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Abstract
The limited narrow frequency range of 300–3400 Hz used in public switched telephone networks causes a significant reduc-
tion of speech quality. To address this drawback, a new robust transform-domain speech bandwidth extension method is 
proposed in this paper. The method uses the discrete Cosine transform-based data hiding (DCTBDH) technique to provide a 
better-quality wideband speech signal. The spectral envelope parameters are extracted from the high-frequency components 
of speech signal existing above narrowband, which are then spread by using spreading sequences, and are embedded within 
the DCT coefficients of narrowband signal. A better-quality wideband signal is reconstructed using the extracted embedded 
information at the receiver end. In simulations, the high-quality wideband speech was obtained from speech transmitted over 
a public switched telephone network. The spectral envelope parameters of the high-frequency components of the speech 
signal are transparently embedded with a mean square error of 5.78 ×  10–4. In a mean opinion score (MOS) listening test, we 
verified that the proposed method yields improved perceptual transparency compared to conventional methods of about 0.21 
points on the MOS scale. The log spectral distortion value obtained was 2.2248 which showed that the proposed technique 
yields an improved quality of speech signal compared to conventional methods.

Keywords Discrete Cosine transform-based data hiding · Linear prediction · Speech bandwidth extension · Speech quality · 
Spread spectrum

1 Introduction

Most of the traditional telephone networks allow only a nar-
rowband (NB) signal which is band-limited to 300–3400 Hz. 
Usually, human speech contains frequencies far beyond 
the NB frequency range. Thus, the transmission of human 
speech through the networks leads to the muffled sound and 
poor-quality telephony speech. Wideband (WB) speech 
transmission in the range of 50–7000 Hz would be desir-
able for better speech quality. To allow WB speech services, 
the essential changes required within the network infrastruc-
ture are quite expensive and time-taking (Jax & Vary, 2006). 
This is happening to be a major hurdle for the transmission 
of high-quality speech in telephone networks. Therefore, it 

is very important to enable WB speech transmission using 
speech bandwidth extension (SBE) techniques to enhance 
the quality of speech (Jax, 2002).

Artificial bandwidth extension (ABE) is one among vari-
ous methods of SBE which improve the quality and intelligi-
bility of telephony speech (Jax, 2002). In this approach, the 
out-of-band information i.e. the frequencies below 300 Hz 
and above 3400 Hz are estimated from the NB signal. Exci-
tation signal and spectral envelop (SPENV) are estimated 
by most ABE techniques which are used to regenerate the 
out-of-band signal. Different approaches for extension of 
excitation signal are presented in (Jax, 2002; Prasad & 
Kishore Kumar, 2016). Different techniques for estimat-
ing WB SPENV are presented in Prasad & Kishore Kumar 
(2016), Zhen-Hua et al. (2018), Bong-Ki et al. (2018), Abel 
and Fingscheidt (2017), Yingwue et al. (2016). In Yuanjie 
Dong et al. (2020), a time–frequency network with channel 
attention and non-local modules is used for SBE. Latent rep-
resentation learning for ABE using a conditional variational 
auto-encoder is presented to enhance the speech quality in 
Pramod Bachhav et al. (2019). The time-domain multi-scale 
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fusion neural network approach for improving the perfor-
mance of SBE is presented in Xiang Hao et al. (2020). SBE 
using a conditional generative adversarial network with 
discriminative training is introduced in Jonas Sautter et al. 
(2019) to reconstruct the better-quality speech signal. The 
audio signal of better quality is regenerated in Mathieu and 
Felix (2020) using audio bandwidth extension aided by 
dilated convolutional neural network approach. In Kyoung-
jin and Joon et al. (2020), a deep neural network ensemble 
approach for reducing artificial noise in SBE is introduced. 
A waveform-based method for SBE that uses a deep three-
way split summation FFTNet architecture is proposed in 
Berthy Feng et al. (2019). In Johannes and Tim (2019), a 
time-domain ABE technique towards low-frequency band 
by a sinusoidal synthesis of missing harmonics is presented 
to enhance the quality of the reconstructed WB signal. A 
WaveNet-based model conditioned on a log-mel spectro-
gram representation of NB speech to reconstruct the bet-
ter quality speech signal is proposed in Archit Gupta et al. 
(2019). However, traditional ABE methods are suffering 
from reconstructing WB speech with high quality under all 
conditions (Jax & Vary, 2002).

