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Abstract
This paper presents an improved speech enhancement algorithm called Minimum Mean Square Error (MMSE), based on the 
MODified Group Delay spectrum (MODGD), for Forensic Automatic Speaker Recognition (FASR) under noisy environ-
ments. This algorithm uses the MODGD instead of the amplitude spectrum, to compute the power spectrum of the noise-
corrupt signal. In the proposed estimator, the MODGD retains most of the formants information. Therefore, it enhances 
the noisy speech signal with high quality even at extremely low Signal-to-Noise Ratio (SNR) levels. The evaluation of the 
improved algorithm in simulated FASR scenarios was performed by adding different noise levels, extracted from the NOI-
SEX-92 database to the clean NIST2000-traces. The results obtained show that the proposed MMSE–MODGD estimator 
provides greater suppression of noise components in regions of low SNR than the MMSE estimator. In addition, there is a 
drastic reduction in Equal Proportion Probability (EPP) (the improvements are 1.84% for babble noise and 1.25% for factory 
and white noises), combining FASR techniques with the proposed MMSE–MODGD estimator than with the conventional 
estimator.

Keywords  Forensic Automatic Speaker Recognition · MMSE estimator · MODGD spectrum · Noisy environments · Equal 
proportion probability

1  Introduction

In some criminal cases, the voice recorded during a tele-
phone call is the only clue available to investigators. There 
is therefore a very pressing and fully justified demand from 
the judicial police and magistrates, to use these recordings 
to guide the investigation, and to establish the guilt of a sus-
pect or prove his/her innocence. Hence, speaker recognition 
techniques provide a valuable contribution to the Forensic 
Speaker Recognition System.

To this end, forensic speaker recognition system is con-
sidered as one of the disciplines of Speaker Recognition 
(SR) for both identification and verification. Although sev-
eral forensic applications for SR have been developed in 
recent years, they have not been successful due to the high 

complexity and variability of the speech signal, and the 
mismatch between modeling and testing conditions espe-
cially in real life (Deshpande & Holambe, 2011). The lat-
est can be caused by various sources, such as reverberation, 
compressed audio, degraded channels, and environmental 
noise that degrade the performance of the forensic system 
(Scheffer et al., 2013). Thus, the challenging task for foren-
sic experts is to find effective algorithms for speech enhance-
ment in highly degraded environments, such as additive 
noise (Zhang & Abdulla, 2007).

Several speech enhancement algorithms, which are based 
on the magnitude spectrum of the speech signal, have been 
developed to overcome this challenge, namely: Spectral 
Subtraction Method (SS) (Gustafsson et al., 2004), Spectral 
Subtraction with Over subtraction Model (SSOM) (Dixit & 
Mulge, 2014), Non-Linear Spectral Subtraction (NSS) (Ver-
schuur et al., 2006), Adaptive Noise Cancellation (ANC) 
(Kwatra et al., 2017) and the Minimum Mean Square Error 
(MMSE) estimators (Lu & Loizou, 2011).

This study proposes a modification of the MMSE estima-
tors, by replacing the magnitude spectrum estimated using a 
Fourier Transform (FT), by the MODGD spectrum (Asbai & 
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Amrouche, 2017; Parthasarathi et al., 2011). In other words, 
the independent Gaussian random variables are derived from 
the MODGD spectrum, instead of their direct estimation 
from the Discrete Fourier Transform (Parthasarathi et al., 
2011), to improve the MMSE algorithm by exploiting the 
information contained in the phase spectrums.

The proposed modification is motivated by two 
considerations.

•	 In general, the speech signal is a mixed phase signal, 
because a speaker’s vocal tract is a minimum phase sys-
tem (Akande & Murphy, 2005), and for minimum phase 
systems, information can be extracted from the phase 
or magnitude spectrum. Thus, in terms of analysis, the 
group delay of a mixed phase signal is the sum of the 
group delay of its minimum phase components (Hegde 
et al., 2004). In this study, the MODGD spectrum is 
thus processed by computing the mean of the posteriori 
density given in Lu and Loizou (2011), to exploit the 
properties of MODGDs (high resolution formants) on 
the MMSE method;

•	 Furthermore, Parthasarathi et al. (2011) indicated that, 
the group delay spectrum retains most of the formants 
information even at low SNRs of environmental noise. 
The MODGD spectrum is less affected by noise than the 
magnitude spectrum.

