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Abstract
Deep learning models are now considered state-of-the-art in many areas of pattern recognition. In speaker recognition, 
several architectures have been studied, such as deep neural networks (DNNs), deep belief networks (DBNs), restricted 
Boltzmann machines (RBMs), and so on, while convolutional neural networks (CNNs) are the most widely used models in 
computer vision. The problem is that CNN is limited to the computer vision field due to its structure which is designed for 
two-dimensional data. To overcome this limitation, we aim at developing a customized CNN for speaker recognition. The 
goal of this paper is to propose a new approach to extract speaker characteristics by constructing CNN filters linked to the 
speaker. Besides, we propose new vectors to identify speakers, which we call in this work convVectors. Experiments have 
been performed with a gender-dependent corpus (THUYG-20 SRE) under three noise conditions : clean, 9db, and 0db. We 
compared the proposed method with our baseline system and the state-of-the-art methods. Results showed that the conv-
Vectors method was the most robust, improving the baseline system by an average of 43%, and recording an equal error 
rate of 1.05% EER. This is an important finding to understand how deep learning models can be adapted to the problem of 
speaker recognition.
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1  Introduction

Today, there is great interest in speaker verification due 
to the high demand for voice access and security applica-
tions (Hoy 2018; Basyal et al. 2018; Li et al. 2020). In lit-
erature, speaker recognition may refer to speaker verifica-
tion, but in fact, speaker verification is a branch of speaker 
recognition along with the other one, speaker identification. 
The difference between the two branches is that, in the veri-
fication process, a speaker’s voice is accepted or rejected as 
the voice of a particular person, called the target speaker. 
While in the identification process, the voice of the person 

to be identified is compared to a set of known speakers and 
classified as one of them.

A speaker verification system can be text-dependent or 
text-independent. A text-dependent system requires speak-
ers to correctly read a fixed sentence or randomly selected 
words. Which allows to measure two similarities : the simi-
larity between the spoken words and the proposed words ; 
and the similarity between the voice of the target speaker 
and the voice of the person being verified, called the test 
speaker. Whereas text-independent systems examine only 
the characteristics of the speaker’s voice. Our focus in this 
paper will be on text-independent speaker verification.

To develop a speaker verification system, we start by 
extracting characteristics from the voice signal. In this con-
text, feature extraction aims at obtaining a compact repre-
sentation of a raw audio signal in the form of a sequence 
of feature vectors, each representing some of the speaker’s 
features as well as other frequent properties (Sadjadi and 
Hansen 2015; Reddy 1976). Feature extraction is required 
to reduce the complexity of the training data with respect to 
the number of variables and thus enable efficient predictive 
modeling.
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Feature extraction is then followed by a modeling phase. 
For speaker recognition, two categories of models are pro-
posed in the literature : template and stochastic models (Kin-
nunen and Li 2010). In both cases, the models are trained 
from the speaker’s utterances. In template models, the fea-
ture vectors of the target speaker and the test speaker are 
considered as two incomplete versions of each other, so that 
a degree of similarity is calculated between the two ver-
sions. Representative examples of template models are : vec-
tor quantization (VQ) (Soong et al. 1987; Singh and Rajan 
2011; Martinez et al. 2012), nearest cluster (NearC) (Hourri 
and Kharroubi 2019) and dynamic time wrap (DTW) (Sha-
hin and Botros 1998). In stochastic models, a speaker is 
represented by a probability density function in which the 
parameters are estimated from the utterances of the target 
speaker. Therefore, the probability of utterances of the test 
speaker is evaluated according to the model formed by 
the target speaker. In this context, we can cite well-known 
stochastic models such as the Gaussian Mixture Model 
(GMM) (Reynolds et al. 2000) and the Hidden Markov 
Model (HMM) (Forsyth et al. 1993; Lee and Hon 1988).