Compared to ABE techniques, a WB speech with high 
quality is reconstructed when the out-of-band information 
is transmitted by hiding it in the NB signal using data hiding 
methods (Jax & Vary, 2006). Several techniques for SBE 
using data hiding are proposed in the state-of-the-art litera-
ture. An SBE technique is proposed in Jax and Vary (2006) 
to embed the encoded SPENV parameters of the lost speech 
frequency components within the NB signal. A better-qual-
ity WB signal is reconstructed at the receiver end using the 
embedded information. A much better-quality WB signal 
over (Chen & Leung, 2005) has been reconstructed in Chen 
& Leung (2007), where the spectral envelope parameters 
(SPEVPS) are efficiently encoded using phonetic classifica-
tion. The pitch-scaled frequencies of the out-of-band signal 
are embedded into the unused frequencies of traditional 
telephony speech to enhance the quality of reconstructed 
WB speech in Geiser and Vary (2013). The WB signal of 
better quality is regenerated in Bhatt and Kosta (2015), 
Geiser and Vary (2007), Kosta (2016) using joint source 
coding and data hiding technique. High-quality WB signal 
is reconstructed in Prasad and Kishore Kumar (2017), Sunil 
Kumar and Kishore Kumar (2019) using various frequency-
domain data hiding techniques. The enhancement in the 
quality of reconstructed WB speech is achieved by restor-
ing the hidden audible components of the out-of-band signal 
(Chen & Leung, 2007). The SPEVPS of an out-of-band sig-
nal is embedded into the NB signal bitstream to improve the 
quality of reconstructed WB speech in Chen et al. (2013). 
The WB signal of better quality is regenerated in Sagi and 
Malah (2007) using the quantization-based watermarking 
technique.

SBE techniques with data hiding are expected to deliver 
high-quality composite narrowband (CNB) alongside 
reconstructed wideband (RWB) signals. Also, these tech-
niques must be able to handle issues pertaining to quanti-
zation and channel noises. Nevertheless, most of the tra-
ditional techniques fail to provide high-quality CNB and 
RWB signals (Bhatt & Kosta, 2015; Chen & Leung, 2007; 
Chen & Leung, 2007; Chen et al., 2013; Geiser & Vary, 
2007, 2013; Jax & Vary, 2006; Kosta, 2016; Prasad & 
Kishore Kumar, 2017; Sagi & Malah, 2007; Sunil Kumar 
& Kishore Kumar, 2019). Also, they are less robust to 
channel and quantization noises. Thus, developing a novel 
SBE technique using data hiding is essential to improve 
the quality of CNB and RWB signals and more robust to 
channel and quantization noises.

An audio steganography technique is presented in Kanhe 
and Aghila (2016), used discrete Cosine transform (DCT)-
based data hiding technique to insert the secret message 
signal in DCT coefficients of a host speech signal without 
degrading the perceptual quality of the host signal. It was 
shown that this approach is producing a stego signal that is 
indistinguishable from the host signal while being able to 
reliably recover the secret message signal at the receiver end 
without any degradation in quality.

A novel SBE algorithm using the discrete Cosine trans-
form-based data hiding technique (Kanhe & Aghila, 2016) 
is proposed to embed the parameters of the lost speech fre-
quency components within the DCT coefficients of the NB 
signal. These hidden parameters are retrieved at the receiver 
side to produce a better-quality WB signal by combining 
the missing speech signal that was transmitted through the 
DCT coefficients and the NB signal. The proposed scheme 
uses the real missing speech information instead of its esti-
mation which makes the reconstruction of the WB speech 
more accurate compared to the conventional ABE methods. 
Furthermore, the proposed method is compatible with con-
ventional NB terminal equipment, e.g., a plain ordinary tel-
ephone set. In other words, conventional NB receivers can 
still access the NB speech properly without additional hard-
ware, while a customized receiver can extract the embedded 
information and provide WB signal with much better quality.