The contribution of this work is threefold; first, the MMSE 
estimators based on the MODGD are better adapted to the 
noisy speech segments of the tests in many applications 
of speaker recognition systems. Then, the exploitation of 
the information contained in the phase as well as in the 
amplitude spectrum can be noted for the proposed MMSE-
MODGD. Finally, extensive testing and experimental valida-
tion of the proposed MMSE were carried out.

2 � Forensic Automatic Speaker Recognition 
(FASR)

In the FASR systems, the use of scientific tools is necessary 
to meet the needs of a court for a crime or civil litigation 
(Roux et al., 2012). The main fields used in forensic science 
are: biology, chemistry, and medicine (Forest et al., 1983). 
Despite the predominance of the latter, other disciplines 
used such as: physics, computer science, geology, and psy-
chology (Forest et al., 1983). For example, traditional bio-
metric parameters, such as DNA and fingerprints, are often 
used in many forensic cases. The nature of the evidence, 
whether found at the crime scene or collected during investi-
gations dictates the scientific methods or disciplines needed 
to study it. In the context of the FASR, experts are interested 
in methods of identifying a recorded voice. This is based on 

the fact that each person can be identified from a sample of 
his/her voice. In addition, a suspect can leave recordings of 
his/her voice on the phone, voicemail, an answering machine 
or a hidden recorder, which can then be used as evidence. 
Three databases are generally required to establish a FASR 
system: Potential population database (P), suspected speaker 
Reference database (R) and suspected speaker Control data-
base (C). They allow calculating and evaluating the evidence 
from the questioned recording (trace) (Drygajlo et al., 2003; 
Kenai et al., 2019).

There is also another methodology adopted in FASR sys-
tems, which requires a statistical model capable of comput-
ing a likelihood value, when feature vectors are compared 
against such a model. This method uses only two databases: 
the suspected speaker Reference database and the relevant 
Population (Drygajlo, 2012). These two databases can be 
used to create two statistical models: (1) statistical model 
of the suspected speaker and (2) statistical model of the rel-
evant population. The Universal Background Model (UBM) 
(Kenai et al., 2019), trained with the relevant population 
database, can also be used as model of the statistical model 
of the relevant population (Drygajlo, 2012). The multivari-
ate evidence represented by the ensemble of feature vec-
tors extracted from the questioned recording is compared 
to model of the statistical model of the suspected speaker 
and statistical model of the relevant population to calculate 
the likelihood ratio. The first comparison gives the similar-
ity likelihood score (numerator of LR) and the second one 
gives the typicality likelihood score (denominator of LR) 
(Drygajlo et al., 2003; Drygajlo, 2012). Figure 1 shows the 
principle of this methodological approach.

However, in real forensic scenarios, the speech signal left 
by the suspects (trace) is often corrupted by the environmen-
tal noise, which degrades the performances of the FASR 
system (Alexander et al., 2004). To this end, this paper 
discusses the MMSE-MODGD estimator used in speech 
enhancement (Gerkmann & Hendriks, 2012) to improve 
the FASR system under snoisy environments (Figs. 2, 3, 4).  

3 � Minimum mean square error estimator 
of the noisy short‑time power spectrum

The spectral subtraction method (Berouti et al., 1979) based 
on MMSE (Gerkmann & Hendriks, 2012) and minimum noise 
statistics (MS) (Martin, 2001) was used to enhance the speech 
signal damaged by the additive noise. The amplitude of the 
noisy signal was multiplied with a certain gain factor. Spectral 
subtraction introduced by Boll (1979), is the oldest method to 
remove the noise. It operates in the frequency domain, and 
its principle is to subtract a noise estimate from the observed 
signal. Noise is assumed to be additive, stationary or slightly 
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varying, which allows to estimate it during silence periods. 
The noisy signal y(n) can be written as (Lu & Loizou, 2011):

where x(n) and d(n) represent the clean speech and noise 
signals, respectively.

Taking the short-time Fourier transform of y(n) , we obtain:

Equation (2) can be expressed in a polar form as follows:

where, 
{
Yk,Xk,Dk

}
 denotes the magnitudes and {

�y(k), �x(k), �d(k)
}
 denotes the phases at frequency bin k 

of the noisy speech, clean speech and noise, respectively.
The MMSE estimator of the short-time power spectrum 

(MMSE) is given by (Wolfe & Godsill, 2003) as follows:

(1)y(n) = x(n) + d(n)

(2)Y
(
wk

)
= X

(
wk

)
+ D

(
wk

)

(3)Yke
j�y(k) = Xke

j�x(k) + Dke
j�d(k)

and,

where, �k and �k denote the a priori and a posteriori SNRs, 
respectively.