In the last decade, deep learning has had great success in 
pattern recognition, particularly in computer vision (Litjens 
et al. 2017), speech recognition (Deng et al. 2013; Amodei 
et al. 2016) and natural language processing (Young et al. 
2018). In the meantime, deep learning has also been used 
for speaker recognition, and different architectures have 
been studied, such as the restricted Boltzmann machine 
(RBM) (Hinton 2012), the convolutional neural network 
(CNN) (LeCun et al. 1995; Kalchbrenner et al. 2014; Sain-
ath et al. 2013), the multi-layer perceptron (MLP) (Cybenko 
1989; Gardner and Dorling 1998), the deep neural network 
(DNN)(Hinton et al. 2012), the recurrent neural network 
(RNN) (Mikolov et al. 2010), and the deep belief network 
(DBN) (Hinton et al. 2006). In this context, an earlier use 
of deep learning in speaker recognition was based on the 
use of an MLP model as a class discriminator (Bennani and 
Gallinari 1994). After that, and with the rise of the deep 
learning models in 2006, RBMs and DBNs were used in 
speaker verification to model the target and the test speakers 
with symmetric log-likelihood (Senoussaoui et al. 2012). 
DNNs have also been used for two main reasons : to gener-
ate i-vectors (Liu et al. 2015; Lei et al. 2014; Kenny et al. 
2014; Richardson et al. 2015), x-vectors (Snyder et al. 2018) 
or deep speaker features (DeepSF) (Hourri and Kharroubi 
2020), and as a speaker class discriminator (Tirumala and 
Shahamiri 2016). On the other hand, CNNs have been used 
in speaker recognition by exploiting their 2D data process-
ing capabilities in computer vision. Thus, most of works 
focus on extracting speaker characteristics from the visual 
representation of the frequency spectrum called spectro-
gram (Zhang et al. 2018; Chung et al. 2018; Tóth 2014; 
Chen et al. 2015; Li et al. 2017), while few works are using 

raw waveforms (Ravanelli and Bengio 2018; Palaz et al. 
2015).

The challenging problem that arises in this domain is the 
adoption of deep learning architectures for voice charac-
teristics, in particular for CNNs that are more suitable for 
computer vision (Krizhevsky et al. 2012). To the best of our 
knowledge, our previous work, CNN/UBM-NearC (Hourri 
et al. 2020), was the first to use CNNs without relying on 
the computer vision approaches, and no study has been 
conducted on the adoption of CNNs in speaker recognition 
without transforming the speaker recognition problem into 
a computer vision problem, i.e. using images as CNN input.

In our previous work, we used different deep learning 
architectures for the proposed speaker verification system. 
In fact, we used RBM to transform the speaker feature vec-
tors into a weight matrix. Subsequently, we generated matri-
ces for the target speaker and for its opposite, the so-called 
non-target speaker. We, then, used CNN to distinguish the 
matrices of the target speaker from the matrices of the non-
target speaker.

The objective of this work is to develop a more sophisti-
cated method of speaker verification using RBM and CNN 
to form a vector representing the speaker, which we call in 
this paper convVector (i.e. a convolutional neural network 
vector). The process of extracting convVectors has three 
phases : (i) transforming the universal background model 
(UBM) data into matrices ; (ii) constructing the CNN filters 
from the target speaker data ; (iii) constructing the CNN and 
extracting the convVector of the target speaker.

The main contributions of this work are presented as 
follows :

–	 The proposal of an original approach to extract character-
istics of the speaker by forming CNN filters correspond-
ing to that speaker ;

–	 The proposal of new vectors to identify speakers : conv-
Vectors.

The rest remainder of the paper is organized as follows : 
in Sect. 2, the proposed method is explained in detail. In 
Sect. 3 we discuss the results. Finally, we draw conclusions 
in Sect. 4.

2 � Methodology

In this work, we propose a deep learning approach for 
speaker recognition. We used RBMs for two reasons : first, 
to construct the UBM by transforming the feature vectors 
of each UBM speaker into a weight matrix ; and second, to 
transform the speaker feature vectors into binary vectors. We 
then transformed the binary vectors into matrices which are 
used as CNN filters. So, we constructed the CNN, starting 
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with the fixed input layer composed of the UBM matrices. 
Thereafter, the convolution layers are obtained using the fil-
ters concerning the speaker. Finally, the flattened vectors are 
extracted to compute the convVector of the speaker.