The telephone network channel introduces channel and 
quantization noises. Techniques proposed in Chen and 
Leung (2007), Geiser et al. (2005), Jax and Vary (2006) for 
SBE are considered only the quantization noise ignoring 
the channel noise. The quantization noise and channel noise 
effects are considered in this paper. The spread spectrum 
technique (Hasan et al. 1998) is used in this work for retriev-
ing the embedded information as it is claimed to be more 
robust against quantization and channel noises. In particular, 
each parameter to be inserted is spread by multiplying with 
a particular spreading sequence. The embedded informa-
tion is then formed by adding the spread signals. Due to 
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orthogonality among spreading sequences, the embedded 
information is retrieved reliably by using a correlator.

To minimize the interference caused by the other embed-
ded components, spreading sequences with low cross-cor-
relations are preferred. Hadamard codes have an optimal 
cross-correlation performance, i.e., orthogonal to each other, 
whereas the m-sequences, Gold-codes, and Kasami-codes 
are with varying cross-correlation properties (Dianan & 
Jabbari, 1998; Goldsmith, 2006). Because the Hadamard 
codes are well recognized by its optimal cross-correlation 
performance, it is employed in this work for minimizing 
the interference caused by the other embedded components.

The paper is ordered as follows. In Sect. 2, the DCTBDH 
method for SBE is introduced. The subjective and objective 
analyses are discussed in Sect. 3. Finally, in Sect. 4, conclu-
sions are summarized.

2  DCT‑based data hiding technique for SBE

2.1  Transmitter

The proposed transmitter is shown in Fig. 1. A speech 
signal designated as WB Swb(n) is sampled at a frequency 
of 16 kHz. This signal is further fragmented to form a low 
band signal using a low pass filter (LPF) and a high band 
signal using a high pass filter (HPF) respectively. The LPF 
extracts speech signal information that is present between 
0 and 4 kHz and is designated as low band signal while 
HPF extracts speech information that is present between 4 
and 8 kHz designated as high band signal. The LPF output 
is decimated by a factor of two to produce an NB signal 

Snb(n). The high band signal is decimated to produce an 
upper band (UB) signal Seb(n) . Therefore, 8 kHz is the 
sampling frequency of Snb(n) and Seb(n).

To imperceptibly embed Seb(n) in to Snb(n), the number 
of parameters that represents Seb(n) is minimized. Here, the 
linear predictive analysis (Hanzo et al., 2001) is employed 
to accomplish this target. Linear predictive analysis is based 
on the source-filter model of speech production. The linear 
predictive coefficients (LPC) are the reciprocal of the autore-
gressive filter coefficients. The LPC which correspond to the 
spectral envelope of Seb(n) are denoted asbi(i = 1,… , 10) , 
where i is the order of filter, which are found by using the 
Levinson-Durbin algorithm. The small variation in LPC 
results in substantial distortions when reconstructing Seb(n); 
hence LPC are modified into line spectral frequencies (LSF) 
(Hanzo 2001). Also, the gain ofseb(n) , denoted withGr , has 
to be embedded since synthesized UB speech has to be 
scaled to an appropriate energy to evade over-estimation 
(Nilsson & Kleijn, 2001). Thus, the representation vector 
which represents Seb(n) is formed by combining LSF and 
gain, i.e.,R =

[
LSF1, LSF2,……..,LSF10,Gr

]
.

The excitation parameters of Seb(n) are not embedded 
to reduce the number of parameters to be hidden. This is 
because, the ear is not very sensitive to distortions of the 
excitation signal at above NB (Jax & Vary, 2003). Thus, 
estimating the excitation of Seb(n) at the receiver from 
Snb(n) is well-suited for the reconstruction performance.

