
Vol.:(0123456789)1 3

International Journal of Speech Technology (2020) 23:767–777
https://doi.org/10.1007/s10772-020-09728-5

An optimized iterative clustering framework for recognizing speech

Ashokkumar Palanivinayagam1 · Sureshkumar Nagarajan1

Received: 5 March 2020 / Accepted: 15 June 2020 / Published online: 22 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In the recent years, many research methodologies are proposed to recognize the spoken language and translate them to text.
In this paper, we propose a novel iterative clustering algorithm that makes use of the translated text and reduces error in
it. The proposed methodology involves three steps executed over many iterations, namely: (1) unknown word probability
assignment, (2) multi-probability normalization, and (3) probability filtering. In the first case, each iteration learns the
unknown words from previous iterations and assigns a new probability to the unknown words based on the temporary results
obtained in the previous iteration. This process continues until there are no unknown words left. The second case involves
normalization of multiple probabilities assigned to a single word by considering neighbour word probabilities. The last step
is to eliminate probabilities below the threshold, which ensures the reduction of noise. We measure the quality of clustering
with many real-world benchmark datasets. Results show that our optimized algorithm produces more accurate clustering
compared to other clustering algorithms.

Keywords Speech document clustering · Iterative speech error correction · Similarity of documents · Probability
clustering · Speech mining

1 Introduction

Speech to text convertion comes with lots of error, these
errors can be corrected with document clustering, that is
when the converted speech to text are stored in each docu-
ment, then by using ddocument clustering, most of the errors
can be ommited. Document clustering is the process of par-
titioning unlabeled documents into a set of clusters such
that there is more similarity within a set and no (or much
less) similarity between sets (Berna and Murat 2018). Docu-
ment clustering is broadly used in the field of data mining
in applications like information retrieval, web mining, and
so on. There are various algorithms available for clustering
the documents into one or more clusters such as cosine simi-
larity, K-Means and Euclidean distance (ED). All of these
algorithms treat a document as a bag of words (normally
represented as a vector of words). The unique words from

the document are calculated and its number of occurrences
is found; based on these two values, a weighted factor is
calculated. This weighted factor plays an important part in
document clustering. There are various methods for finding
this weighted factor such as the term frequency—inverse
document frequency (TF-IDF) method, odd ratio (OR)
method, and so on.

There are two categories of clustering: offline and online.
Online clustering application includes web searching, prod-
uct recommendation, and so on. Offline clustering is used
in pattern finding (Bishop 2006) and information extraction
(Powers 2011). Performance consideration for online clus-
tering such as the speed of clustering, accuracy, and space
complexity, are more important than offline clustering. The
clustering algorithms can be further divided into two clas-
sifications: hard clustering (Sima and Omid 2018) such as
by using K-means, which assigns a document to one cluster;
and soft clustering (Smita and Sudarson 2018) or fuzzy clus-
tering, where one or more topics are assigned to a document.
The algorithm implemented in this paper comes under fuzzy
clustering.

Some examples of fuzzy clustering are latent semantic
indexing (Al-Zoghby and Khaled 2018), latent Dirichlet
allocation (LDA) (Yang et al. 2018; Blei et al. 2003), and

 * Sureshkumar Nagarajan
 sureshkumar.n@vit.ac.in

 Ashokkumar Palanivinayagam
 ashokkumar.p@vit.ac.in

1 School of Computer Science and Engineering, VIT
University, Vellore, TN 632014, India

http://orcid.org/0000-0003-2531-1326
http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-020-09728-5&domain=pdf