2.1 � Feature extraction with Mel‑Frequency Cepstral 
Coefficients (MFCC)

In general, a speech signal varies continuously across its 
duration because of articulatory movements. Though, split-
ting into short, overlapping frames may result in speech seg-
ments where the signal is considered stable. In this respect, 
the Mel-frequency Cepstral coefficients (MFCCs) (Molau 
et al. 2001; Hasan et al. 2004) are commonly used for speech 
and speaker recognition applications.

The strength of MFCCs lies on their capability of mod-
eling the shape of the vocal tract in a short-term power spec-
trum. In concrete terms, for segment i with Discrete Fou-
rier Transform (DFT) length k, the current frequencies are 
detected by estimating the periodogram Pi(k) as reported by 
Eq. (2), with Si(k) is the DFT for the segment i, see Eq. (1). 
In Eq. (1), N is the product of the number of frames and the 
signal sample rate; h(n) is for the long analysis window for 
N sample.

The periodogram estimates Pi models for the human 
cochlea, which vibrates to varying degrees according to the 
sound received. The periodogram spectra embody some 
unnecessary information for speaker/speech recognition. 
Thus, Mel-filterbank is applied to the power spectra, and the 
energy is added to each filter. Next, once we get the energy 
from the filterbank, we calculate the logarithm of these 
energies. Finally, the discrete cosine transformation (DCT) 
is calculated for the logarithm of the filter bank energies, 
and we keep 2-13 coefficients and neglect the rest. Usually, 
frame vectors are appended to the frame energy, in addition 
to delta and delta-delta features.

2.2 � Restricted Boltzmann machine (RBM)

The restricted Boltzmann machine (RBM) is an unsuper-
vised deep learning model composed of two layers : the vis-
ible layer v of V > 1 units and the hidden layer h of H > 1 
units. Observable variables are represented in the visible 
units, while latent variables are represented in the hidden 
units. In fact, the observable variables describe the data, 
while the latent variables describe the behavior of the 

(1)Si(k) =

N∑

n=1

si(n)h(n) exp
−j2�kn∕N 1 ≤ k ≤ K

(2)Pi(k) =
1

N
||Si(k)

||
2
1 ≤ k ≤ K

indeterminate cognitive (Deng 2014). The two layers con-
nection is forming a symbolic interaction, there is no con-
nection between units in same layer while each unit in a 
layer is connected to all units in the other layer. The sum 
total of all weights on all connections represents the energy 
of an RBM. In general, there is two versions of RBM : The 
Bernoulli-Bernoulli RBM (BB-RBM) and the Gaussian-
Bernoulli RBM (GB-RBM).

BB-RBM only accepts binary data for the visible layer, 
while GB-RBM is more appropriate for real value data. In 
fact, the visible layer accepts real value vectors, while the 
hidden layer accepts binary vectors. The energy function of 
a GB-RBM is defined in Eq. (3).

In Eq. (3), vi and hj denote the entries for the units ith and jth 
in the visible and hidden layers, respectively ; wij represents 
the weight value on the connection between the ith and the 
jth units ; bv

i
 and bh

j
 are the biases for the visible unit i and 

the hidden unit j, respectively. Finally, �i represents the 
standard deviation of Gaussian noise for i the visible unit. 
Next, we can compute the joint probability distribution for 
v and h using Eq. (4).

where � stands for the weights and biases, while Z indicates 
to the partition function, see Eq. (5).