All the parameters of R is denoted with Di . One among all 
the parameters of R is then denoted with Di0 . Every param-
eter of R to be embedded is spread by multiplying it with a 
particular spreading sequence, i.e.,Di ⋅ p

→i, 1 ≤ i ≤ Q . The 
hidden data is then produced by adding all of these spread-
ing vectors and is given by

where gth element of p→i represented by pi(g). DCT is then 
applied on NB signal Snb(n) and can be expressed as

where

The last 16 coefficients of the DCT coefficients are 
replaced by V(g) resulting in a CNB signal spectrum 
(Kanhe & Aghila, 2016). To transform back the CNB 
signal spectrum to time-domain representation, inverse 
discrete cosine transform (IDCT) is applied on the CNB 
signal spectrum and can be expressed as

(1)V(g) =

Q∑
i=1

Dip
i(g)

(2)Snb(k) = w(k)

N−1∑
n=0

Snb(n)cos
(2n + 1)k�

2N
, k = 0toN − 1

w(k) =

√
1

N
if k = 0,w(k) =

√
2

N
otherwise

HPF down-sampling

channel

swb(n)

snb(n)

seb(n)

s1nb(n)

down-sampling

microphone

DCT
replace the last 16 DCT
coefficients by spreaded

parameters

spreading
sequences

gain

transform to LSFs

representation
vector

LPC

IDCT

LPF

Fig. 1  Proposed transmitter
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Thus, a CNB signal S1
nb
(n) is produced so that it can 

be communicated to the receiver on a telephone network 
channel.

A synchronization sequence like 111….0.11 is added 
after every frame of the CNB signal to achieve frame syn-
chronization (ETSI ES 201 2000) between the transmitter 
and receiver. The arrival of a new frame of the CNB signal 
at the receiver is indicated by the reception of a synchro-
nization sequence.

2.2  Receiver

The proposed receiver is shown in Fig. 2. The CNB signal 
received through a telephone network channel is noisy. 
Assume that the received signal is represented by Ŝ 1

nb
(n) 

i.e., Ŝ 1
nb
(n) = S1

nb
(n) + e . Where e represents the combina-

tion of channel and quantization noises. The conventional 
phone terminal treats Ŝ 1

nb
(n) as an ordinary signal. The NB 

signal quality is not noticeably degraded since there is a 
very small perceived difference between S1

nb
(n) and Ŝ 1

nb
(n) . 

Retrieval of the embedded data requires applying DCT on 
the CNB signal to obtain the DCT coefficients.

The spread parameters are then obtained from the last 
16 DCT coefficients (Kanhe & Aghila, 2016) and a cor-
relator is used to de-spread these parameters. Assuming a 
particular Ḓ i  is denoted as Ḓ io to be retrieved, the correla-
tion can be expressed as

(3)

Snb(n) =

N−1∑
k=0

w(k)Snb(k)cos
(2n + 1)k�

2N
, n = 0 to N − 1

where Ṿ (g) represents noisy V(g) and is given by

Equation (5) is substituted into Eq. (4), so that we have

The PN sequences are orthogonal. i.e.

where i ≠ io. Therefore

Also, since there was no correlation between pio(g) and 
e(g) i.e.

when Q → ∞ . Equations (7) and (8) are substituted into 
Eq. (6), thus we have

This reveals that the parameters which represent Ŝ eb(n) 
can be effectively recovered from using the SS technique 

Ḓ =
1
∑ Ṿ( )

=1

( )
(4)

Ṿ( ) = ( ) + ē( )

(5)

Ḓ =  
1

∑ Ṿ( )

=1

( )

=
1

Q

Q∑
g=1

pio(g)

(
Q∑
i=1

D̂ip
i(g) + e(g)

)

=
1

Q

Q∑
g=1

pio(g) ×

(
D̂iop

io(g) +
∑
i≠io

D̂ip
i(g) + e(g)

)