The derivations of the above MMSE estimator were based 
on the following Rician posterior density fXk

(
Xk∕Y

(
wk

))
:

where,

I0(.) is the first kind modified Bessel function of zeroth 
order.

However, the analysis of the suppression curves 
revealed that the MMSE spectral power suppression rule 
of Eq. (4) provides less suppression in regions of low a 
priori SNR (Wolfe & Godsill, 2003). Lu and Loizou 2011) 
proposed the improved MMSE estimator of the short-time 
power-spectrum, to remedy the problem of less suppres-
sion in regions of low a priori SNR.

The power spectrum of the noise-corrupt signal is 
assumed to be the sum of the power spectra of the clean 
speech and noise, written as follows:

In addition, an assumption is used in the derivation of 
these estimators based on Eq. (11) by approximating the 
power spectrum using the magnitude squared spectrum, 
which is the sample estimate of the ensemble average. 
Therefore, Eq. (11) can be written as follows:
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Fig. 1   The principle of the FASR methodological approach
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Moreover, assuming that the real and imaginary parts 
of the Discrete Fourier Transform (DFT) coefficients are 
modeled as independent Gaussian random variables with 
equal variance (Ephraim & Malah, 1984), the probability 
density of X2

k
 is exponential and can be written as follows:

Similarly, the density of D2
k
 is given by Eq. (14):

where, �2
x
(k) and �2

d
(k) are given by Eq. (6).

The posterior probability density of the clean speech 
magnitude-squared spectrum is obtained using the Bayes’ 
rule as follows:
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Fig. 2   Spectrograms of clean speech, noisy speech corrupted with white noise at 0 dB input SNR and speech enhancement methods
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Using Eqs. (12)–(15), the MMSE estimator is obtained by 
computing the mean of the posteriori density given in Eq. (15) 
as follows:

where, �k is defined as:
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4 � The proposed modified group delay 
functions for the MMSE estimator 
of the noisy short‑time power spectrum

A speech signal can be represented completely in the spec-
tral domain only if the amplitude and phase information is 
specified. However, the information extracted from the phase 
spectrum is more complex than the information extracted 
from the amplitude spectrum, as the phase spectrum is gen-
erally discontinuous (orwrapped) between [−�,�] (Murthy 
& Yegnanarayana, 2011). A multi-valued function is used 
to make it into a continuous function; this is called the 
unwrapped phase (unwrapping) (Parthasarathi et al., 2011). 
The processing of its derivative (i.e., the phase derivative), 
the “group delay function” (Parthasarathi et al., 2011), is 
mainly used to extract the information contained in the phase 
spectrum.

Let x(n) a speech signal, its Fourier transform is given 
by Eq. (3).

The group delay function �(�) of a signal x(n) is defined 
as the negative derivative of the phase spectrum �(�) as 
follow:

Clean Speech (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000
Noisy Speech (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000
Enhanced Speech using ML Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000

Enhanced Speech using MMSE Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000
Enhanced Speech using Log-MMSE Estimator (dB)

Time (s)
F

re
qu

en
cy

 (
kH

z)

0 0.5 1 1.5 2 2.5
0

2000

4000
Enhanced Speech using MAP Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000

Enhanced Speech using MMSE-ISP Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000
Enhanced Speech using Log-MMSE-ISP Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000
Enhanced Speech using Wiener Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000

Enhanced Speech using MMSE-MODGD Estimator (dB)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0 0.5 1 1.5 2 2.5
0

2000

4000

Fig. 3   Spectrograms of clean speech, noisy speech corrupted with factory noise at 0 dB input SNR and speech enhancement methods
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The group delay function can also be estimated from the 
speech signal using Eq. (21) (Asbai & Amrouche, 2017):

where, R and I  denote the real part and imaginary part 
respectively, x(n) ↔ X(�) and ⌢

x(n) ↔
⌢

X(𝜔) are Fourier 
Transform pairs, and ⌢x(n) = nx(n).

The group delay function requires that the speech signal 
must be a minimum phase or that the poles of the transfer 
function be within the unit circle (Asbai & Amrouche, 
2017).

