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Abstract
Local binary pattern (LBP)-based features for bird sound classification were investigated in this study, including both one-
dimensional (LBP-1D) and two-dimensional (LBP-2D) local binary patterns. Specifically, the discrete wavelet transform 
was first used as a pooling method to generate multi-level features in both time (LBP-1D-T) and frequency domain (LBP-
1D-F) signals. To obtain richer time–frequency information of bird sounds, uniform patterns (LBP-2D) were extracted from 
the log-scaled Mel spectrogram. To fully exploit the complementarity of different LBP features, a hybrid fusion method 
was implemented. Next, neighborhood component analysis (NCA) was employed as a feature selection method to remove 
redundant information in the fused feature set. In order to reduce the running time of NCA and improve the classification 
accuracy, an improved feature selection method (DSNCA) was proposed. Finally, two machine learning algorithms: K-nearest 
neighbor and support vector machine were used for classification. Experimental results on 43 bird species of North Ameri-
can wood-warblers indicated that LBP-2D achieved a higher balanced-accuracy than LBP-1D-T and LBP-1D-F (86.33%, 
81.05% and 70.02%, respectively). In addition, the highest classification accuracy was up to 88.70%, using hybrid fusion.

Keywords  Bird sound classification · Local binary pattern · Wavelet decomposition · Hybrid fusion

1  Introduction

The bird population worldwide is declining in recent years, 
due to ecological destruction. As an important indicator of 
biodiversity, enforcing protection measures for the birds is 
necessary. To this end, the first step is monitoring bird activ-
ity. In nature, many organisms, especially birds, often make 
sounds. These signals may be an effective way to monitor 

individuals or populations. Nowadays, the monitoring of 
bird biodiversity is mainly carried out by experts, who usu-
ally use auditory signals to obtain bird species information 
(Salamon et al., 2016). However, this process is both time-
consuming and costly, and there are many limitations about 
human monitoring, such as the variability of the monitor-
ing skills of the observer (Emlen & DeJong, 1992; Hutto & 
Stutzman, 2009; Rosenstock et al., 2002).

The development of acoustic sensor technology has ena-
bled recording of the vocalization of bird species through 
the autonomous deployment of wireless acoustic sensor net-
works, which can be analyzed by machine listening tech-
niques to gain information such as composition and number 
of bird populations (Salamon et al., 2016). The ability to 
monitor bird biodiversity can thus be greatly improved and 
this information can be applied to several fields including 
ecology and conservation biology (Bairlein, 2016; Loss 
et al., 2015). A unique advantage of sound monitoring is that 
the composition of the species can be known, regardless of 
the time and location of the sensor network deployment. A 
special application of this automated system involves moni-
toring the night migration of birds.
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Some vocalizations from migratory birds are called flight 
calls, which are specific calls produced by birds during their 
continuous flight (i.e., nocturnal migration). Different from 
general bird calls, flight calls are mainly single note sounds, 
generally less than 200 ms in length (Salamon et al., 2016). 
By detecting and classifying bird calls during their night 
migration in the Americas, information about bird species 
and populations in the migration can be obtained, which is a 
potential tool for studying the migration movement of birds 
(Marcarini et al., 2008).

At present, the research on night migration of birds has 
mainly used weather surveillance radars and isotope track-
ing. Among them, weather surveillance radars provide the 
density, speed and direction of bird movement. However, 
there is no information on species composition actually 
migration (Farnsworth et al., 2014). Stable isotope track-
ing of the fluctuations in key elements to define movements 
of birds (Kays et al., 2015; Stanley et al., 2015) is gener-
ally carried out only during the daytime, but its effect at 
night is very limited (Salamon et al., 2016). Therefore, an 
automatic bird sound classification system can be used as a 
supplementary solution for monitoring the night migration 
of birds, producing information on specific species, unable 
to be provided by the previous methods.