(6)= D̂io +
1

Q

Q∑
g=1

∑
i≠io

D̂ip
i(g)pio(g) +

1

Q

Q∑
g=1

pio(g)e(g)

Q∑
g=1

pi(g)pio(g) = 0

(7)
Q∑
g=1

∑
i≠io

D̂iop
i(g)pio =

∑
i≠io

D̂io

Q∑
g=1

pi(g)pio(g) = 0

(8)
1

Q

Q∑
g=1

pio(g)e(g) = 0

Ḓ = Ď
(9)
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Fig. 2  Proposed receiver
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and then the LPC are obtained from LSF. Meanwhile, NB 
residual signal is obtained by inverse filtering Ŝ 1

nb
(n) using 

LPC of Ŝ 1
nb
(n) and then obtain the UB excitation signal by 

extending the NB residual signal. The UB signal Ŝ eb(n) that 
was embedded is synthesized by exciting the synthesis filter 
described by the recovered LPC by a UB excitation signal. 
The received CNB and reconstructed UB signals are sam-
pled at an 8 kHz sampling rate. These signals are then inter-
polated by a factor of two. S1

eb
(n) , represents interpolated 

Ŝ eb(n) signal. The interpolated CNB ( S11
nb
(n) ) and UB S1

eb
(n) 

signals are added up for reproducing a WB signal ( S1
wb
(n) ) 

of good quality.

3  Experimental results

The speech utterances used for the performance evaluations 
of traditional and proposed SBE techniques were obtained 
from the TIMIT database (Garofalo et al., 2013). The evalu-
ations were done by taking thirty different speech utterances 
which were spoken by thirty female and male speakers. The 
performance assessment of the methods was done by con-
sidering the subjective as well as objective measures. Each 
speech signal was split to form frames of 20 ms long and 
between frames an overlap of 10 ms was maintained. Each 
frame was processed individually. Existing SBE algorithms 
like data hiding (Chen & Leung, 2005), phonetic classifica-
tion (Chen & Leung, 2007), audio watermark (Chen et al., 
2013), steganographic WB telephony (Bhatt & Kosta, 2015), 
magnitude spectrum data hiding (Prasad & Kishore Kumar, 
2017), and transform domain data hiding (Sunil Kumar & 
Kishore Kumar, 2019) were compared with the proposed 
method. Additive white Gaussian noise (AWGN) and µ-law 
channel models were used for analysis.

3.1  Subjective listening test results

The perceptual transparency was assessed with the mean 
opinion score (MOS) test (Chen & Leung, 2005, 2007). The 
subjective comparison between WB, CNB, NB, and RWB 
signals was also employed (Prasad & Kishore Kumar, 2017). 
Each person is made to hear the speech utterances through 
headphones in a silent chamber. An evaluation was done 
using a predefined scale by examining participant’s views on 
speech sounds. Thirty persons have participated in the tests.

3.1.1  Perceptual transparency

The CNB and NB signals have to be similar sounds. The per-
ceptual transparency was assessed with the MOS test. While 
comparing CNB and NB signals the listener comes out with 
a decision in terms of MOS as given in Table 1. The average 

MOS values of traditional (Bhatt & Kosta, 2015; Chen & 
Leung, 2005, 2007; Chen et al., 2013; Prasad & Kishore 
Kumar, 2017; Sunil Kumar & Kishore Kumar, 2019) and 
the proposed techniques are given in Table 2. The proposed 
technique gave a MOS value of 3.99 which indicates that the 
proposed technique has excellent perceptual transparency 
over the traditional techniques. The proposed technique gave 
a MOS value of 3.99 which was almost near the standard 
MOS value of 4 which indicates that CNB and NB signals 
were more or less identical.