768 International Journal of Speech Technology (2020) 23:767–777

1 3

so on. These clustering algorithms work based on the con-
cept of topic mining. Topic mining is a statistical method
of finding the hidden meanings present in documents. Hid-
den structures can be found easily using fuzzy clustering.
In this type of clustering, the probability of certain words
occurring in a document is found (Blei 2012). For example,
we can expect words like ‘boundary’, ‘runs’, etc. in docu-
ments which belong to the ‘cricket’ category. Similarly, we
can expect words like ‘medicine’, ‘vitamin’, and so on in
documents which belong to the ‘health’ category. The words
‘fitness’ and ‘exercise’ appear in both ‘cricket’ and ‘health’
categories. Thus, a document can contain multiple associ-
ated topics and, by using topic clustering, we can determine
that a document contains 20% ‘cricket’ content and 80%
health content or that the number of words belongs to the
health category is four times greater than the number of
words belonging to the cricket category. Using this topic
modelling, we can determine the topic-word distributions
while topic-document distributions occur over a document
corpus (Ximing et al. 2018).

The fuzzy clustering process involves clustering of docu-
ments in five steps: (1) parsing, (2) stemming, (3) stop word
removal, (4) topic mapping, and (5) visualization. Parsing is
the process of generating terms in the document. A term (or
word) is the smallest unit for which clustering decisions can
be made. The main part of parsing consists of generating a
bag of words (Ryosuke and Tu 2018) or another kind of rep-
resentation such as an n-gram (Atanu et al. 2018). Stemming
(Fahd Saleh and Vishal 2018) is the process of converting a
word into its root form; for example, the word ‘running’ can
be converted into its root form ‘ run’, and the word ‘climbed’
can be converted into its root form ‘climb’. In the next step,
stop word removal (Leskovec et al. 2011), common words
that are not suitable for clustering are removed. There is no
standard list of stop words; different clustering algorithms
use their own stop word lists to eliminate useless words.
Some examples of stop words are ‘the’, ‘is’, ‘from’ etc.
These words are removed from the bag-of-words model or
N-gram model before proceeding to the next step. The first
three steps are called pre-processing steps because they do
not involve clustering: the documents are only prepared for
clustering. The most crucial process of clustering is topic
mapping, in which each term is mapped to a set of topics.
This step provides some hints for predicting the topic per-
centage of a document. In the last step, visualization is per-
formed by taking the hints generated by previous steps and
generating a weighted matrix from which the exact topic
percentage for a document is determined.

1.1 Contribution

We propose an iterative clustering technique that improves
clustering efficiency by minimizing the distance between

data points and the topic cluster. Our study includes the fol-
lowing work:

– The first step is to use topic-word modeling for clustering
the data files for the first iteration. At the end of cluster-
ing a document (in each iteration), the unknown words
are added into the word-topic distribution with probabil-
ity values equal to the topic distribution of the corre-
sponding document in that iteration. Iteration continues
until there are no changes in the topic-word distribution
and the document-topic distribution. The need for itera-
tion ensures a supervised state is reached.

– To increase the clustering accuracy, we normalize the
probability of adjacent words with multiple associated
topics. If two consecutive words have the same subset
of topics, we measure the highest-probability topic and
increase the probability of that topic. For example, con-
sider the sentence ‘She will park the car so we can walk
in the park’; after preprocessing this sentence we obtain
the sentence ‘park car walk park’. Here park has two dif-
ferent topics and the neighbor word determines the cor-
rect topic.

– While updating the topic-word distribution, we remove
entries that are insufficient for making decisions in the
next iteration; that is, when the probability of a word is
too low (e.g., less than 0.05), we remove that word from
the topic-word distribution. After removal, we update the
rest of the probabilities so that the sum of all probabilities
for words is 1.

The rest of the paper is structured as follows: Sect. 2
describes some existing works related to iterative cluster-
ing. Section 3 explains two key problems that arise while
dealing with iterative clustering, Sect. 4 describes the solu-
tions to the two problems encountered, and Sect. 5 shows
experimental results that prove that our algorithm is more
efficient than existing algorithms such as the cosine similar-
ity and k-means.