2.3 � UBM data generation

The universal background model (UBM) is a model used in a 
speaker verification system to represent speaker-independent 
features to be compared to a speaker-specific features when 
making an acceptance or rejection decision. To construct 
an UBM, we used the same approach as in our previous 
work (Hourri et al. 2020). Thus, inspired by the use of CNN 
in computer vision (Brinker et al. 2019; Chen et al. 2019; 
Sermanet et al. 2012; Skourt et al. 2019), we transformed the 
MFCC feature vectors of each speaker in the UBM dataset 
into a square matrix. In practice, the weights of the RBM 
are initialized randomly to real values ∈ [0,1]. Therefore, the 
feature vectors of each speaker in the UBM are transmitted 
to the RBM, which attempts to reconstruct them. When the 
RBM reaches the proper learning accuracy, we return the 
weight values between the visible and the hidden layers, 

(3)E(v, h) = −
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j=1

bh
j
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V∑

i=1

(vi − bv
i
)2

2�2
i

−

V∑

i=1

H∑

j=1

vi

�i

hjwij

(4)p(v, h;�) =
exp(−E(v, h;�))

Z

(5)Z =
∑

v

∑

h
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that are represented by a matrix. Finally, the resulting UBM 
includes only matrices, instead of feature vectors, Fig. 2.

2.4 � Target filters extraction

The target feature vectors are used to extract filters for the 
CNN. In practice, the RBMs have been configured to learn 
only one feature vector for each learning phase, and then the 
values of the hidden layer are extracted. Thus, each feature 
vector of the speaker is converted into a binary vector, (see 
Fig. 1a). The new set of binary vectors can contain many 
identical vectors. For this reason, we cluster the set of vec-
tors with the DB-SCAN clustering algorithm (Schubert et al. 
2017). In DB-SCAN, we used the Hamming distance (Choi 
et al. 2010) considering two binary vectors similar only if 
their Hamming distance is equal to zero. So, we obtained 
clusters, and each cluster includes similar binary vectors. 
However, some clusters may include more vectors than oth-
ers. To highlight this characteristic, we labeled the clusters, 
giving priority to the cluster with the most vectors over the 
cluster with the least. Next, we reduce each cluster to a sin-
gle binary vector which we label with the number of its 
occurrences. Finally, to construct target speaker filters, we 
transformed each binary vector into a matrix by applying a 
binary multiplication between the binary vector h and its 
transposition hT , see Eq. (6) and Fig. 1b.

2.5 � Convolutional neural network (CNN)

Convolutional neural network (CNN) is a deep learning 
model designed for 2D data input, it is mainly used for 
image recognition and grid topology data. Unlike other deep 
learning models, CNN does not require high level data pre-
processing, therefore a minimal preprocessing phase would 
be sufficient. The idea for CNN’s architecture comes from a 
biological origin, and exactly from the structure of animal 
visual cortex (Hubel and Wiesel 1968). In concrete terms, 
CNN is a multi-layer neural network that includes two types 

(6)Filter = h.hT

of layers : convolution layers and sub-sampling layers. The 
two types of layers are set alternately at the core of the net-
work architecture with the input data on the left side of the 
network, and a multi-layer perceptron on the right side, see 
Fig. 1c. Features are extracted using the convolution layers. 
Therefore, each unit of this layer is linked to the local recep-
tive field of the previous layer. In addition, sub-sampling 
layers, also called pooling layers, are used to reduce the size 
of the previous layer, helping to overcome the problem of 
overfitting.

Overall, the process of extracting features using CNN 
begins with applying a sliding filter (also called kernel) on 
the input matrix, resulting in a convolution layer. Thus, the 
dimension of the convolution layer is reduced by a pooling 
layer. The process can be repeated if necessary, and the final 
matrices are flattened to construct a one-dimensional vec-
tor that represents the input of the fully connected neural 
network.

In this work, we propose a different use of CNNs. In fact, 
our objective is not to use their learning capacity. However, 
we do intend to use the capability of CNNs in terms of fea-
ture extraction to extract a vector representing the speaker. 
Thus, we develop the CNN architecture block by block. First 
we use UBM matrices as CNN inputs. Then, we use the 
target filters as CNN filters to obtain a convolution layer. 
Third, we apply max-pooling to reduce the dimensionality 
of the convolution layer. We repeat this process as described 
in Sect. 3.3. Fourth, each resulting matrix is flattened by 
stacking its rows to form a vector. Finally, the vectors of the 
matrices are averaged to form a vector representing the target 
speaker, called convVector.