3.1.2  Subjective comparisons between WB, NB, CNB, 
and RWB speech samples

A listening test was done for comparing performances 
between the proposed and conventional methods (Bhatt & 
Kosta, 2015; Chen & Leung, 2005, 2007; Chen et al., 2013; 
Prasad & Kishore Kumar, 2017; Sunil Kumar & Kishore 
Kumar, 2019). Here, WB signal, NB signal, CNB signal, 
and RWB signal were labelled I, II, III, and IV respectively. 
Participants are asked to do a pairwise comparison between 
the samples to tell whether the first sample was superior to, 
inferior than, or equal to the second. The responses after 
comparing I, II, and III with the other signals respectively 
are tabulated in Table 3, 4, 5. The number of participants 
with a specific preference is indicated by Arabic numerals in 
the table. It is observed that WB signal is superior to NB and 
CNB signals of traditional and the proposed methods from 
Table 3. Also, we observe that RWB signal quality is far 

Table 1  MOS

Score Instruction

1 NB and CNB signals sound different
2 Observable difference between

NB and CNB Signals
3 Minute difference between

NB and CNB Signals
4 NB and CNB

Signals sound alike

Table 2  Result of MOS

Method Value

Data hiding (Chen & Leung, 2005) 2.89
Phonetic classification (Chen & Leung, 2007) 3.07
Audio watermark (chen et al., 2013) 3.18
Side information (Bhatt & Kosta, 2015) 3.54
Magnitude spectrum (Prasad & Kishore Kumar, 2017) 3.63
Transform domain (Sunil Kumar & Kishore Kumar, 2019) 3.74
Proposed method 3.99
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Table 3  Subjective comparison 
test results between I, II, III, 
and IV

Method I II III IV

Data hiding (Chen & Leung, 2005) ⊳ 30 30 14
⊲ 0 0
≈ 0 0 16

Phonetic classification (Chen & Leung, 2007) ⊳ 30 30 12
⊲ 0 0 0
≈ 0 0 18

Audio watermark (Chen et al., 2013) ⊳ 30 30 11
⊲ 0 0 0
≈ 0 0 19

Side information (Bhatt & Kosta, 2015) ⊳ 30 30 9
⊲ 0 0 0
≈ 0 0 21

Magnitude spectrum (Prasad & Kishore Kumar, 2017) ⊳ 30 30 7
⊲ 0 0 0
≈ 0 0 23

Transform domain (Sunil Kumar & Kishore Kumar, 2019) ⊳ 30 30 6
⊲ 0 0 0
≈ 0 0 24

Proposed method
⊳ 30 30 2
⊲ 0 0 0
≈ 0 0 28

Table 4  Subjective comparison test results between II, III, and IV

II III IV

Data hiding (Chen & Leung, 2005) ⊳ 8 3
⊲ 4 18
≈ 18 9

Phonetic classification (Chen & Leung, 2007) ⊳ 8 1
⊲ 2 19
≈ 20 10

Audio watermark (Chen et al., 2013) ⊳ 5 2
⊲ 3 20
≈ 22 8

Side information (Bhatt & Kosta, 2015) ⊳ 5 2
⊲ 2 22
≈ 23 6

Magnitude spectrum (Prasad & Kishore Kumar, 
2017)

⊳ 4 1

⊲ 2 23
≈ 24 6

Transform domain (Sunil Kumar & Kishore Kumar, 
2019)