2 Related work

The main aim of clustering documents from a corpus is to
divide the documents into one or more groups. For this pur-
pose, a one-time clustering process may not be very efficient.
Clustering process efficiency is improved by running the
algorithm more than once (Manochandar and Punniyamoor-
thy 2018). Some feedback is given at the end of each itera-
tion to improve the quality of the next iteration; for example,
some feedback is generated during a user search (Bridgid
et al. 2018) and improves the efficiency of clustering. Feed-
back can also be generated by assigning features (Dan-
iel Carlos et al. 2019) while clustering. Other algorithms

769International Journal of Speech Technology (2020) 23:767–777

1 3

(Manochandar and Punniyamoorthy 2018) improve the
efficiency of clustering using TF-IDF (Manochandar and
Punniyamoorthy 2018; Morteza et al. 2019).

K-means (Mane and Kulkarni 2018) is widely used for
clustering along with other algorithms like Euclidean dis-
tance (ED) (Kaizhu et al. 2008) which give better results for
small numbers of documents. Xuejuan et al. (2018) proposes
an efficient way of merging cosine similarity (Lulwah and
Mourad 2018) with spherical k-means (Liang et al. 2018) for
better results with large numbers of documents. For dealing
with a large number of data documents, dimension reduction
can also be added as a part of pre-processing as mentioned in
Fuyuan et al. (2018), Tanvir Habib and Zahid (2018).

Most of the methods used in iterative clustering use the
concept of a correlation coefficient matrix or an inverse rela-
tionship matrix which describes the relationship between
two or more words. A general pattern is found and the rela-
tionships between these patterns and the rest of the data are
calculated. This process continues until there is sufficiently
close distance between the data. However, few algorithms
based on these concepts have been explained in the corre-
sponding papers (Abla Chouni et al. 2019; Roger Alan et al.
(2019; Elizaveta and Vsevolod 2018).

Divisive clustering like that described in Marcos Wan-
der et al. (2018) performs iteration in a reverse manner. It
starts with a single large cluster and, in each iteration, the
algorithm divides the cluster or groups into smaller groups.
The division is made in such a way that the smaller groups
are more dissimilar compared to other groups. The division
process is performed using the variance of the data. There
is larger variance between the resulting divided groups. Few
papers (Marcos Wander et al. 2018) have mentioned how to
divide a larger cluster into few small sets. Some concepts
(Marcos Wander et al. 2018) work by transferring a few pat-
terns from one cluster into another cluster iteratively, thus
gaining couplings within items.

Other related works include clustering with many algo-
rithms such as in Lloyd-Max algorithm (Mangi et al. 2018),
Forgy approach Ryan and Jeff (2018), and so on, which
works well when the number of documents is large.

3 Problem statement

In this study, we address the problem of assigning appropri-
ate topics to a document in a corpus. We focus on represent-
ing a document in a bag-of-words model and then finding the
topic correlation of the document iteratively.

We introduce our problem more formally as follows.
We consider a corpus C of N documents (D1 , D 2 , ..., D N).

Let the topic word distribution be a list of tuples of the form
< W i , T i , P i > , 1 ≤ i ≤ M, where W i is a word, and its
topic correlation is T i with the probability P i , and M is the

number of entries in the topic word distribution. The topic-
word distribution changes over successive iterations.

We aim to solve the two key problems defined below.

Problem 1 To assign approximate topics for all documents
in the corpus and create a document-topic distribution. This
distribution is the list of tuples of the form < D i , T i , P i > ,
1 ≤ i ≤ N

Problem 2 Starting with very few records in a topic-word
distribution (semi-supervised) and ending with a supervised
set of records in a topic-word distribution.

To address the above two problems, we propose an itera-
tive algorithm that modifies the traditional topic-word mod-
eling algorithm to cluster the documents more accurately.
Our algorithm works for both small and large numbers of
documents.

4 Document topic distribution function

In this section, we introduce the process of iterative topic-
word clustering (TWC), which assigns topic distributions
for the text document. Next, we show how efficiency is
improved by multi-probability normalization.

