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Abstract
In modern telecommunication systems the presence of noise in background degrades the overall intelligibility and quality of 
the speech signal. The problem of enhancing speech signals and reducing acoustic noise from the noisy environment using 
adaptive filtering algorithms with incorporation of blind source separation approach has drawn a particular attention in the 
recent past. In this paper a dual channel double backward distributive weighted adaptive filtering algorithm is proposed 
for speech quality enhancement. The proposed method has been evaluated using the objective measures such as Perceptual 
Evaluation of Speech Quality (PESQ) and Short Time Objective Intelligibility (STOI) in different noise setup and the results 
achieved indicate that this is a better method for speech quality improvement.

Keywords Adaptive filtering · Speech quality · Noise reduction · Speech enhancement

1 Introduction

For the purpose of speech quality improvement and acoustic 
noise reduction, a number of approaches have been proposed 
in the literature. The least-mean-square family (LMS and 
normalized LMS) are the popular ones (Ozeki & Umeda, 
1984; Widrow & Hoff, 1960), because of their simplicity 
and robust performance. The blind source separation scheme 
(BSSS) is one of the efficient methods, which has shown 
good performances. These methods usually estimate the 
original source signals using the information of mixture 
signals from available input channels. Recently, this BSS 
scheme has been combined with adaptive filtering mech-
anism for enhancing the speech signal and to reduce the 
acoustic noise. Several two-channel BSS techniques were 
proposed to enhance noisy speech, basing on adaptive filters 
(Bendoumia & Djendi, 2015; Djendi & Bendoumia, 2013, 
2014; Mitra, 2020).

The adaptive identification of unknown impulse response 
in the cross coupling filters is quite equivalent to blind 

source separation problem (Gerven & Compernolle, 1995; 
Mitra, 2020). This same principle of full band algorithms 
is valid and used with sub band techniques as well using 
analysis and synthesis filter banks employing decimation 
and interpolation processes that yields better performance. 
Speech signal noise removal (Shrawankar & Thakare, 2010) 
utilized an optimal filtering technique with consideration of 
time or transform domain technique. This developed filter-
ing approach estimate the noise signal and helps reducing 
the signal noise with improved speech signal characteristics.

Two channel forward blind source separation is one such 
speech quality enhancement method, which uses two mixed 
signals measured at two distinct points, to implement speech 
quality improvement. In a two channel forward blind source 
separation, two adaptive finite impulse response filters 
(FIR) are used to obtain the speech signal estimate from two 
mixtures of speech and noise. Adaptive filters are usually 
updated using a forward normalized least mean square algo-
rithm (Priyanka Kajla & George, 2020). Speech enhance-
ment by the consideration of different statistical character-
istic properties of noise on the basis of noise classification 
is presented in Adam and Babikir,  (2020).

Enhancement algorithms generally endeavor noise suppres-
sion and late reverberation, as early reverberation is perceived, 
not as a separate sound source and usually improves speech 
quality and intelligibility. An adaptive denoising and derever-
beration kalman filtering framework that tracks the speech and 

 * V. Srinivasarao 
 sraoyaar@yahoo.co.in

 Umesh Ghanekar 
 ugnitk@nitkkr.ac.in

1 ECE Department, National Institute of Technology, 
Kurukshetra, Haryana, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-021-09894-0&domain=pdf


832 International Journal of Speech Technology (2022) 25:831–836

1 3

reverberation spectral log-magnitudes is presented in Nico-
las and Mike B”,  (2019). Computational complexity of fast 
transversal filtering algorithm can be further reduced where 
the adaptation gain is obtained by discarding completely the 
forward and backward predictors (Benallal & Arezki, 2014).

Several adaptive algorithms were presented earlier in 
order to reduce noise and enhance the speech signal (Djendi 
et al., 2007) (Rakesh & Kumar, 2015). The popular algo-
rithms are the recursive least square RLS (Cioffi & Kailath, 
1984) 16] and the least mean square LMS and its normal-
ized version (Al-Kindi & Dunlop, 1989; Bashar, 2019; 
Manoharan, 2019). The NLMS algorithm is famous for its 
ease of implementation and less computational complexity 
in comparison with the RLS. However the RLS has better 
convergence speed. Another approach that is widely used in 
literature to resolve the problem of corrupted speech signals 
is the blind source separation (BSS) techniques. Two widely 
employed BSS structures are forward BSS and backward 
BSS. These structures are often combined with different 
adaptive algorithms and used for applications such as acous-
tic noise reduction and speech enhancement (Mirchandani 
et al., 1992) (Ghribi et al., 2016).