Significant differences in number and sound activity 
exist for different bird species, which complicate collec-
tion of sounds from certain birds, such as the Kentucky 
Warbler, Colima Warbler and Wilson’s Warbler (Salamon 
et al., 2016). Therefore, the dataset of flight calls is gener-
ally imbalanced. For flight call recognition, the presence 
of background noise will affect the ability of identify spe-
cies vocalizations. Even experts in animal acoustics cannot 
guarantee the correct distinction, leading to label uncertainty 
(Lostanlen et al., 2019). Meanwhile, for fully automated bird 
sound monitoring, the system needs to be able to distinguish 
between flight calls and natural sounds, such as geologi-
cal sounds (e.g. wind, rain), biological sounds (e.g. cricket, 
frog) and human sounds (e.g. speech, transportation). For 
these reasons, flight call recognition remains a problem for 
further study.

In this study, an end-to-end approach for classifying bird 
species in continuous recordings using local binary pattern 
(LBP)-based features is proposed, which consists of three 
steps: LBP-based feature generation, including LBP-1D and 
LBP-2D, feature selection using improved neighborhood 
component analysis (DSNCA) and classification using two 
machine learning algorithms: K-nearest neighbor (KNN) 
and support vector machine (SVM). Finally, a hybrid fusion 
method is performed, to fully exploit the complementarity 
of different LBP features. To the best of the authors’ knowl-
edge, this is the first time a LBP-based audio classification 
technique has been applied to flight call classification.

The contributions of this work are as follows: (1) A shal-
low LBP-based approach for bird species classification is 
proposed. (2) We concatenate multi-level LBP features from 
both time and frequency domains, which can describe bird 
sounds in different ways. (3) An improved feature selection 
method (DSNCA) is proposed, which reduces feature selec-
tion time, while improving the classification performance 
of the model.

The remainder of this article is structured as follows: 
the related work for bird sound classification is described 
in Sect. 2. The LBP-based method for flight call recogni-
tion, which includes data description, feature extraction, 
feature selection and classification, is presented in Sect. 3. 
The class-based late fusion is explained in Sect. 4. Experi-
mental results and discussion are reported in Sect. 5 and 
6, respectively. Finally, the conclusion and future work are 
presented in Sect. 7.

2 � Related work

Over recent years, feature extraction techniques and clas-
sification models for bird sound classification have been 
a popular research topic. Schrama et al. (2007) proposed 
extraction of seven acoustic features and searching for the 
optimal match by Euclidian Distance to classify 12 bird spe-
cies. The investigated features consisted of call duration, 
highest frequency, lowest frequency, loudest frequency, aver-
age bandwidth, maximum bandwidth and average frequency 
slope. Marcarini et al. (2008) investigated spectrogram cor-
relation and Gaussian mixture models of Mel frequency 
cepstral coefficient distributions for flight call recognition. 
Salamon et al. (2016) introduced the spherical k-means 
unsupervised learning algorithm to obtain effective time fre-
quency features from the log-scaled Mel spectrogram. The 
extracted features were used as the input in a SVM classi-
fier and achieved an accuracy of 93.96% on 43 bird species 
of North American wood-warblers. Following this study, 
(Salamon et al., 2017) explored the class-based late fusion of 
spherical k-means model and deep learning. The best clas-
sification accuracy obtained was 96.00%.

However, due to differences in number and sound activ-
ity among bird species, the flight call dataset is generally 
imbalanced. Model performance evaluation for each species 
is challenging using accuracy. Xie et al. (2019) proposed 
the use of Mel spectrogram as a feature, investigated the 
effectiveness of fusion of different CNN-based models and 
achieved the best balanced-accuracy of 86.31%, which is a 
more suitable performance indicator for imbalanced data-
sets. However, CNN-based models needed high computa-
tional power and are difficult to use in low-power devices, 
such as mobile phones.