By smoothing the amplitude X(�) (Asbai & Amrouche, 
2017) spectrum in Eq. (21), we define a MODified Group 
Delay function (MODGD) which given as follows:
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Fig. 4   Spectrograms of clean speech, noisy speech corrupted with babble noise at 0 dB input SNR and speech enhancement methods
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Finally, the Rician posterior density fXk
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becomes:

Moreover, Eqs.  (12), (13) and (14) can be written as 
follows:
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The posterior probability density of the clean speech mag-
nitude-squared spectrum become as follows:
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Finally, the modified MMSE estimator is given by:
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5 � Experimental protocol for speech 
enhancement

Extensive objective quality tests were carried out to evalu-
ate the performance of the proposed MMSE-MODGD esti-
mation method using ten (10) sentences extracted from the 
NOIZEUS database (Hu & Loizou). In this database, the 
noise signals are generated by adding the noise from the 
AURORA and NOISEX-92 databases to the clean signals, 
to an overall SNR of 0 dB, 5 dB and 10 dB. The frame 
size chosen is 20 ms with a 50% overlap. A sampling fre-
quency of 8 kHz and a Hamming window were used. The 
methods used for comparison with the proposed MMSE-
MODGD are the maximum-likelihood (ML) estimator, 
the MMSE estimator, the log MMSE estimator, the maxi-
mum a posteriori (MAP) estimator, incorporating speech 
presence probability in MMSE (MMSE-ISP) estimator, 
incorporating speech presence probability in log MMSE 
(log MMSE-ISP) estimator and Wiener estimator (Loizou, 
2007). The objective assessment was carried out as pro-
posed in Hu and Loizou (2008). The tests carried out to 
evaluate the proposed method include measures related to 
the perception of the speech signal on a five-point (1–5) 
scale of signal distortion (SIG), background noise on a 
five-point (1–5) scale (BAK) and overall quality (OVRL) 
based on the Mean Opinion Score (MOS) ranging from 1 
to 5. The other measures used are segmental SNR (Seg-
SNR), weighted-slope spectral (WSS), perceptual evalu-
ation of speech quality (PESQ) and log-likelihood ratio 
(LLR) (Hu & Loizou, 2008).

5.1 � Results and discussion

Based on a comparative study using spectrograms, it can 
be noticed that the proposed MMSE-MODGD method 
gives good results compared to ML, MMSE, log MMSE, 
MAP, MMSE-ISP, log MMSE-ISP and Wiener. This good 
performance achieved by the proposed approach is con-
firmed by the objective evaluation.

Tables 1, 2 and 3 show the results of the evaluations 
using the objective measures: SIG, BAK, OVRL, PESQ, 
SegSNR, WSS and LLR using 10 sentences extracted from 
the NOIZEUS database. The proposed MMSE-MODGD 
method is compared with ML, MMSE, log MMSE, MAP, 
MMSE-ISP, log MMSE-ISP and Wiener, in the context 
of degradation by a white, factory and babble noises, 
respectively. The LLR and WSS scores indicate speech 
loss and should therefore be minimal. The results pre-
sented in the tables clearly show that the SIG, BAK and 
OVRL scores, which reflect the level of perception of the 
speech signal and the overall quality, are generally higher 
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for the MMSE-MODGD method than for the other meth-
ods. The results also show that these assessments confirm 
that speech improvement based on the MMSE-MODGD 
method produces a higher segmental SNR, higher PESQ 
and lower WSS than other methods.

6 � Experimental protocol for FASR setup

Generally, there are two constraints in the FASR scenarios. 
The first is the non-collaboration of the suspects and the 
second one is the limited number of suspects known by the 
target person (person who suffers from the actions of oth-
ers). Due to these constraints, the number of suspects used 
to develop such systems (FASR) is really limited.

In this work, all the experiments were performed on the 
NIST 2000 corpus, which consists of the spontaneous tel-
ephone speech sampled at 8 kHz. For feature extraction, a 
23 MFCC vector is found from pre-emphasized speech every 
10 ms using a 20 ms Hamming window.

Twenty speakers were chosen as suspects from this cor-
pus; the suspected speaker Reference database (R) was 
recorded with 1 recording of 2 min duration which was 
chosen for each suspect, and 75% of the duration of this 

recording was intended for modeling and 25% for tests 
(traces).