In (Sayoud et al., 2018), fast NLMS (FNLMS) algorithm 
combined with the FBSS structure has been presented that 
showed best performance in comparison with the classical 
double forward NLMS (DNLMS) one. Classical LMS adap-
tive algorithms suffer from weak performance for nonsta-
tionary signals and RLS algorithms suffer from large compu-
tational complexity. In (Rahima et al., 2018) a dual backward 
adaptive algorithm has been presented that employs simpli-
fied fast transversal filter structure and forward prediction 
to calculate the adaptive gain to yield better values for com-
putational metrics.

In this paper, double backward distributive weighted 
adaptive filtering approach is proposed for speech quality 
improvement by way of a two channel convolutive mixture 
model. In this scheme, two mixed speech signals are used as 
inputs to estimate the original signals which created these 
mixtures.

The rest of the paper is organized as follows: The devel-
opment of the proposed method is presented in Sect. 2. Sec-
tion 3 provides discussion on the simulated results and the 
performance evaluation of this proposed method with con-
sidered objective measures and the concluding remarks are 
drawn in Sect. 4.

2  Proposed method of speech enhancement

As discussed earlier, the speech quality in the hearing 
devices can be enhanced by employing double microphone 
sound acquisition. With this motivation the proposed method 
has been presented.

In this section, the proposed method for speech quality 
improvement is presented with mathematical formulations. 
In a two channel two microphone model scenario (Priyanka 
Kajla & George, 2020) may be considered equivalent to the 
comprehensive convolutive mixing model shown in Fig. 1.

Here s(n) is the speech signal and i(n) is the noise. These 
signals are passed through the mixture model with two 
forward impulse responses and two cross coupled impulse 
responses. In order to simplify the depicted model further, 
unit impulse response considered for the forward paths and 
additional background noise is assumed zero. Under this 
generalization, the outputs y1(n) and y2(n)  of the mixture 
models are given by

Now these mixture signals are passed through an adap-
tive filtering block for speech enhancement. This block will 
deconvolve the mixture signals (Sayoud et al., 2018) using 
two adaptive filters with variable step sizes and a variable 
updation algorithm as shown in Fig. 2.

The deconvolved signals are denoted as z1(n)  and z2(n)  
respectively with the corresponding weights of the adaptive 
filters as

(1)y1(n) = s(n) + h21(n) ∗ i(n)

(2)y2(n) = i(n) + h12(n) ∗ s(n)

(3)
p21(n) =

[
p21;0(n), p21;1(n), p21;2(n),…… ..p21;M − 1(n)

]T

ℎ21( )
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Fig. 1  Complete convolutive mixing model
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These weights are updated in order to remove the signal 
content from the noise correlated component. Now the esti-
mated output speech is given as

w h e r e  z2(n)  =  [ z2(n), z2(n − 1) , z2(n − 2)

…………z2(n −M + 1)]T is the tapped delay mixed sig-
nal. In a similar way, noise estimation is done. In the blind 
deconvolution procedure the weights of two adaptive fil-
ters p12(n) and p21(n) are updated (Rahima et al., 2018) 
using normalized least mean square algorithm and here the 
weights are updated as follows.

here k1(n) and k2(n) are the adaptation gain vectors with 
variable step sizes(σ1,σ2), which are calculated from the 
likelihood variables and kalman gain. The above update 
rules are termed as double backward normalized least mean 
square in this paper. The cross coupling model used for the 
mixing is a familiar acoustic path model where in impulse 
response will be generally smaller in nature. So as to take 
the advantage over these impulse responses, a new updating 
rule may be derived as

where λ and ε are the loss factors for the update filters while 
minimizing the cost functions. The adaptation gains k1(n) 

(4)
p12(n) =

[
p12;0(n), p12;1(n), p12;2(n),…… ..p12;M − 1(n)

]T

(5)z1(n) = y1(n) − ���T z2(n)

(6)���(n) = ���(n) + �1y2(n)k2(n)z1(n)

(7)���(n) = ���(n) + �2y1(n)k1(n) z2(n)

(8)p21(n + 1) = p21(n) − y2(n)k2(n).z1(n) − �
{
rect(p21(n))∕|| p21(n)||2

}

(9)p12(n + 1) = p12(n) − y1(n)k1(n).z2(n) − �
{
rect(p12(n))∕|| p12(n)||2

}

and k2(n) are obtained by using the calculation of dual 
kalman variables while discarding the forward and back-
ward predictors.