1035International Journal of Speech Technology (2021) 24:1033–1045	

1 3

For LBP features, Xie and Zhu (2019) incorporated 
acoustic features, visual features, and deep learning 
for bird sound classification, which achieved the best 
F1-score of 95.95% on 14 bird species. The acoustic fea-
tures consisted of spectral centroid, spectral bandwidth, 
spectral contrast, spectral f latness, spectral roll-off, 
zero-crossing rate, root-mean-square energy and Mel-
frequency cepstral coefficients, while visual features con-
tained uniform LBP and histogram of oriented gradients. 
Zottesso et al. (2018) proposed the use of uniform LBP, 
robust local binary pattern and local phase quantization 
as textural features and classification system decrease in 
sensitivity to the increase in the number of classes by 
dissimilarity framework, which obtained an identification 
rate of 71% in the hardest scenario considering 915 bird 
species. Nanni et al. (2020) presented ensembles of deep 
learning and handcrafted approaches (LBP, Local Phase 
Quantization, etc.) for automated audio classification and 
obtained an accuracy of 94.7% and 99.0% on 46 and 11 
bird species, respectively. According to the above men-
tioned works, a variety of datasets, features and classifiers 
have been investigated.

3 � Data and methods

The bird sound classification system presented in this paper 
consists of five modules: preprocessing, LBP-based feature 
extraction, feature selection, classifier description and late 
fusion (Fig. 1). The details of these modules are described 
in the following paragraphs.

3.1 � Data description

A public dataset (CLO-43SD) was used in this work to eval-
uate the proposed method (Salamon et al., 2016). This data-
set consists of 43 different North American wood-warbler 
species (in the family Parulidae), containing 5,428 flight 
calls (22.05 kHz sampling rate, mono, 16-bit depth, wav 
format). The audio clips were recorded in different record-
ing conditions, namely using highly-directional shotgun 
microphones, using omnidirectional microphones and from 
captive birds (Lanzone et al., 2009) and are either clean or 
noisier. Every clip contained a single flight call from one 
of the 43 bird species. Due to differences in number and 
sound activity of different bird species, the CLO-43SD data-
set is imbalanced, the data distribution of which is shown 
in Fig. 2.

Fig. 1   The flow diagram of our proposed approach

Fig. 2   The data distribution of bird species in the CLO-43SD dataset. The X-axis denotes the abbreviation for the bird names; the y-axis denotes 
the number of instances
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3.2 � Preprocessing

In the CLO-43SD dataset, the duration of the call of dif-
ferent bird species varies (Fig. 3), resulting in inconsistent 
spectrogram shapes. To make each audio clip the same 
length, we repeated the signal from the beginning and 
imposed a fixed duration of 2 s, which has been used in 
Thakur et al., (2019). Furthermore, notable differences 
exist in the audio amplitude of the same bird species, due 
to different recording conditions (see Fig. 4). The audio 
was normalized by subtracting the mean and scaling the 
amplitude to the interval [-1, 1], which is given in Eq. (1).

where S denotes the audio clip, mean(·), max(·) and abs(·) 
denote the mean, maximum and absolute value, respectively.

(1)s =
s − mean(s)

max(abs(s))

3.3 � Multi‑level local binary pattern (multi‑level 
LBP)

In general, bird sounds are characterized by short duration 
and high frequency. Using texture descriptors, the signal can 
be divided into small segments and the rapid changes in bird 
calls can be described by integrating the texture features in 
the small segments. In this work, multi-level LBP (Akbal, 
2020; Tuncer et al., 2020a) were chosen to describe bird 
sounds, which include one dimensional binary pattern (1D-
BP) and ternary pattern (1D-TP). Among them, 1D-BP uses 
the signum function as the kernel function to extract size 
information between neighborhood (x) and center (c), given 
in Eq. (2) (Kaya et al., 2014).

1D-TP uses the ternary function as the kernel function 
to divide the difference between the neighborhood (x) and 

(2)signum(x, c) =

{
0 x < c

1 x ≥ c

Fig. 3   The duration of bird calls by species in the CLO-43SD dataset. The X-axis denotes the abbreviation for bird name; the y-axis denotes the 
call duration

Fig. 4   Comparison of audio 
normalization. a, c The raw 
signal, b, d the normalized 
waveform

(a) (b)

(c) (d)
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center (c) into three intervals: (−∞, −t), [−t, t] and [t, +∞] 
(Kuncan et al., 2020), given in Eq. (3).

where t denotes the threshold and is determined by the signal 
standard deviation, given in Eq. (4) (Tuncer et al., 2020b).