3 � Results and discussion

In this section, we present the speaker recognition corpus 
used in the experiments, the experimental environment, the 
experimental protocol, and the results obtained.

3.1 � Corpus

In this work, we are using an open source speaker recogni-
tion corpus for the Uyghur language known as the THUYG-
20 SRE corpus (Rozi et al. 2015). it comprises 371 speakers 
who were recorded in a silent office with the same carbone 
microphone, and all speakers were reading newspapers, 
books and novels written in Uyghur. All speakers are stu-
dent colleagues, and they are between 19 and 28 years old. 
The sample rate of the recording signals is 16 KHz, with 16 
bits as a sample size.

The corpus is split into three groups, the first group is 
used to train UBM in GMM-UBM framework, T matrix in 
the i-vector model, and PLDA parameters {m,U,V ,

∑
} . It 

Fig. 1   An illustration of the proposed method : Part a represents the 
process of extracting the binary feature vectors ; the speaker’s speech 
signal is transformed into normalized MFCC feature vectors, and 
each MFCC feature vector is converted into a binary feature vector 
using an RBM. Part b represents the process of transforming binary 
vectors into filters; the binary vectors are grouped together, a set of 
groups is selected, and each group is represented by a binary vector 
and transformed into a filter. Part c represents the CNN construction 
process; the inputs are generated by the UBM (see Fig. 2), the con-
volution layers are computed by applying the filters obtained from 
part (b), the max-pooling is applied after each convolution layer, and 
at the end a flattened vector is computed representing the speaker’s 
convVector

◂
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includes 4771 utterances produced by 200 speakers. The 
other groups stand for target and test sets, they include the 
same number of speakers, 153. In the target set, each speaker 
has 30 seconds audio speech segment. While for the test set, 
the same speaker has several audio speech segments of 10 
seconds each.

Utterances are clean speech ; however, three types of 
noise are provided : cafeteria noise, car noise, and white 
noise. They are randomly mixed with the speech signal with 
different SNRs (signal-to-noise ratio).

We note that we used the FSCSR (Bouziane et al. 2016) 
corpus in our pre-evaluation, and the THUYG-20 SRE cor-
pus for the final evaluation (Table 1).

3.2 � Experimental environment

The proposed method has been developed and evaluated 
using these machine configurations : (i) PC, CPU: Intel Core 
i7-7700HQ 2.80 Ghz ; 6 MB cache memory ; GPU: Nvidia 
GeForce GTX 1050 4GB-VRAM, 640 CUDA cores, 112.13 
GB/s memory bandwidth ; (ii) Operating system: Micro-
soft Windows 10 Professional, (iii) Programming language: 
Python 3.6 (TensorFlow, Keras).

3.3 � Experimental Protocol

The speech signal is divided into small 25 ms frames, 
and the Hamming window is used with a 10ms step size. 
As a result, 39-dimensional MFCC feature vectors are 
extracted, including the 13-dimensional static MFCC, in 
which the coefficient C0 is replaced by energy, and their 
first and second derivatives. In order to remove the chan-
nel effect from the feature vectors, we applied the Cepstral 
mean and variance normalization (CMVN) (Prasad and 
Umesh 2013).

The UBM is gender-independent, in each set it has 100 
speakers, each is represented by a square matrix 39 × 39 . 
The RBM is composed of 39 units in each layer. To train the 
RBM, we used the contrastive divergence algorithm (Hinton 
et al. 2006). Then, we extracted the weight matrix of each 
RBM. The resulting UBM consists of 100, 39 × 39 , square 
matrices, which make up the CNN input layer.