3  Simulation results

For the purpose of the simulation of the proposed method, 
speech signal is taken from GRID corpus database and 
noise is taken from NOISEX92 database. Simulation 
parameters have been computed for different input SNR 
scenarios are PESQ (Rix et al., 2001) and STOI (Taal 
et al., 2010), both have shown significant improvement. 
PESQ is used for evaluating the quality of the processed 
speech. The higher the PESQ score, the better will be the 
quality. The short time objective intelligibility is used to 
evaluate intelligibility of speech. The STOI is shown to 
have a high correlation with the speech intelligibility. The 
larger the STOI score, the more intelligible will be the 
speech. The simulation results for babble noise are pre-
sented in the following Tables 1, 2 and are compared with 
the available methods (Raj, 2019). The computed PESQ 
and STOI performance measures are depicted graphically 
in the following Figs. 3 and 4.

The simulation results for white noise are presented in 
the following Tables 3, 4 and are compared with the exist-
ing methods (Raj, 2019).

From the Figs. 5 and 6 presented above, it is clearly 
evident that PESQ and STOI scores have improved 

Fig. 2  Deconvolution (filter-
ing) mechanism with updation 
process
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Table 1  Comparison of the 
results of PESQ for different 
methods

Input SNR 
(dB)

Noisy Ref.A Ref.B Pro.A Pro.B Proposed

− 5 1.4755 1.6104 1.5334 1.7323 1.8131 1.9015
0 1.7705 1.9263 1.9018 2.1343 2.1923 2.2643
5 2.1332 2.2207 2.2861 2.5266 2.5725 2.6874
10 2.4865 2.5756 2.6562 2.8642 2.9134 3.0121

Table 2  Comparison of the 
results of STOI for different 
methods

Input SNR 
(dB)

Noisy Ref.A Ref.B Pro.A Pro.B Proposed

− 5 0.5353 0.5563 0.4855 0.5683 0.5816 0.6092
0 0.6494 0.6894 0.6196 0.7271 0.7396 0.7512
5 0.7563 0.8072 0.7325 0.8362 0.8373 0.8496
10 0.8578 0.8796 0.8252 0.9043 0.9142 0.9279

0

0.5

1

1.5

2

2.5

3

3.5

-5dB 0dB 5dB 10dB

Noisy

Ref.A

Ref.B

Pro.A

Pro.B

Proposed

P
E

S
Q

 S
co

re

Input SNR

Fig. 3  PESQ Score comparison for babble noise in different SNR 
scenario
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Fig. 4  STOI Score comparison for babble noise in different SNR sce-
nario

significantly, in comparison to the existing methodologies. 
The performance metrics used here hold the highest scores 
for all the conditions.

In the conventional speech enhancement methods, it is easy 
to take out the harmonic structure at high frequencies owing 
to its weak energy so that quality and intelligibility is reduced. 
Considering the temporal relevance of the speech spectra 
between the adjacent frames and the application of double 
backward least mean square algorithm to update the weights 
of the adaptive filter which result in better noise removal, 
assist in attaining the better results by the proposed method.

4  Concluding remarks

In this paper, a double backward distributive weighted adap-
tive filtering scheme has been proposed for quality improve-
ment of the speech signal. The proposed approach provides 
significant lead over the distributive nature of the impulse 
responses used in the mixing scenario. This scheme has been 
shown to provide improved speech quality with babble and 
white noise simulation in terms of PESQ and STOI when 
compared to the traditional methods. Hence, this is a better 
method for speech enhancement in terms of speech quality 



835International Journal of Speech Technology (2022) 25:831–836 

1 3

and intelligibility. This method can be implemented for the 

effectiveness by incorporating a modified filter structure as 
well as with the other database signals.
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