TH and TL were used to calculate the upper and lower 
bits, to generate binary features.

Therefore, 1D-BP and 1D-TP can describe the signal in 
different ways and are often combined (1D-LBP) to repre-
sent signals (Akbal, 2020). The block diagram of 1D-LBP 
feature generation is shown in Fig. 5.

For rectangular window, a window length of 9 and hop 
size of 1 were used. To generate multi-level features, Akbal 
(2020) used the discrete wavelet transform (DWT) as a pool-
ing method and extracted 1D-LBP features from input and 
low-frequency coefficients (Fig. 6).

However, multi-level LBP is good at describing wave-
form changes and (Akbal, 2020) only work within the time 
domain. To obtain richer time–frequency information of bird 
calls, we extracted multi-level LBP from the time (LBP-
1D-T) and frequency domains (LBP-1D-F) respectively, 
which can describe signal in different ways. For LBP-1D-F, 
discrete cosine transform (DCT) and fast Fourier trans-
form (FFT) are two classic time–frequency transformation 
methods. In this work, we combine them to analyze the fre-
quency components of bird sounds (Tuncer et al., 2020a). 

(3)ternary(x, c, t) =

⎧
⎪⎨⎪⎩

− 1 x − c < −t

0 −t ≤ x − c ≤ t

1 x − c > t

t ≥ 0

(4)t =
std(signal)

2

(5)TH =

{
1 ternary(x, c, t) = 1

0 else

(6)TL =

{
1 ternary(x, c, t) = −1

0 else
Specifically, we first performed DCT and FFT on the input 
signal to obtain the frequency coefficients fDF. The amplitude 
of fDF was retained, phase information was discarded. Next, 
LBP-1D-F were generated from fDF. Finally, LBP-1D-T and 
LBP-1D-F were concatenated to represent bird sounds.

3.4 � Two‑dimensional local binary pattern (LBP‑2D)

Similar to LBP-1D, LBP-2D also extracts the difference 
between the neighborhood and center in the window. The 
window size of 1 × 9 is generally used in LBP-1D, the 5th 
value is used as the center, the rest are used as neighbor-
hoods. Any radius and number of neighborhoods can be used 
in the LBP-2D, by using circular neighborhoods. Here, we 
define R as the radius and P as the number of neighborhoods. 
Until now, several classic LBP-2D patterns have been pro-
posed, such as uniform patterns, LBPP,R

u2, rotation invariant, 
LBPP,R

ri and rotation invariant uniform patterns, LBPP,R
riu2 

(Ojala et al., 2002). Among them, rotation invariant, LBPP,R
ri 

rotates the binary features and takes the feature pattern with 
the smallest value as the LBP feature, which is suitable to 
describe the texture, where the pattern value depends on 

Fig. 5   The block diagram of 1D-LBP feature generation

Fig. 6   Block diagram of multi-level LBP feature generation
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the illumination, translation and rotational variance of the 
texture (Selin et al., 2006). However, it is unsuitable for bird 
call classification without rotation variations or translations. 
In this work, we first extracted the log-scaled Mel-spectro-
gram of each audio clip after pre-processing with 120 Mel-
bin and 1.45 ms hop size. The frequency components were 
different among bird species and the peak frequency of all 
species of CLO-43SD is shown in Fig. 7.

Meanwhile, the spectrograms among bird species also 
differ. For example, the peak frequency of LUWA​ and 
WEWA are 31 Hz and 8025 Hz respectively, and their Mel-
spectrogram are shown in Fig. 8. We can find that the energy 
of LUWA​ is concentrated in the low frequency, while the 
energy of WEWA is mainly concentrated in the high fre-
quency, which is consistent with the peak frequency. There-
fore, we selected uniform patterns, LBPP,R

u2 for our analysis, 
because Mel-spectrogram is characterized by the intensity 
along frequency and time instances, which provides a uni-
form pattern representation.