Next, we extracted the target filters. Each speaker feature 
vector set consists of 3000 vectors, and each vector is trans-
formed into a filter. In practice, we used three RBM archi-
tectures : RBM1 (v = 39, h= 12), RBM2 (v = 39, h= 9), and 
RBM3 (v = 39, h= 6). For each feature vector, three binary 
vectors of dimensions 12, 9 and 6 respectively are obtained. 
This results in three groups of binary vectors : G1(3000, 12), 
G2(3000, 9), and G3(3000, 6). For each set, we proceeded 
with feature selection as explained in the methodology sec-
tion ; for G1, we kept the 32 binary vectors corresponding 
to the first 32 clusters giving priority to vectors depend-
ing on the size of the cluster they represent as explained in 
Sect. 2.4, for G2, and G3 we kept 64 and 128 binary vec-
tors respectively. Finally, the binary vectors are transformed 

Fig. 2   Illustration of matrix generation from UBM ; MFCC vectors are extracted from each UBM speaker, then normalized, and using RBM, the 
feature vectors of each speaker are transformed into a matrix. (Color figure online)

Table 1   THUYG-20 SRE corpus architecture used for this work

Dataset Speaker Female Male Utterance Duration (h)

UBM 200 100 100 4771 13.15
Target 153 87 66 153 1.28
Test 153 87 66 2361 6.56
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into filters using Eq. (6), resulting in three groups of filters : 
conv(32,12,12), conv(64,9,9), and conv(128,6,6). In this 
experiment, we used the following CNN configurations :

–	 The First CNN configuration :

–	 C1 : M(100, 39, 39) + conv(32, 12,12) + max-pool-
ing + flattening ;

–	 C2 : M(100, 39, 39) + conv(64, 9, 9) + max-pooling 
+ flattening ;

–	 C3 : M(100, 39, 39) + conv(128, 6, 6) + max-pool-
ing + flattening.

–	 The Second CNN configuration :

–	 C1 + C2 : M(100, 39, 39) + conv(32, 12,12) + max-
pooling + conv(64, 9, 9) + max-pooling + flatten-
ing ;

–	 C1 + C3 : M(100, 39, 39) + conv(32, 12,12) + max-
pooling + conv(128, 6, 6) + max-pooling + flatten-
ing ;

–	 C2 + C3 : M(100, 39, 39) + conv(64, 9, 9) + max-
pooling + conv(128, 6, 6) + max-pooling + flatten-
ing.

–	 The Third CNN configuration :
–	 C1 + C2 + C3 : M(100, 39, 39) + conv(32, 12,12) 

+ max-pooling + conv(64, 9, 9) + max-pooling + 
conv(128, 6, 6) + max-pooling + flattening.

The experiments were conducted using the THUYG-20 
SRE corpus, using female and male datasets, in which 87 
speakers are female and 66 are male. We followed the same 
experimental protocol as the previous work  (Hourri et al. 
2020) to calculate equal error rate (EER) (Agrawal et al. 
2014). Thus, we tested speakers against each other, resulting 
in a total of 119,277 trials for the female dataset and 63,361 
trials for the male dataset. It should be noted that the test 
speakers were treated as target speakers in the convVectors 
extraction process, and the distance between the target and 
test convVectors is calculated using their Cosine similarity.

Table 2   Equal error rate (%) results using different sizes and combinations of convolution layers  : C1=conv(12,12), C2=conv(9,9), and 
C3=conv(6,6) on the THUYG-20 SRE corpus under three SNR conditions : clean, 9db and 0db

Female speakers CNN architectures

Target (SNR) Test (SNR) C1 C2 C3 C1 + C2 C1 + C3 C2 + C3 C1 + C2 + C3

 Clean Clean 1.02 0.98 1.58 0.17 0.13 0.11 0.12
 Clean 9db 1.28 1.32 1.92 0.25 0.29 0.31 0.26
 Clean 0db 1.65 1.77 2.01 0.42 0.51 0.52 0.39
 9db Clean 1.88 1.92 2.31 1.07 1.10 1.11 1.04
 9db 9db 1.77 1.73 3.15 1.08 1.02 0.92 0.95
 9db 0db 2.40 2.45 2.88 1.71 1.75 2.07 1.69
 0db Clean 1.95 1.97 2.28 1.58 1.61 1.63 1.60
 0db 9db 2.00 2.01 2.34 1.65 1.73 1.72 1.66
 0db 0db 2.21 2.19 2.51 1.67 1.61 1.42 1.44

