 Emotion feature extraction

Since the emotional information contained in a single fea-
ture tends to be one-sided, the following features are used 
for fusion to characterize the emotional information con-
tained in the signal more comprehensively.

2.2.1 Energy

In general, the speaker’s voice is louder when he is happy 
and angry and lower when he is sad and calm. The level of 
energy can reflect this difference. By utilizing the short-term 
average amplitude, it is possible to derive the energy fea-
tures of the signal. The corresponding formula is:

En =

N−1∑

m=0

|xn (m)|  (4)

where N  is the frame length and xn (m) means the n-th 
frame signal.

2.2.2 Short-time zero-crossing rate

It denotes the frequency at which the signal waveform 
crosses the zero level (Zhu et al., 2021). The number of 
times the signal passes the zero level varies depending on 
the emotional information contained in the signal. The for-
mula is:

Zn =
1

2

N−1∑

m=0

|sgn [xn (m)]− sgn [xn (m− 1)]|  (5)

sgn [x] =

{
1, x ≥ 0

−1, x < 0
 (6)
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2.2.3 Mel-frequency cepstral coefficient

MFCC is widely employed as a prevalent acoustic charac-
teristic for examining auditory attributes of the human ear 
(Wibawa & Darmawan, 2021). It can help distinguish dif-
ferent emotional information. The correlation between Mel 
frequency and the true frequency is:

Mel (f) = 2595lg (1 + f/700) (7)

The extraction process of MFCC is as follows.
① Fast Fourier transform (FFT) is performed on the 

signal:

Xj (k) =

N−1∑

i=0

xj (n) e
j2πnk
N , 0 ≤ k ≤ K

② The signal passes through a set of Mel filters:

hi (k) =






0, k < f (i− 1)
k−f(i−1)

f(i)−f(i−1), f (i− 1) ≤ k ≤ f (i)
f(i+1)−k

f(i+1)−f(i), f (i) < k < f (i+ 1)

0, k > f (i + 1)

③ The logarithmic energy of the output of the Mel filter is 
calculated:

m (i) =

n−1∑

k=0

|X (k)|2hi (k) , 0 ≤ i ≤ M

④ The logarithmic is taken from the outputs of all filters, 
and a discrete cosine transform (DCT) is also conducted to 
obtain the MFCC:

MFCC (i) =

√
2

M

M−1∑

i=0

lgm (i) cos
[
(i− 1/2)

iπ

M

]

In the above equations, xj (n) refers to the j-th frame of the 
English speech signal, K  is the length of the FFT, which is 
512, M  is the number of filters, 24 filters in this paper, and 
f (i) is the center frequency of the i -th filter.

2.2.4 Statistical characteristic

To obtain the emotional characteristics of the signal glob-
ally, this paper calculates the statistical features, including:

① mean value: fmean =
1
n

∑n
i=1 fi ;

② variance: fvar = 1
n

∑n
i=1 (fi − fmean)

2;
③ maximum value: fmax = max (f1, f2, · · · , fn);

④ minimum value: fmin = min (f1, f2, · · · , fn);
⑤ median: fmedian =

fmax+fmin
2

In the subsequent emotion recognition process, this 
paper selects the following features: energy, short-time 
zero-crossing rate, 24-dimensional MFCC, and 24-dimen-
sional first-order difference dynamic feature ∆MFCC. These 
features are fused, resulting in a total of 50 dimensions. 
Subsequently, five statistical features are computed for the 
50-dimensional feature, ultimately yielding a 250-dimen-
sional feature.

3 Emotion recognition methods based on 
feature fusion

3.1 Convolutional neural network

CNNs are widely used to recognize images, text, speech, 
etc. (Ponmalar & Dhanakoti, 2022). In this paper, CNN is 
used to realize the learning of the 50-dimensional fused fea-
ture obtained in the previous section to get more advanced 
features. CNN has three main layer structures. Its structure 
is shown in Fig. 1.

(1) Convolutional layer: it is capable of autonomous learn-
ing of input English speech features. For an input fea-
ture matrix called I , if there is a m× n  convolution 
kernel K , the convolution operation can be written as:

Oi,j = f

(
∑

m

∑

n

Ii+m,j+nKm,n + wb

)

 (8)

where Ii+m,j+n  means the element at the (i + m, j + n) of 
I , Km,n  means the element at the (m, n) of K , and wb

 is 
the bias.

(2) Pooling layer: The convolutional layer’s output can be 
downsampled by this layer to capture the most salient 
feature (Li et al., 2019). Pooling operations can be 
divided into two types.

① Maximum pooling: Select the highest value from the local 
area as the output to obtain the most significant features.

② Mean pooling: Take the highest value in the local area 
as the output to obtain an average representation of the over-
all features.