4.1 Iterative topic‑word modeling

We propose an iterative clustering algorithm that modifies
the TWC algorithm to produce better clustering of text docu-
ments. Practically, it is impossible to specify all of the word-
topic distribution in existing clustering methods, so only a
subset of a word-topic distribution can be given as input
to TWC for topic mining. After topic mining, only a set of
words from the document is assigned a topic distribution.
Many unknown words (words which do not have any topic
distribution) result. The unknown words are then given an
estimated probability distribution based on the calculated
probability distribution of the corresponding document.
Our algorithm starts with semi-supervised input and moves
towards supervised input during each iteration.

Whenever a word W is retrieved from a document D,
its topic correlation is found in � . If a topic is known (if
the topic exists in �), then the corresponding topic (Z) is
returned. Using the topics of all known words, the topic
distribution � is found by merging all the topic distributions;
for example, if a document T1 has three words each with the
distribution (70% A, 30% B), (80% A, 20% C), and (100%
B), then the topic distribution of the document is 42.86% for
topic A, 51.43% for topic B, and 5.71% for topic C. Since
the number of entries in � (input distribution which contain
initial probability distribution) is less than number of unique

770 International Journal of Speech Technology (2020) 23:767–777

1 3

words in the corpus, obtaining topics for all of the words is
not possible, so there may be more unknown words (words
which have no topics). Unknown words are represented as
W ′ , and U represents the total number of unknown words.
For each unknown word, the topics are estimated and added
to the estimated distribution �′ . In the above example, if an
unknown word UW exists in T1, then its topics are estimated
based on � ; that is, the UW′ topic distribution is 0.4286 for
topic A, 0.5143 for topic B, and 0.0571 for topic C. At the
end of each iteration, �′ is added to � . Algorithm 1 explains
how iterative TWC works. The iterative TWC process is
shown in Fig. 1 as a flowchart.

garden has many rose flowers’. After pre-processing, the two
strings become ‘favorite color rose’ and ‘garden rose flower’.
Here the word ‘rose’ can be assigned two topics: ‘color’ and
‘flower’. The correct topic can be assigned only with the help
of neighboring words. In the first sentence, the word ‘rose’
can be assigned the topic of ‘color’ because its neighbor
word is ‘color’ and the word ‘rose’ in the second sentence
can be assigned the topic of ‘flowers’ because of its neighbor
word, ‘flower’. Thus, whenever a word has more than one
topic entry in its word-topic distribution, the topic can be
assigned accurately with the help of its neighboring words.

4.2 Multi‑probability normalization

In this subsection, we introduce an optimization method that
increases the efficiency of topic assignment for a document.

A word‘s topic is determined by its neighbor when the
word has multiple meanings. For example, consider the fol-
lowing two sentences: ‘his favorite color is rose’ and ‘the

∀ i W i ,Wi+1 , 1 ≤ i < n, where n is the number of
words in the document if PD(W i) ∩ PD(Wi+1) =
< T1,P1 >,< T2,P2 >,… .

Let P max = max(P1 , P 2 , P 3,…) and T max be the associated
topic for P max.

Let the incremental factor (IF) be the percentage of topic
contributions which have the probability P max

Algorithm 1 Iterative TWC
1: procedure IterativeTWC
2: C ← Corpus
3: PD ← Topic Word Distribution
4: TW ← Topic Word Distribution of the current document
5: begin:
6: DocProb ← List <topic,prob>
7: for each document D in c do
8: int N
9: List< String > unknown
10: for each word W in D do
11: P=PD(W)
12: if P= null then
13: add W to unknown
14: else
15: if P already exists in TW then
16: Q=P union TW(W)
17: Remove duplicate words and topics by keeping only the highest-

probability items
18: Add Q to TW
19: else
20: Add P to TW
21: for each word W in the list of unknown words do
22: for each entry E in TW do
23: List <Word,Topic,Prob> un = W, getTopic(E) , getProb(E)
24: add un to TW
25: N=unique words in TW
26: for each Topic T in TW do
27: float Prob=0
28: for each word W belonging to T in TW do
29: Prob = Prob + (1/N) * getProbInTW(W,T)
30: add <D,T,Prob> to DocProb

771International Journal of Speech Technology (2020) 23:767–777

1 3

where W i is a word in a document PD(W) is the probability
distribution function of a word and returns the list of topics
along with its probability in a tuple < Topic,Probability > IF
is the increment factor and PD(Word,Topic) returns or sets
the probability of the topic for a word.