AVG EER 1.80 1.82 2.33 1.07 1.08 1.09 1.02

Male speakers CNN architectures

Target (SNR) Test (SNR) C1 C2 C3 C1 + C2 C1 + C3 C2 + C3 C1 + C2 + C3

 Clean Clean 1.11 1.10 1.64 0.19 0.15 0.15 0.15
 Clean 9db 1.33 1.39 2.01 0.28 0.32 0.37 0.35
 Clean 0db 1.76 1.80 2.12 0.41 0.54 0.59 0.45
 9db Clean 1.89 1.95 2.35 1.11 1.12 1.15 1.13
 9db 9db 1.81 1.74 2.16 1.09 1.05 0.98 1.00
 9db 0db 2.48 2.40 2.87 1.74 1.77 2.06 1.74
 0db Clean 1.99 2.02 2.33 1.62 1.63 1.68 1.65
 0db 9db 2.06 2.11 2.34 1.66 1.75 1.80 1.79
 0db 0db 2.26 2.23 2.55 1.68 1.62 1.49 1.45

AVG EER 1.85 1.86 2.26 1.09 1.11 1.14 1.08
Total AVG EER 1.82 1.84 2.30 1.08 1.09 1.11 1.05
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3.4 � Results

The Table 2 represents the results of the proposed method 
for female and male datasets, using seven CNN  configu-
rations: C1, C2, C3, C1 + C2, C1+C3, C2 + C3, C1 + 
C2 + C3. The results show that C1 gives the lowest total 
AVG EER compared to C2 and C3, with 1.82% EER. It is 
clear from these results that the error increases as the size of 
the convolution layer decreases. Following the same logic, 
the composition of C1 and C2 gives much better results 
than what was given by a single convolution layer. In this 
case, the error is reduced by approximately 41% (from 1.82 
to 1.08% of the total AVG EER). In addition, results are 
improved by adding C3 to C1+C2 and recording a total AVG 
EER of 1.05%. 

Based on the results obtained, it is clear that the CNN 
configuration (C1 + C2 + C3) gives the best results. There-
fore, C1 + C2 + C3 composition is considered as the core 
of the proposed method convVectors. Therefore, the results 

of this method are compared to the results of the i-vector/
PLDA approach (Rozi et al. 2015), deep speaker features 
(DeepSF/NearC) (Hourri and Kharroubi 2020) and our pre-
vious work, CNN/UBM-NearC, as a baseline (Hourri et al. 
2020). For i-vector/PLDA, the UBM involves 2048 Gaussian 
components, and 400 is used as the i-vector dimension. For 
DeepSF, UBM is not involved, the MFCC feature vectors 
are transformed into DeepSF vectors and the nearest cluster 
is used as the scoring method (Hourri and Kharroubi 2019). 
For the baseline system, we used the same UBM as the one 
used in this work.

Table 3 shows the results of the different methods using 
the female and male datasets, under three noise condi-
tions (clean, 9db and 0db). In one of our previous works, 
DeepSF outperforms the i-vector/PLDA approach by up to 
64%. And in our previous work (Hourri et al. 2020), the 
results show that CNN/UBM-NearC performs better than the 
DeepSF/NearC only when the target data are clean. On the 
other hand, the proposed method goes beyond the previous 

Table 3   Equal error rate (%) results of : i-vector/PLDA, DeepSF/NearC, CNN/UBM-NearC (baseline system) and the proposed method (conv-
Vectors) using the THUYG-20 SRE corpus under three SNR conditions : clean, 9db and 0db