The test segment is divided into 4 sections, to have 4 
traces for each suspect. The Potential database (P) used was 
a subset of 420 speakers from the same corpus cited below. 
The GMM-UBM consisted of 256 mixture components 
trained via Expectation Maximization (EM) algorithm using 
10 iterations (Reynolds & Rose, 1995).

Twenty suspects models were created through the GMM-
UBM using maximum a posteriori (MAP) adaptation with 
factor relevance r = 16, 256 mixtures and an adaptation data 
amount of 14 h is used (Reynolds et al., 2000).

According to the Fig.  1, which explains the FASR 
methodological approach adopted in our work, we need 3 
databases:

1.	 Potential-database (UBM database): contains 420 speak-
ers (420*2 min = 14 h);

2.	 Trace-database (T): contains 20 speakers, each speaker 
has 4 traces of (0.25*2 min)/4 = 7.5 s. So, the total of 
true trials (H0) is 20*4 = 80 and the total of false trials 
(H1) is 4*20*20 – 80 (true trials) = 1520;

3.	 Reference-database: contains 20 speakers, each speaker 
has 0.75*2 min = 1.5 min.

Table 1   Objective evaluations of the MMSE-MODGD technique compared with ML, MMSE, Log-MMSE, MAP, MMSE-ISP, Log-MMSE-ISP 
and Wiener and corrupted with white noise

Average values were obtained using 10 sentences extracted from the NOIZEUS database. The best performance is shown in bold

Objective measures Input SNR dB White noise

ML MMSE Log-MMSE MAP MMSE-ISP Log-MMSE-ISP Wiener MMSE-MODGD

SIG [1 to5] 0 1.31 1.29 1.09 1.19 1.19 0.91 0.93 1.36
5 1.83 1.90 1.61 1.68 1.68 1.27 1.30 1.95
10 2.43 2.46 2.12 2.19 2.20 1.74 1.84 2.38

BAK [1 to 5] 0 1.60 1.59 1.55 1.62 1.64 1.57 1.58 1.71
5 1.94 1.99 1.84 1.85 1.86 1.70 1.72 2.03
10 2.33 2.36 2.17 2.16 2.17 1.98 2.01 2.39

OVRL [1 to 5] 0 1.30 1.29 1.16 1.24 1.25 1.06 1.08 1.30
5 1.72 1.75 1.59 1.63 1.62 1.29 1.33 1.78
10 2.22 2.29 2.09 2.06 2.05 1.72 1.80 2.32

PESQ 0 1.54 1.70 1.57 1.68 1.62 1.63 1.68 1.72
5 1.81 2.08 1.82 1.94 1.76 1.71 1.87 2.10
10 2.16 2.40 2.14 2.23 2.08 1.98 2.21 2.40

SegSNR 0 − 4.18 − 1.95 − 1.95 − 3.03 − 1.46 − 1.13 − 1.13 − 1.32
5 − 1.79 0.35 − 1.26 − 1.61 − 0.73 − 0.34 − 0.34 1.23
10 0.78 2.27 − 0.43 0.70 − 0.01 0.34 0.34 4.03

WSS 0 72.54 104.33 108.63 72.30 109.70 105.64 108.12 71.18
5 63.80 94.14 104.25 64.21 102.32 98.81 100.74 59.00
10 54.20 80.55 93.20 55.23 91.86 89.76 85.98 53.12

LLR 0 1.99 1.83 2.10 1.90 2.12 2.12 2.13 1.81
5 1.72 1.55 1.86 1.60 1.85 1.89 1.87 1.45
10 1.42 1.31 1.71 1.29 1.69 1.72 1.62 1.24
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Performance metrics provided a single numerical value 
that described the performance in terms of accuracy, dis-
criminating power and calibration of the LR method (Prob-
abilities of Misleading Evidence, PMEH0 and PMEH1), 
Equal Proportion Probability (EPP) (Drygajlo et al., 2016; 
Haraksim & Drygajlo, 2016; Kenai et al., 2019).The values 
used for the MODGD functions are the length of cepstral 
lifter window lifterω = 8 and � = 0.4, � = 0.9.

7 � Classical Forensic Automatic Speaker 
Recognition results

This Section evaluates the results obtained in clean and 
noisy environments.

7.1 � FASR performance under clean conditions

An evaluation of FASR based on GMM-UBM performance 
in terms of EPP, PMEH0 and PMEH1 was performed in a 
clean environment.