If two consecutive words have more than one probability
assigned and if both words have the same set of probability
distributions, then the highest-probability topic t max is cal-
culated and that particular topic‘s probability is increased by
IF, where IF is the percentage of t max in the corresponding
document.

PR(Wi, Tmax) = PR(Wi, Tmax)

+ PR(Wi, Tmax) ∗ IF∕100

PR(Wi+1, Tmax) = PR(Wi+1, Tmax)

+ PR(Wi+1, Tmax) ∗ IF∕100

∀kPR(Wi, Tk) = PR(Wi, Tk)

− PR(Wi, Tk) ∗ (1 − IF)∕100

∀kPR(Wi, Tk) = PR(Wi, Tk)

− PR(Wi,Tk) ∗ (1 − IF)∕100

If any two continuous words W i , W j where i, j ∈ {1,...,
N} have the same set of topics, then the topic with the larg-
est probability is increased. The increase factor is equal to
the percentage of the topic with the greatest probability that
contributes to document M; for example, if the highest prob-
ability is 0.5, its topic contributes 37.5% and the new prob-
ability is then 0.6875.

After incrementing the topic probability by the IF, the rest
of the topic probabilities are decreased by 1-IF so that the
sum is always 1. In this multi-probability normalization, the
probabilities of words are changed to obtain a more accurate
topic assignment. First, the continuous words are checked
for having common probabilities; then the maximum topic
is increased by IF and the rest of the topics are decreased by
(1-IF). Algorithm 2 shows the process of multi-probability
normalization when checking the topic match for two con-
secutive multi-probability words. If a match is found, then
the probabilities are adjusted by IF.

Fig. 1 Flowchat of iterative
TWC for a single iteration

772 International Journal of Speech Technology (2020) 23:767–777

1 3

Table 1 Data set description

Dataset Unique documents Unique words Number
of topics
used

20 newspaper 8000 23,642 4
Patent 28,395 179172 5
Reuters 5000 20,050 5

Table 2 Initial word probability distribution details and maximum
number of iterations

Dataset Number of
topics

Average number of
topic-word entries

Number
of itera-
tions

20 newspaper 5 18 5
Patent 6 21 5
Reuters 5 20 5

4.3 Removing noise from iterations

The advantage of using iterations in clustering is that we
obtain more accurate clustering results in each iteration. The
results from previous iterations can be used to cluster the
document in the current iteration more efficiently as long as
the results are reliable. Data that are not reliable are called
noise, which decreases the efficiency of the iteration and
thus leads to more iterations. Therefore, to obtain an opti-
mal clustering result, noise should be removed so that it
does not propagate into future iterations and result in lower
performance.

During the implementation of the above two algorithms,
we found that some words with multiple topics lead to faster
noise generation. Noise in the above algorithm is defined as
topics with very low probabilities. These noisy words must
be found and their corresponding noisy topic distributions
removed so that future iterations are safe from noise.

To eliminate noise, a significant threshold value is nor-
mally used. If the topic distribution values fall below this
threshold, then the topic is removed completely from the

distribution. The probability of the rest of the entities is
adjusted (increased) so that the summation is always 1.

Whenever a probability falls below the threshold value
(TH), the probability is considered to be zero. This prevents
noise from propagating to higher iterations. Whenever the
probability is reduced to zero, the other probabilities belong-
ing to the same topic are increased so that the summation of
probabilities is always equal to 1.