Female speakers Methods

Target (SNR) Test (SNR) i-vector/PLDA DeepSF/NearC CNN/UBM-
NearC

ConvVectors

 Clean Clean 2.33 0.43 0.34 0.12
 Clean 9db 4.45 0.88 0.81 0.26
 Clean 0db 8.83 1.15 1.02 0.39
 9db Clean 4.01 0.91 0.99 1.04
 9db 9db 3.72 1.41 1.51 0.95
 9db 0db 5.76 2.87 2.97 1.69
 0db Clean 6.57 3.07 3.44 1.60
 0db 9db 4.74 2.76 2.85 1.66
 0db 0db 5.47 2.27 2.33 1.44

AVG EER 5.10 1.75 1.81 1.02

Male speakers Methods

Target (SNR) Test (SNR) i-vector/PLDA DeepSF/NearC CNN/UBM-NearC ConvVectors

 Clean Clean 2.16 0.55 0.42 0.15
 Clean 9db 4.12 1.14 0.84 0.35
 Clean 0db 7.77 1.20 1.09 0.45
 9db Clean 3.91 0.88 1.05 1.13
 9db 9db 3.66 1.51 1.50 1.00
 9db 0db 5.34 2.43 2.98 1.74
 0db Clean 6.01 3.19 3.52 1.65
 0db 9db 4.80 3.09 2.99 1.69
 0db 0db 4.99 2.40 2.50 1.45

AVG EER 4.75 1.82 1.88 1.08
Total AVG EER 4.95 1.78 1.84 1.05
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reports, showing that convVectors method is the one that 
has obtained the most robust results. When comparing the 
results of convVectors to those of older studies, it should be 
noted that the lowest error is indicated when the target and 
test data are clean, i.e. 0.11% EER and 0.15% EER for the 
female and male datasets respectively. In addition, convVec-
tors decreases the error rate by an average of 43% regarding 
the baseline system (from 1.84% to 1.05% total AVG EER). 

Figures 3 and  4 show the DET (Detection Error Trade-
off) curves for the female and male datasets. The curves 

represent the false acceptance rate versus the false rejection 
rate. DET curves are used for binary classifications, with the 
curve closest to zero representing the most accurate method. 
As for Figures 3 and  4, they show that the convector method 
(yellow curve) has largely surpassed our previous methods. 
These results demonstrate that there is clear support for the 
proposed method. In addition, another novel finding is that 
the target filters could form the speaker’s specific features by 
enhancing the common characteristics, which are illustrated 
by the UBM matrices.

Fig. 3   Illustration of the DET 
curve of four methods : i-vector/
PLDA (green), DeepSF/NearC 
(blue), CNN/UBM-NearC (red), 
and the proposed ConvVectors 
method (yellow). Results are 
presented using the THUYG-20 
SRE corpus/female dataset. The 
curve closest to the zero point is 
the best. (Color figure online)
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4 � Conclusion

In this paper we demonstrate that CNNs could be employed 
in speaker recognition directly without reducing the speaker 
recognition problem to a computer vision one. The challenge 
comes from the need for two-dimensional data, which in the 
case of speech has been previously addressed by utilizing 
either spectrograms or waveforms, and thus solving a com-
puter vision problem. Instead, we propose two-dimensional 
CNN filters for a speaker derived from MFCCs features. 
Furthermore, we propose new type of vectors for identifying 
speakers, called convVectors.

Experiments were carried out on the THUYG-20 SRE 
corpus, under three noise conditions : clean, 9db and 0db. 
Overall, our results show a significant effect of the proposed 
CNN filters on the preservation of the speaker characteris-
tics in the convVectors by improving the performance com-
pared to state-of-the-art methods for speaker recognition. 
The reported improvement of the baseline system is by 43%. 
Since model training and testing are time consuming, our 
computational infrastructure did not allow us to use larger 
datasets. Future studies with a more powerful computational 
infrastructure may be needed to validate the conclusions that 
can be drawn from this work.
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