According to Table 4, the results are very satisfying, in 
terms of EPP, PMEH0 and PMEH1. Therefore, EPP = 1, 

25%, the LR exceeds 1 in 96% of cases when H0 is true and 
in only 0.4% of cases when H1 is true.

7.2 � FASR performance in noisy conditions

Different noises were arbitrarily chosen in this study (babble, 
factory and white) that were added to the corpus of the ques-
tioned recording (traces) to produce noisy feature vectors. 
Table 5 presents the performances of FASR, at SNR = 0 dB 
and SNR = 5 dB.

Table 5 summarizes the performances of the FASR under 
noisy environment, in terms of EPP, PMEH0 and PMEH1. It 
can be noticed that the performance metrics decrease with 
decreasing SNR, and increase with increasing SNR, and the 
performance of noisy speech corrupted with babble noise 
is less degraded compared to the other noises. This can be 
explained by the fact that, the babble noise is an overlap 
of several sounds that comes from two or more speakers 
(Djeghiour et al., 2018). Its features are like those of the 
voice. It covers only the low frequency spectrum. Therefore, 
only the information in low frequency regions is affected by 
this noise. Whereas, the factory and white noises are charac-
terized by a high intensity. They cover the low and high fre-
quency spectrum and they affect all the existing information 

Table 2   Objective evaluations of the MMSE-MODGD technique compared with ML, MMSE, Log-MMSE, MAP, MMSE-ISP, Log-MMSE-ISP 
and Wiener and corrupted with factory noise.

Average values were obtained using 10 sentences extracted from the NOIZEUS database. The best performance is shown in bold

Objective measures Input SNR dB Factory noise

ML MMSE Log-MMSE MAP MMSE-ISP Log-MMSE-ISP Wiener MMSE-MODGD

SIG [1 to 5] 0 1.41 1.33 1.22 1.25 1.23 1.01 1.13 1.58
5 1.95 1.93 1.60 1.72 1.80 1.34 1.39 2.05
10 2.49 2.55 2.18 2.29 2.64 1.89 2.04 2.47

BAK [1 to 5] 0 1.65 1.67 1.62 1.77 1.44 1.30 1.72 1.82
5 2.04 2.11 1.92 1.95 1.96 1.74 1.54 2.13
10 2.45 2.47 2.37 2.46 2.16 2.08 2.21 2.56

OVRL [1 to 5] 0 1.82 1.49 1.15 1.22 1.28 1.17 1.22 1.87
5 1.83 1.50 1.19 1.33 1.31 1.34 1.33 1.92
10 2.12 2.20 2.07 2.00 2.01 1.55 1.88 2.34

PESQ 0 1.04 1.07 1.76 1.83 1.72 1.74 1.98 2.02
5 1.81 2.01 1.80 1.93 1.77 1.81 2.07 2.29
10 2.36 2.45 2.04 2.32 2.17 1.99 2.47 2.54

SegSNR 0 − 3.13 − 1.73 − 1.82 − 3.13 − 1.70 − 1.10 − 1.03 − 1.77
5 − 0.99 1.05 − 1.06 − 1.33 − 0.22 0.04 − 0.19 1.28
10 1.02 2.50 0.88 1.09 0.30 1.50 0.95 3.73

WSS 0 72.03 98.33 102.63 67.30 103.10 100.60 102.02 66.11
5 53.70 84.12 94.52 54.22 98.12 88.80 100.01 50.99
10 45.20 78.52 90.21 52.22 81.87 83.73 83.93 44.14

LLR 0 1.88 1.72 2.05 1.87 2.02 2.09 2.17 1.49
5 1.39 1.67 1.12 1.57 1.66 1.98 1.77 1.33
10 1.30 1.01 1.05 1.19 1.59 1.53 1.44 1.11
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in the speech signal. The performance is worse when using 
these two types of noises (factory and white) than those 
obtained under babble.

8 � Enhanced Forensic Automatic Speaker 
Recognition results

In this Section, the performance of this system was calcu-
lated using the MMSE magnitude enhancement processing 
and our approach proposed MMSE-MODGD enhancement 
processing.

Table 3   Objective evaluations of the MMSE-MODGD technique compared with ML, MMSE, Log-MMSE, MAP, MMSE-ISP, Log-MMSE-ISP 
and Wiener and corrupted with babble noise.