⊳ 3 1

⊲ 2 24
≈ 25 5

Proposed method
⊳ 2 0
⊲ 0 27
≈ 28 3

Table 5  Subjective comparison test results between III and IV

III IV

Data hiding (Chen & Leung, 2005) ⊳ 6
⊲ 18
≈ 6

Phonetic classification (Chen & Leung, 2007) ⊳ 5
⊲ 17
≈ 8

Audio watermark (Chen et al., 2013) ⊳ 3
⊲ 18
≈ 9

Side information (Bhatt & Kosta, 2015) ⊳ 4
⊲ 20
≈ 6

Magnitude spectrum (Prasad & Kishore Kumar, 2017) ⊳ 2
⊲ 23
≈ 5

Transform domain (Sunil Kumar & Kishore Kumar, 2019) ⊳ 2
⊲ 24
≈ 4

Proposed method
⊳ 0
⊲ 29
≈ 1



703International Journal of Speech Technology (2022) 25:697–706 

1 3

superior using the proposed method over traditional methods 
from Table 3. Thus, the speech quality was enhanced by the 
proposed technique. Compared to traditional methods, it is 
observed that the RWB signal of the proposed method is 
superior to that of NB signal, as may be seen from Table 4. 
Also, a clear perceptual transparency improvement of 
the proposed method over the conventional methods was 
observed from Table 4 which shows that the quality of CNB 
signal is almost identical to that of NB signal. Obviously, the 
data embedding performed in the proposed method has very 
little impact on perception. Compared to conventional meth-
ods, it is observed that RWB speech of proposed technique 
is better than CNB speech from Table 5. Thus, the proposed 
method is demonstrated to produce a much better-quality 
speech signal than the conventional methods.  

3.2  Objective quality evaluations

The database which was used in subjective listening tests 
was also used in evaluating objective measures. The per-
ceptual transparency was assessed with the narrowband-
perceptual evaluation of speech quality (NB-PESQ) measure 
(ITU-T, 2001). RWB speech quality was evaluated with the 
Log Spectral Distortion (LSD) (Chen & Leung, 2005, 2007) 
and wideband-perceptual evaluation of speech quality (WB-
PESQ) measures (ITU-T, 2005). The robustness of hidden 
data against quantization and channel noises was evaluated 
with the help of a mean square error (MSE) measure (Chen 
& Leung, 2007).

3.2.1  RWB speech quality

The quality of RWB speech is evaluated using LSD measure 
and is calculated using the formula

where �p is the gain of UB signal, 1

as(ejw)
 is the SPENV of UB 

signal, ĝp is the gain of the reconstructed UB signal and 
1

âs(ejw)
 is the SPENV of the reconstructed UB signal respec-

tively. An RWB signal with the least value of LSD is said to 
be of good quality. The resultant LSD for conventional 
(Bhatt & Kosta, 2015; Chen & Leung, 2005, 2007; Chen 
et al., 2013; Prasad & Kishore Kumar, 2017; Sunil Kumar 
& Kishore Kumar, 2019) and proposed techniques with a 
µ-law channel model are presented in Table 6 and it was very 
evident that the RWB signal quality of the proposed tech-
nique was far superior to the signal quality generated using 

(10)

LSD =
1

2𝜋∫
𝜋

−𝜋

⎛⎜⎜⎝
20𝑙𝑜𝑔10

�p

as
�
ejw

� − 20𝑙𝑜𝑔10

ĝp

���âs
�
ejw

����

⎞⎟⎟⎠

2

dw

conventional techniques. In addition, the proposed technique 
offers an LSD of 2.2248 indicating that RWB speech of the 
proposed technique and original WB speech qualities are 
almost equal. Good RWB signal performance of the pro-
posed technique which was already found in the subjective 
tests is now supported by these LSD values also. The pro-
posed technique offers an LSD of 2.35 with the AWGN 
channel model.

3.2.2  Perceptual transparency

The evaluation of perceptual transparency is done by 
providing NB and CNB signals as inputs and compar-
ing them to rate speech quality. The NB-PESQ value will 
range between 0.5 and 4.5, where the higher the value, the 
more superior the quality. The average NB-PESQ values 
of conventional (Bhatt & Kosta, 2015; Chen & Leung, 
2005, 2007; Chen et al., 2013; Prasad & Kishore Kumar, 
2017; Sunil Kumar & Kishore Kumar, 2019) and proposed 
methods are tabulated in Table 7. The proposed technique 
gave NB-PESQ value of 4.47 which indicates that the pro-
posed technique has excellent perceptual transparency over 
traditional techniques, which was already confirmed by 
subjective listening tests.

In Fig. 3, the upper plot a depicts the spectrogram of 
NB speech ynb(n) , whereas the lower plot b depicts the 
spectrogram of the CNB signal y1

nb
(n) . It is clear from the 

figures that ynb(n) and y1
nb
(n) are almost indistinguishable.