(3) Fully connected layer: it synthesizes the features 
extracted from the first two layers to achieve recogni-
tion and classification.
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The update process of the update gate can be written as:

zt = σ (Wzxt + Uzht−1 + bz) (10)

The output of GRU can be written as:

∼
h
t
= tanh [Whxt + Uh (rt � ht−1) + bh] (11)

ht = (1− zt)� ht−1 + zt � ht  (12)

where xt  is the input, ht−1 is the previously hidden state, W  
and U  are the weight matrices, b  is the bias, σ  is the sigmoi 
function, ∼ht  is the candidate output state, and ht  is the final 
GRU output state.

The hidden layer outputs of the forward GRU and the 
backward GRU can be obtained at the t  moment:

3.2 Bidirectional gated recurrent unit (BiGRU)

CNN can obtain more emotional features from the fused 
feature, but it is insufficient in the extraction of temporal 
context information; therefore, in this paper, the BiGRU 
model is used to learn temporal context information in 
English speech signals based on CNN. The BiGRU model 
utilizes both forward and backward GRU, enabling concur-
rent processing of past and future information (Niu et al., 
2022). GRU exhibits a more streamlined architecture and 
superior training efficacy when compared to the long short-
term memory network (LSTM) (Chen et al., 2021), and its 
structure is presented in Fig. 2.

According to Fig. 2, the update process of the reset gate 
can be written as:

rt = σ (Wrxt + Urht−1 + br) (9)

Fig. 2 The structure of GRU 

Fig. 1 The structure of CNN
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4 Results and analysis

4.1 Experimental setup

The experiment was conducted on the Ubuntu 16.04 operat-
ing system. Python 3.6 was used as the programming lan-
guage. The Keras platform was utilized to implement the 
emotion recognition approach, and the experiment employed 
the five-fold cross-validation method. The Adam optimizer 
was used. The batch size was 64, the epoch number was 
150, and the initial learning rate was established as 10− 4. 
The IEMOCAP dataset was used (Ayadi & Lachiri, 2022), 
an English corpus recorded by ten professional performers. 
The samples were collected at a frequency of 16 kHz. The 
dataset was approximately 12 h and encompassed various 
emotion types such as happiness and anger. Due to category 
imbalance in the dataset, four emotions were selected for the 
experiments, and their distributions are shown in Table 1.

The effectiveness of the emotion recognition method was 
assessed using the following pair of indicators.

(1) Unweighted accuracy rate (UAR): it refers to the accu-
racy of the entire test set:

UAR =
Nacc

N
 (20)

where N  is the total quantity of samples and Nacc  is the 
count of accurately recognized specimens.

(2) Weighted accuracy rate (WAR): it represents the mean 
recognition accuracy for each emotion:

WAR =
1

nclass

nclass∑

i=1

Nacc
i

Ni
 (21)

where nclass
 refers to the number of emotion categories, 

Nacc
i  refers to the recognition accuracy of the i -th kind of 

emotion, and Ni  refers to the total number of samples for 
the i -th kind of emotion.

4.2 Results analysis

First, the effects of different features on the effect of English 
speech emotion recognition were analyzed, and the findings 
can be observed in Table 2.

From Table 2, the CNN-Skip-BiGRU model achieved a 
UAR of 63.24% and a WAR of 63.36% on the IEMOCAP 
dataset when using only MFCC-related features as inputs. 
This indicated that the model was less effective in recogniz-
ing different emotion types under these conditions. When 

−→
ht = GRU

(
xt,

−−→
ht−1

)
 (13)

←−
ht = GRU

(
xt,

←−−
ht−1

)
 (14)

They are combined to obtain the output of BiGRU at the t  
moment:

ht =
[−→
ht ,

←−
ht

]
 (15)

3.3 Emotion recognition method based on CNN-
Skip-BiGRU

To improve the effectiveness of the BiGRU model on long-
term word sequence learning, this paper improves the struc-
ture of the BiGRU model by combining skip connections. 
Finally, it obtains a CNN-Skip-BiGRU model as an Eng-
lish speech emotion recognition method. Its structure is as 
follows.

(1) Input layer: the fused 250-dimensional English speech 
feature.

(2) CNN layer: it contains two convolutional layers and 
two pooling layers, all with a specification of 1 × 2 and 
a step length of 1.

(3) Skip-BiGRU layer (Fig. 3): it contains three BiGRU 
layers and uses skip connections, and the output of each 
layer is:

O1 = GRU1 (xt) (16)

O2 = GRU2 (O1) (17)

O3 = GRU3 (O1 + O2) (18)

(1) Dense layer: the features obtained from the above learn-
ing undergo dimensional variation to achieve a size of 
256 × 64.

(2) Flatten layer: it flattens the multi-dimensional feature 
vector into one dimension.