Average values were obtained using 10 sentences extracted from the NOIZEUS database. The best performance is shown in bold

Objective measures Input SNR dB Babble noise

ML MMSE Log-MMSE MAP MMSE-ISP Log-MMSE-ISP Wiener MMSE-MODGD

SIG [1 to5] 0 2.33 1.88 1.92 2.29 2.22 1.84 1.95 2.67
5 2.74 2.73 2.27 2.59 2.51 2.04 2.25 3.09
10 3.52 2.93 2.77 3.03 3.06 2.63 2.81 3.28

BAK [1 to 5] 0 1.77 1.48 1.55 1.73 1.71 1.58 1.62 1.84
5 2.07 1.85 1.84 1.99 1.99 1.82 1.89 2.19
10 2.42 2.25 2.16 2.28 2.29 2.09 2.14 2.42

OVRL [1 to 5] 0 2.17 1.52 1.60 1.90 1.84 1.54 1.64 1.93
5 2.30 1.99 1.95 2.18 2.13 1.79 1.95 2.54
10 2.76 2.48 2.39 2.57 2.59 2.27 2.40 2.89

PESQ 0 1.85 1.55 1.79 1.87 1.69 1.64 1.83 1.87
5 2.12 1.95 1.98 2.13 1.93 1.85 2.12 2.15
10 2.34 2.28 2.30 2.38 2.28 2.16 2.38 2.48

SegSNR 0 − 4.19 − 3.09 − 2.01 − 3.46 − 1.67 − 1.42 − 1.42 − 2.59
5 − 1.72 − 1.10 − 1.49 − 1.30 − 1.02 − 0.57 − 0.57 − 0.23
10 0.93 0.67 − 1.00 0.82 − 0.39 0.04 0.04 2.81

WSS 0 69.77 100.07 107.02 65.20 108.35 105.06 104.81 58.80
5 50.10 92.07 92.55 58.87 95.87 95.17 87.61 64.38
10 51.12 73.35 84.21 49.12 83.88 83.96 73.73 41.42

LLR 0 0.98 1.21 1.20 0.99 1.25 1.26 1.14 0.96
5 0.80 1.33 1.23 0.85 1.28 1.29 1.07 0.78
10 0.69 0.85 1.06 0.63 0.98 1.03 0.79 0.60

Table 4   Evaluation results obtained in clean environment

EPP (%) H0 true (%) H1 true (%)

LR < 1 LR > 1 LR < 1 LR > 1

1.25 4 96 99.60 0.40

Table 5   Evaluation results 
obtained under noisy 
environments

Type of noise SNR (dB) EPP (%) H0 true (%) H1 true (%)

LR < 1 LR > 1 LR < 1 LR > 1

Babble 0 20 85 15 100 0
5 13.75 71 29 100 0

Factory 0 37.50 91 09 100 0
5 20 86 14 100 0

White 0 43.75 95 05 100 0
5 33.75 85 15 100 0
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8.1 � FASR performance using MMSE‑magnitude 
enhancement processing

Table 6 indicates the results obtained when using the 
MMSE-magnitude enhancement processing (only the 
information contained in the magnitude), at SNR = 0 dB 
and SNR = 5 dB.

The results presented in Table 6, when applying the 
MMSE speech enhancement algorithm on noisy tests 
(traces) speech, indicate an improvement of the perfor-
mances represented by the decreasing of the EPP with the 
evolution of LR.

This improvement is explained by the fact that, the 
MMSE based magnitude spectrum estimator discards 
all the broadband noise by eliminating most of the wide 
peaks that constitute the undesirable variances of the 
spectrum ordinates (Loizou, 2007).

Moreover, the MMSE based magnitude spectrum esti-
mator provides the posterior Probability Density Function 
(PDF) of the clean signal given the noisy signal. This 
PDF is an optimal estimator for a large class of difference 
distortion measures between clean and noisy signal. This 
distortion measure assigns zero distortion for estimates 
in the immediate neighborhood of the clean signal, and 
uniform distortion for the ones outside this neighborhood 
(Loizou, 2007; Lu & Loizou, 2011). Therefore, the sepa-
ration between noise and speech components is better.

8.2 � FASR performance using the proposed 
improved MMSE‑MODGD enhancement 
processing

Table 7 summarizes the results obtained when using the pro-
posed algorithm (improved MMSE-MODGD enhancement 
processing), taking into account the information contained 
in the magnitude and phase, at SNR = 0 dB and SNR = 5 dB.