To generate more detailed features, the log-scaled Mel-
spectrogram was divided into K linear zones of equal size 
by frequency, where LBPP,R

u2 was calculated for each zone 
and concatenated. Preliminary experiments indicated that 
the optimal (P, R) combination was (16, 5) and K was 10. 

The block diagram of LBP-2D feature generation is shown 
in Fig. 9.

3.5 � Feature selection

Following feature extraction, the dimensions of LBP-1D-T, 
LBP-1D-F and LBP-2D were 7680, 7680 and 2430, respec-
tively. Large feature dimensions adversely affect the model, 
increasing the complexity of the classifier and training time. 
To select more discriminative features, feature selection was 
used. In this work, we propose an improved feature selection 
method named DSNCA. Compared with NCA, it reduces 
feature selection time, while improving the model perfor-
mance. The following paragraphs illustrate the details.

For multi-level LBP features, the input signal was decom-
posed 9 times through discrete wavelet transform, and the 
1D-LBP features were extracted from the input signal and 
low frequency coefficients of each level, resulting in similar-
ity between the features. Therefore, multi-level LBP features 
are redundant. Neighborhood component analysis (Tuncer 
& Ertam, 2020) first randomly generates a weight value for 
each feature and calculates distances of features by Manhat-
tan distance, given in Eq. (7).

Fig. 7   The peak frequency of bird species in the CLO-43SD dataset. The X-axis denotes the abbreviation for bird name; y-axis denotes the peak 
frequency

Fig. 8   Mel-spectrogram of 
LUWA​ and WEWA bird species

(b) WEWA(a) LUWA
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Next, the weights are optimized by ADAM (Kingma & Ba, 
2014) or stochastic gradient descent (Bottou, 2010) and the 
quality of the features is correlated to the weight. Finally, the 
most informative features are selected in order. However, as the 
dimensionality of the input features increases, the running time 
of NCA will increase considerably due to the deep learning 
optimizer. When multi-level LBP features are directly input 
to NCA, the process will be time-consuming and the selected 
features will still be redundant. For this reason, we propose 
an improved neighborhood component analysis (DSNCA) to 
remove redundant features before NCA by down sampling, 
which will be more suitable for highly redundant features. The 
block diagram of DSNCA is shown in Fig. 10.

Features were first divided into L sized non-overlapping 
groups, the first of each group was retained and concatenated 
in order. Next, the features were scaled to the interval [0, 1] by 
min–max normalization, given in Eq. (8).

where featN, featmin and featmax denote the normalized, mini-
mum and maximum of feat, respectively. Finally, the most 
informative features were selected by NCA. Preliminary 
experiments indicated that the optimal value of L was 2.

3.6 � Classifier description

Bird sound classification is a multi-class classification task. In 
this paper, two machine learning algorithms: K-nearest neigh-
bor (KNN) and support vector machine (SVM) were selected 
and evaluated. For the KNN classifier, the distance between 
the test audio clip and training data was first calculated and the 

(7)Dist
(
xi, xi

)
=
|||xi − xj

|||

(8)featN =
feat − featmin

featmax − featmin

predicted label was determined by the majority class of its k 
nearest neighbors (Han et al., 2011). SVM is a classifier based 
on statistical learning theory. For linearly separable problems, 
different categories are distinguished by finding the optimal 
partition surface. For linearly inseparable problems, the opti-
mal partition surface is determined in a higher-dimensional 
space by non-linear mapping to distinguish different categories 
(Salamon et al., 2016).