(3) Softmax layer: it realizes the recognition of different 
English speech emotions, and the final output can be 
written as:

Y = softmax (f latten (Dense (O1 + O2 +O3))) (19)
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fusing energy and short-time zero-crossing rate with MFCC-
related features to obtain the 50-dimensional fused feature 
as input, the CNN-Skip-BiGRU model showed a UAR of 
67.45% and a WAR of 66.97%, marking an improvement of 

Table 1 IEMOCAP dataset
Type of emotion Sample size
Neutral 1,708
Happiness 1,636
Anger 1,103
Sorrow 1,084

Table 2 The impact of different features on the effect of English speech 
emotion recognition

UAR/% WAR/%
MFCC + △MFCC 63.24 63.36
MFCC + ΔMFCC + energy + short-time zero-
crossing rate

67.45 66.97

The fused feature combining statistical 
features

70.31 70.88

Fig. 3 Skip-BiGRU layer 
structure
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The CNN-Skip-BiGRU model was compared with other 
emotion recognition methods:

(1) 3D-CRNNs (Peng et al., 2018): a 3D convolutional 
recurrent neural network-based method;

(2) attention-BLSTM-FCNs + DNN (Zhao et al., 2018): 
a method that combines the attention mechanism and 
bidirectional LSTM with a fully connected CNN to 
learn speech features and then utilizes a DNN to achieve 
sentiment prediction;

(3) ABLSTM-AFCN (Zhao et al., 2019): an approach 
that integrates an attention-combined bidirectional 
LSTM with an attention-combined fully convolutional 
network.

Refer to Table 3 for the comparative results.
From Table 3, it is observed that most current emotion 

recognition methods were based on deep learning, and they 
introduced more networks or the attention mechanism to the 
CNN-RN model to enhance the efficacy of emotion recog-
nition. However, these attempts did not yield satisfactory 

4.21% and 3.61% compared to using only MFCC, respec-
tively. Finally, when using the obtained 250-dimensional 
feature as input, the UAR was 70.31%, and the WAR was 
70.88%, showing improvements of 7.07% and 7.52%, 
respectively, compared to using the MFCC features alone. 
These results demonstrated the effectiveness of the fused 
features selected for English speech emotion identification.

The performance of the Skip-BiGRU structure was eval-
uated with the 250-dimensional feature as input (Fig. 4).

From Fig. 4, the combination of CNN and LSTM only 
achieved a UAR of 59.87% and a WAR of 59.64% on the 
IEMOCAP dataset, indicating that the model was weak in 
distinguishing between different emotion types. The UAR 
of CNN-GRU was 61.26%, and the WAR was 61.37%, 
which were improved by 1.39% and 1.73% respectively 
compared to the CNN-LSTM model, and this demonstrated 
the superiority of GRU over LSTM. Subsequently, the UAR 
of the CNN-BiGRU model was 65.33%, and the WAR 
was 65.26%, marking a further improvement of 4.07% 
and 3.89% compared to the CNN-GRU model. This result 
demonstrated the effectiveness of using BiGRU in feature 
learning. Finally, the CNN-Skip-BiGRU model attained 
a UAR of 70.31% and a WAR of 70.88%, surpassing the 
CNN-BiGRU model by 4.98% and 5.62%, respectively. 
This result indicated that using skip connections to opti-
mize BiGRU significantly improved the effectiveness of the 
model in recognizing emotions in English speech.

Table 3 Comparisons with other methods
UAR/% WAR/%

3D-CRNNs 60.93 61.98
Attention-BLSTM-FCNs + DNN 60.10 59.70
ABLSTM-AFCN 67.00 68.10
CNN-Skip-BiGRU 70.31 70.88

Fig. 4 Emotion recognition effect of different structural models
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for speech emotion recognition. Expert Systems with Applica-
tions, 218, 119633.

Ayadi, S., & Lachiri, Z. (2022). Visual emotion sensing using convolu-
tional neural network. Przeglad Elektrotechniczny, 98(3), 89–92.

Chattopadhyay, S., Dey, A., Singh, P. K., Ahmadian, A., & Sarkar, R. 
(2023). A feature selection model for speech emotion recogni-
tion using clustering-based population generation with hybrid of 
equilibrium optimizer and atom search optimization algorithm. 
Multimedia Tools and Applications, 82(7), 9693–9726.

Chen, Y., Liu, G., Huang, X., Chen, K., Hou, J., & Zhou, J. (2021). 
Development of a surrogate method of groundwater modeling 
using gated recurrent unit to improve the efficiency of param-
eter auto-calibration and global sensitivity analysis. Journal of 
Hydrology, 598(3), 1–16.

Guo, L., Wang, L., Dang, J., Chng, E. S., & Nakagawa, S. (2022). 
Learning affective representations based on magnitude and 
dynamic relative phase information for speech emotion recogni-
tion - ScienceDirect. Speech Communication, 136, 118–127.