Based on the results in Table  7, it can be observed 
that when comparing these results with those obtained in 
Sect. 8.1, a significant improvement of FASR performance 
metrics in terms of EPP and Probabilities of Misleading Evi-
dence (PMEH0 and PMEH1) is observed, for the three kinds 
of noises (babble, factory and white). Therefore, in terms of 
EPP, the improvements represent 1.84% reduction for babble 
noise and 1.25% reduction for other noises. These results are 
encouraging given that 1% improvement is significant for 
high security systems such as FASR systems, as the inno-
cence or indictment of individuals is at stake.

This improvement given by the addition of the MMSE-
MODGD estimator to the FASR system is explained by 
the fact that, the subtraction of the noise from the noisy 
speech signal, when using MMSE-magnitude spectrum 
cannot eliminate the deep valleys surrounding the narrow 
peaks, which remain in the noise spectrum. Therefore, the 
excursion of noise peaks remains large. However, MMSE-
MODGD discards these deep valleys by well preserving the 
peaks and valleys (depth reduction) of the clean magnitude 
spectrum in the presence of additive noise (properties of the 
group delay function of a minimum-phase signal).

Table 6   Evaluation results 
obtained with MMSE 
enhancement processing

Type of noise SNR (dB) EPP (%) H0 true (%) H1 true (%)

LR < 1 LR > 1 LR < 1 LR > 1

Babble 0 15.39 85 15 100 0
5 10 76.25 23.75 100 0

Factory 0 17.82 90 10 100 0
5 11.25 77.50 22.50 100 0

White 0 20 91.25 8.75 100 0
5 8.81 80 20 100 0

Table 7   Evaluation results 
obtained with the proposed 
improved MMSE-MODGD 
enhancement processing

Type of noise SNR (dB) EPP (%) H0 true (%) H1 true (%)

LR < 1 LR > 1 LR < 1 LR > 1

Babble 0 13.55 88.75 11.25 100 0
5 8.75 72.50 27.50 100 0

Factory 0 17.50 90 10 100 0
5 10 79 21 100 0

White 0 18.75 92 8 100 0
5 8.75 79 21 100 0
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Moreover, in (Parthasarathi et al., 2011), the authors 
indicated that the MODGD spectrum is inversely propor-
tional to the noise power at frequencies corresponding to 
high noise regions, and directly proportional to the signal 
power. This indicates that, the MODGD spectrum tends to 
follow the magnitude spectrum of the signal, rather than 
that of the noise.

Thus, on the basis of experiments, it was found that 
noise distorts the shape of the MODGD spectrum less 
than the FFT spectrum, changes its slopes and reduces 
the dynamic range of the MODGD spectrum less than 
the FFT. Most of the time, the frequency locations of the 
peaks of the higher formants are preserved to some extent 
in the MODGD spectrum compared to the FFT spec-
trum in the presence of noise. Therefore, our proposal for 
MMSE-MODGD retains more information contained in 
the noisy speech signal than conventional MMSE (Ger-
kmann & Hendriks, 2012), to avoid any degradation in 
speech intelligibility and FASR performance.

9 � Conclusion

In this work, speech enhancement estimators of noisy 
speech signal were studied under the assumption that the 
spectrum of the noisy speech signal can be represented in 
complex plane as sum of clean signal spectrum and noise 
spectrum. In addition to the traditional estimator, which 
is based on the MMSE principles, the improved estimator 
was proposed by incorporating modified group delay spec-
trums. Furthermore, compared to the FASR performance 
using the classical MMSE spectral power estimators, the 
FASR using the proposed MMSE-MODGD resulted in 
significantly better speech enhancement quality.

The results of the experiments show that MODGD spec-
trum has the potential to reduce noise components in the 
noisy speech signal, since the MODGD spectra tends to 
follow the magnitude spectrum of speech and opposes the 
noise spectrum. Therefore, it can be concluded that the 
important information retained in the enhanced speech 
using the MODGD spectrum can complement that given 
by FFT spectrum and give more reliability and robustness 
to the FASR system under noisy environments.

In future work, we intend to apply a state of the art tech-
nique during the parametrization or training phase, which 
should be an interesting approach to refine the speaker 
models to obtain a better performance for the proposed 
forensic system. Subsequently, the latter will be applied to 
another database specific to the forensic field to compare 
the two systems.
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