4 � Class‑based late fusion

To further improve model performance, a class-based late 
fusion method (Xie et al., 2019) was used to take advantage 
of the complementarity between different LBP-based models. 
Assume the fusion of decisions from n models (M1, M2, …, 
Mn) for a m-class problem (C1, C2, …, Cm). When using model 
M1 to classify a test instance x, its predicted probability for 
each class can be obtained as M11, M12, …, M1m. When using 
model M2 to classify instance x, its predicted probability for 
each class can be obtained as M21, M22, …, M2m. In a similar 
fashion, the predicted probability of model Mn is obtained. For 
instance x, the final predicted probability P for each class can 
be calculated using Eq. (9).

where k denotes class, j denotes model and the final predic-
tion is determined by the maximum P using Eq. (10).

(9)Pk =
∑

Mkj, 1 ≤ k ≤ m, 1 ≤ j ≤ n

(10)Labelfinal = Cargmaxm
k=1

Pk

Input signal Logmel
spectrogram

...

...

Linear zone5

Linear zone1

Linear zone10

Uniform
patterns

Uniform
patterns

Uniform
patterns

Frequency
partition Concatenate LBP-2D

features

...

...

Fig. 9   The block diagram of LBP-2D feature generation

Fig. 10   The block diagram of 
DSNCA
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5 � Experimental results

In this experiment, the dataset was first randomly divided 
into 85% and 15% to be used as training and test sets, respec-
tively. The training set was further randomly divided into 
60% and 40%, to be used as the training data and valida-
tion set, respectively. The divided datasets retained the 
same species proportion as the raw dataset. This process 
was repeated five times and the averaged result is reported. 
Since the CLO-43SD is an imbalanced dataset, we select 
balanced accuracy to evaluate the performance of our pro-
posed model, given in Eq. (11):

where n is the number of categories, TP is true positive and 
Si is the sample size of class i.

5.1 � Baseline

In order to benchmark our proposed model, 39-dimensional 
Mel-Frequency Cepstral Coefficients (MFCCs) were com-
bined with machine learning models as baseline (Logan, 
2000). First, the bird sound was preprocessed to obtain the 
signal f2N with length 2 s, mean 0 and amplitude of [− 1, 1]. 
Subsequently, 13-dimensional MFCC and its delta and delta-
delta were extracted from f2N, with a total of 39 features 
where the number of filters was 40, the window size was 
11.6 ms and the hop size was 1.45 ms, Finally, the features 
were used as input to KNN and SVM classifiers for bird 
sound classification. The experimental results show that the 
MFCCs cannot represent bird sound well (Table 1).

5.2 � LBP‑based features

In order to describe the rapid change in bird sounds, multi-
level LBP features were first extracted from both time-
domain (LBP-1D-T) and frequency-domain (LBP-1D-F) 
signals, respectively. The frequency components vary 
among bird species (Fig. 7). To obtain richer time–fre-
quency information of bird calls, the uniform patterns 
(LBP-2D) were obtained from the log-scaled Mel-spec-
trogram. Next, the different LBP-based features were 
combined with KNN and SVM classifier for bird sound 

(11)Balanced accuracy =
1

n

n∑
i=1

TP(i)

Si

classification. When the LBP-based features are directly 
input into the classifier, KNN performs better than SVM 
and LBP-1D-T-F combined with KNN produced the high-
est balanced accuracy of 80.95% (Fig. 11). However, in 
general, these models obtained low accuracy.

5.3 � LBP‑based features with NCA

When the LBP-based features were directly used as input 
to classifiers, the model obtained low accuracy due to 
the redundant information in the LBP-based feature set. 
Therefore, NCA was selected for feature selection. The 
results show that the model performance improved by 
using NCA to select informative features before classi-
fication (Fig. 12). Among them, SVM produced similar 
accuracy to KNN and the highest classification accuracy 
of 86.33% was obtained using LBP-2D features.

Table 1   Balanced accuracy 
of 39-MFCCs combined with 
SVM and KNN respectively, 
which is 13-dimensional 
MFCCs and its delta and delta-
delta

Model Balanced 
accuracy 
(%)

MFCCs + SVM 73.18
MFCCs + KNN 74.11

Fig. 11   Comparison of different LBP-based features combined with 
SVM and KNN classifiers for bird sound classification. LBP-1D-T 
and LBP-1D-F denote multi-level LBP features of time-domain and 
frequency-domain, respectively, LBP-1D-T-F denotes the concatena-
tion of LBP-1D-T and LBP-1D-F and LBP-2D denotes the uniform 
patterns from the log-scaled Mel-spectrogram

Fig. 12   Comparison of different LBP-based features with NCA. 
X-axis denotes the different LBP-based features combined with NCA; 
Y-axis denotes the balanced accuracy
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5.4 � Fusion of LBP‑based models.