Hansen, L., Zhang, Y. P., Wolf, D., Sechidis, K., Ladegaard, N., & 
Fusaroli, R. (2021). A generalizable speech emotion recognition 
model reveals depression and remission. Acta Psychiatrica Scan-
dinavica, 145(2), 186–199.

Hu, D., Chen, C., Zhang, P., Li, J., Yan, Y., & Zhao, Q. (2021). A two-
stage attention based modality fusion framework for multi-modal 
speech emotion recognition. IEICE Transactions on Information 
and Systems, E104.D(8), 1391–1394.

Hu, Z., Wang, L., Luo, Y., Xia, Y., & Xiao, H. (2022). Speech emotion 
recognition model based on attention CNN Bi-GRU fusing visual 
information. Engineering Letters, 30(2).

Hyder, H. (2021). The pedagogy of English language teaching using 
CBSE methodologies for schools. Advances in Social Sciences 
Research Journal, 8, 188–193.

Li, Z., Wang, S. H., Fan, R. R., Cao, G., Zhang, Y. D., & Guo, T. 
(2019). Teeth category classification via seven-layer deep con-
volutional neural network with max pooling and global average 
pooling. International Journal of Imaging Systems and Technol-
ogy, 29(4), 577–583.

Liu, L. Y., Liu, W. Z., Zhou, J., Deng, H. Y., & Feng, L. (2022). ATDA: 
Attentional temporal dynamic activation for speech emotion rec-
ognition. Knowledge-based Systems, 243(May 11), 1–11.

Nfissi, A., Bouachir, W., Bouguila, N., & Mishara, B. L. (2022). CNN-
n-GRU: End-to-end speech emotion recognition from raw wave-
form signal using CNNs and gated recurrent unit networks. In 
21st IEEE international conference on machine learning and 
applications (ICMLA), (pp. 699–702).

Niu, D., Yu, M., Sun, L., Gao, T., & Wang, K. (2022). Short-term 
multi-energy load forecasting for integrated energy systems based 
on CNN-BiGRU optimized by attention mechanism. Applied 
Energy, 313, 1–17.

Ocquaye, E. N. N., Mao, Q., Xue, Y., & Song, H. (2021). Cross lin-
gual speech emotion recognition via triple attentive asymmetric 
convolutional neural network. International Journal of Intelligent 
Systems, 36(1), 53–71.

Pandey, S. K., Shekhawat, H. S., & Prasanna, S. R. M. (2022). Atten-
tion gated tensor neural network architectures for speech emotion 
recognition. Biomedical Signal Processing and Control, 71(2), 
1–16.

Peng, Z., Zhu, Z., Unoki, M., Dang, J., Akagi, M. (2018). Auditory-
inspired end-to-end speech emotion recognition using 3D con-
volutional recurrent neural networks based on spectral-temporal 
representation. In 2018 IEEE international conference on, multi-
media, & expo. (ICME) (pp. 1–6), San Diego, CA, USA.

Ponmalar, A., & Dhanakoti, V. (2022). Hybrid whale tabu algorithm 
optimized convolutional neural network architecture for intrusion 
detection in big data. Concurrency and Computation: Practice 
and Experience, 34(19), 1–15.

results. The attention-BLSTM-FCNs + DNN model was 
the least effective among the compared methods, achiev-
ing 60.10% UAR and 59.70% WAR, respectively. The 
ABLSTM-AFCN model performed relatively well with 
67.00% UAR and 68.10% WAR, and the CNN-Skip-
BiGRU model attained 70.31% UAR and 70.88% WAR, 
outperforming the other methods. This result indicated the 
reliability of the proposed method in English speech emo-
tion identification, demonstrating its ability to distinguish 
between various emotions effectively.

5 Conclusion

This study proposes a CNN-Skip-BiGRU model for iden-
tifying emotions in English speech, which incorporates 
various features as inputs. Experiments on the IEMOCAP 
dataset revealed that the fused feature offered an effective 
characterization of emotion information in diverse Eng-
lish languages, leading to improved emotion recognition 
performance. Compared to LSTM and similar models, the 
Skip-BiGRU structure effectively enhanced the model’s 
capability to distinguish between different emotions, out-
performing other emotion recognition methods. These find-
ings suggest that the designed CNN-Skip-BiGRU method 
holds promise for practical applications in real-world Eng-
lish speech emotion recognition.

However, this study also has some limitations. For 
instance, it only focuses on the recognition of four emotions 
in the IEMOCAP dataset and fails to further validate the 
practicality of the method on a wider range of languages and 
more diverse datasets. Therefore, future work should take 
into account the issue of dataset balance, verify the reliabil-
ity of the proposed approach in recognizing a broader range 
of emotions, and conduct experiments on more extensive 
datasets.
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