Table 6  LSD test results

Method Value

Data hiding (Chen & Leung, 2005) 12.83
Phonetic classification (Chen & Leung, 2007) 10.69
Audio watermark (Chen et al., 2013) 6.07
Side information (Bhatt & Kosta, 2015) 5.94
Magnitude spectrum (Prasad & Kishore Kumar, 2017) 4.45
Transform domain (Sunil Kumar & Kishore Kumar, 2019) 3.83
Proposed method 2.2248

Table 7  NB-PESQ test results

Method Value

Data hiding (Chen & Leung, 2005) 2.87
Phonetic classification (Chen & Leung, 2007) 3.07
Audio watermark (Chen et al., 2013) 3.42
Side information (Bhatt & Kosta, 2015) 3.45
Magnitude spectrum (Prasad & Kishore Kumar, 2017) 3.78
Transform domain (Sunil Kumar & Kishore Kumar, 2019) 3.89
Proposed method 4.47
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3.2.3  Robustness of embedded information

AWGN with SNR ranges between 15 and 35 dB (Keiser and 
Strange 2017) is added to the CNB signal. The evaluation of 
the robustness of the proposed technique is done by utilizing 
MSE and is calculated using the formula.

where the RWB signal is represented by S1
wb
(n) and the 

original WB signal is represented by Swb(n) . The spreading 
sequence length is 16. An RWB signal with a small value of 
MSE is said to be of good quality. The proposed technique 
gave MSE values, as a function of SNR ranges between 15 
and 35 dB, which are below 7.7083 ×  10–4 indicating that the 
RWB signal quality obtained by the proposed technique is 
excellent. The proposed technique gave an MSE value after 
adding quantization noise (μ-law) to s1

nb
(n) is 5.78 ×  10–4 

which indicates RWB signal quality that was obtained by 
the proposed technique is excellent.

3.2.4  WB speech quality

The evaluation of the quality of RWB speech is done by giv-
ing WB and RWB signals as inputs and comparing them in 
order to rate speech quality. The average WB-PESQ values 
of the conventional (Bhatt & Kosta, 2015; Chen & Leung, 
2005, 2007; Chen et al., 2013; Prasad & Kishore Kumar, 
2017; Sunil Kumar & Kishore Kumar, 2019) and proposed 
methods are shown in Table 8. A WB-PESQ value of 4.45 
confirms that the RWB signal quality that was obtained by 
the proposed technique is excellent compared to traditional 
techniques, which was already confirmed by subjective 

(11)MSE =
1

N

N−1∑
n=0

(
S1
wb
(n) − Swb(n)

)2

listening tests on a set of participants. Thus, the speech qual-
ity was improved by using the proposed technique.

4  Conclusions

In this paper, SBE utilizing the DCTBDH technique for 
extending the bandwidth of the existing NB telephone net-
works has been proposed. The spread spectral envelope 
parameters of the UB signal are embedded within the DCT 
coefficients of the NB signal at the transmitter. The embed-
ded information is extracted at the receiver end to recon-
struct the WB signal of good quality.

The spread spectrum technique is employed to increase 
the robustness of the embedded UB signal to quantiza-
tion and channel noises by spreading the spectral envelope 
parameters by multiplying them with spreading sequences 
and then adding them up together to provide the embed-
ded information. The embedded information can be reliably 
recovered by using a correlator. The robustness of the pro-
posed method to quantization and channel noises is con-
firmed by MSE test. The MOS and NB-PESQ test values 
obtained for the proposed method indicate that the method 
embeds the UB information more transparently compared 
to the conventional methods. The RWB signal quality was 
enhanced by the proposed technique over conventional tech-
niques and it was evident through subjective listening, LSD 
and WB-PESQ tests. The proposed method is demonstrated 
to produce a much better-quality speech signal than the con-
ventional techniques. Hence it is suitable for extending the 
bandwidth of the existing telephone networks without mak-
ing changes to the telephone networks.
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