To fully exploit the complementarity of different LBP-based 
features and improve model performance, three fusion meth-
ods were implemented and compared, including early fusion, 
late fusion and hybrid fusion. The following paragraphs 
illustrate the details.

5.4.1 � Early fusion of LBP‑based features

For the early fusion, the LBP-1D-T, LBP-1D-F and 
LBP-2D features were concatenated and a total of 
7680 + 7680 + 2430 = 17,790 features (LBP-T-F-2) were 
obtained. However, directly using them as input to NCA 
for feature selection will be time-consuming and inefficient. 
To reduce feature selection time, while selecting more 
informative features, an improved feature selection method 
(DSNCA) was used. To test the effectiveness of this method, 
the time required for DSNCA, NCA and RFNCA (ReliefF 
combined with NCA) was tested (Demir et al., 2020). The 
results show that the running time of DSNCA was less than 
that of NCA and RFNCA (Fig. 13). As the dimension of 
selected features increases, the time complexity of NCA will 
increase significantly. Next, the selected features by the three 
feature selection methods were then combined with the clas-
sifier. The results show that DSNCA combined with SVM 
achieved the highest balanced accuracy of 88.36% (Fig. 14). 
Compared with NCA combined with SVM, the classification 
accuracy increased by 2.29%.

5.4.2 � Late fusion of LBP‑based models

Ensemble learning has been proven to be an effective way to 
improve model performance in the case of imbalanced data, 
by combining results from several different models (Faris 
et al., 2020). To test the model performance of different 

fusion methods, different class-based late fusion strategies of 
three LBP-based models were evaluated and the results are 
shown in Table 2. The highest balanced accuracy of 88.65% 
was obtained by the late fusion of three LBP-based models, 
which is lower than early fusion.

5.4.3 � Hybrid fusion of LBP‑based models

Hybrid fusion, which includes early fusion and late fusion, 
was evaluated to further improve the model performance. 
First, the LBP-1D-T and LBP-1D-F features were concat-
enated and a total of 15,360 features (LBP-1D-T-F) were 
obtained. To select the most informative features, DSNCA 
was performed and the selected features were used as input 
in SVM for classification. Next, NCA was selected for LBP-
2D and the obtained features were used as input in SVM for 
classification. Finally, a class-based late fusion was evalu-
ated and the results show that the hybrid fusion achieved the 
highest balanced accuracy of 88.70%, which is superior to 
other fusion methods (Table 3). 

To further analyze the classification results, the confusion 
matrix of the hybrid fusion method is plotted in Fig. 15. Our 
model achieved an accuracy of 100% for HEWA and KEWA. 
For BLPW, the model performed the worst and obtained only 
68% accuracy and 15% of samples were misclassified as 
MAWA​. In addition, 20% of BWWA​ samples were misclassi-
fied into MAWA​. The visual patterns of BLPW, MAWA​ and 
BWWA​ are shown in Fig. 16. The visual patterns of those 
bird species are similar, which explains the difficulty in their 
accurate classification.

6 � Discussion

In previous work, the highest balanced accuracy of 86.31% 
was obtained by the late fusion of Mel-VGG and Mel-Sub-
net (Fusion 1). In this work, LBP-based features for bird 

Fig. 13   The running time of DSNCA (down-sampling combined with 
NCA), NCA and RFNCA (ReliefF combined with NCA), the input 
features are LBP-T-F-2 (feature concatenation of LBP-1D-T, LBP-
1D-F and LBP-2D). X-axis denotes the dimension of selected fea-
tures; Y-axis denotes the running time (s)

Fig. 14   Comparison of model performance using NCA, DSNCA 
and RFNCA respectively, the input features are LBP-T-F-2. X-axis 
denotes the feature selection method; Y-axis denotes the classification 
accuracy
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sound classification were investigated (Fig. 17). In order to 
describe the rapid changes in bird sounds, multi-level LBP 
features were extracted from both time-domain (LBP-1D-T) 
and frequency-domain (LBP-1D-F) signals, respectively. For 
LBP-2D, uniform patterns, LBPPR

u2 were selected for the 
analysis because Mel-spectrogram is characterized by the 
intensity along frequency and time instances, which pro-
vides a uniform pattern representation. To reduce the feature 
selection time, while retaining the information quality of 
the features, an improved feature selection method DSNCA 
was proposed.

To take full advantage of the complementarity of different 
LBP-based features and improve the model performance, 
two fusion methods of early fusion and late fusion were 
evaluated, which obtained the highest balanced accuracy of 
88.36%, 86.65% respectively. Additionally, early fusion and 
late fusion (hybrid fusion) were combined for bird sound 
classification, to further improve classification accuracy and 
achieved a highest balanced accuracy of 88.70%. In previ-
ous work, CNN-based models demanded high requirements 
on hardware due to their algorithm complexity, making it 
difficult to be used in lightweight devices, such as mobile 
phones. To address this, the proposed method is based on 
shallow learning, which will be more suitable for lightweight 
devices.

7 � Conclusion and future work

In this study, LBP-based features for bird sound classi-
fication were investigated, including both one-dimen-
sional (LBP-1D) and two-dimensional (LBP-2D) local 
binary patterns. For LBP-1D, multi-level LBP features 
were extracted from both time-domain (LBP-1D-T) and 

frequency-domain (LBP-1D-F) signals, respectively, to 
describe the rapid changes in bird sounds. To obtain richer 
time–frequency information, the uniform patterns (LBP-
2D) were obtained from the log-scaled Mel-spectrogram. 
When the LBP-based features are used as input in the clas-
sifier, the model obtains low accuracy and this process is 
time consuming due to the redundant information in the 
LBP-based feature set. Next, an improved feature selection 
method named DSNCA was proposed, which reduces the 
feature selection time while improving the model perfor-
mance, when compared with NCA. To take full advantage 
of the complementarity of different LBP-based features, 
early fusion and late fusion were evaluated. However, nei-
ther achieved the highest accuracy individually. When the 
two fusion methods were combined (hybrid fusion), the 
model achieved the best balanced accuracy of 88.70%. 
Meanwhile, the LBP-based system adopted shallow clas-
sifier to identify bird sounds, compared with deep learn-
ing, which will be more suitable for lightweight devices.

Future work will focus on improving the effective-
ness of the bird sound classification system. First, a novel 
texture descriptor and light weight model that are more 
suitable for bird sound will be investigated. Next, in this 
work, only 43 bird species were studied. More bird species 
from different countries will be worth studying. Finally, 
given that CLO-43SD is an imbalanced dataset, a suitable 
imbalanced learning method for bird sound classification 
is equally important.

Table 2   Classification 
performance using different late 
fusion strategies

The best result is displayed in bold

LBP-1D-T + NCA + SVM LBP-1D-F + NCA + SVM LBP-2D + NCA + SVM Accuracy (%)

√ √ 81.37
√ √ 86.12

√ √ 83.95
√ √ √ 86.65

Table 3   Balanced accuracy of hybrid fusion of LBP-based models, 
where LBP-1D-T-F denotes feature concatenation of the LBP-1D-T 
and LBP-1D-F

Bold value indicate the highest classsification accuracy

Model Accuracy (%)

LBP-1D-T-F + DSNCA + SVM 86.25
LBP-2D + NCA + SVM 83.91
Late fusion of above two models 88.70
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Fig. 15   Confusion matrix (%) of the model with the hybrid fusion of LBP-based features. X-axis denotes the predicted label; y-axis denotes the 
true label
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