5 Experiments and results

We implemented a hybrid algorithm of all three above
algorithms: Algorithm 1 (iterative TWC), Algorithm 2
(multi-probability normalization), and Algorithm 3 (noise
removal). Three benchmark datasets were used for evalu-
ation: 20 newspaper, Patent, and Reuters. We compared
our algorithm’s results with those of two other algorithms
(K-Means and cosine similarity) and found that the proposed
method has better clustering results. That is, the average
distance between documents within a cluster is reduced by

Algorithm 2 Multi-probability normalization
1: procedure MultiProbNormalization
2: Wi ← Word
3: Wj ← Word
4: begin:
5: List<topic,prob> pd1 = getTopicDist(Wi)
6: List<topic,prob> pd2 = getTopicDist(Wj)
7: List<topic,prob> common=pd1 intersect pd2
8: if common != null then
9: pmax = maximum probability in common
10: tmax = corresponding topic for pmax
11: IF = obtain topic distribution from iterative TWC (algorithm 1)
12: for each item in pd1 do
13: if getTopic(item)=tmaxl then
14: update prob. p=p + p *IF / 100
15: else
16: update prob. p = p - p * IF / 100
17: for each item in pd2 do
18: if getTopic(item)=tmax then
19: update Prob. p = p+ p * IF / 100
20: else
21: update Prob. p=p-p* (1-IF) / 100

773International Journal of Speech Technology (2020) 23:767–777

1 3

using our algorithm in comparison with using K-Means and
cosine similarity.

The Table 1 shows the three data sets and their associated
characteristics used for our experiment.

5.1 Pre‑processing

All three datasets underwent the pre-processing step. Four
levels of pre-processing were performed: (1) stop-word
removal, (2) stemming, (3) weblink removal, and (4) file
removal (Uysal and Gunal 2014).

Stop word removal includes removal of common words
like ‘the’, ‘that’, ‘she’, ‘of’ , and so on. Stemming involves
the conversion of original words into their root forms; for
example, ‘sleeping’ is converted to ‘sleep’. Both the Patent
and Reuters datasets contain numerous weblinks such as
URLs, email addresses, and other time-based information
like dates and times of news articles, last edited times, etc.,
and these formations are also removed from the dataset. The
last step is file removal, in which some files not used for
clustering are removed. For example, some files less than
20 KB in the Patent dataset were removed automatically
through pre-processing, and these files were insufficient for
topic assignment.

In the 20 newspaper dataset, we considered 8000 ran-
dom files from 20 clusters. Pre-processing tasks included the
removal of headers, footers, and words that contain dates,
email addresses, contact information, and addresses. Next,
all files were pre-processed using the stop word removal and
stemming algorithms.

The patent dataset contained a total of 48,213 files, out of
which only 29,847 files were in the English language. 28,395
files were considered suitable for clustering because their
sizes were greater than 20 KB. These files were in XML
format, so the first step was to convert them from XML into
text by removing all tags and meta information. After this
step, the final step was to perform stop word removal and
stemming.

The Reuters dataset contains numerous news articles,
from which we first removed all links and kept only the
text content. We then performed stop word removal and
stemming.

5.2 Initial topic‑word probability function

For each dataset, we used different topic-word probability
functions for the purpose for training. The training data
consisted of a very low number of entries, as shown in the
Table 2. As iteration proceeded, the number of entries in
the probability function grew and became stable at higher
iterations.

Figure 2 shows the sample word-topic correlation used in
our clustering process.

5.3 Measuring distance

The ultimate goal of a cluster is to group the documents into
one or more groups. The cluster is considered to be efficient
when the distance between the documents and the document
head (the cluster point) is very small. In our experiment,
we measured the distance between the documents and the
cluster point as follows:

Fig. 2 Sample word-topic correlation—words are taken from 20
newspaper dataset

Fig. 3 Average distances for all the three datasets with the three algo-
rithms: cosine similarity, K-Means, and iterative TWC

Fig. 4 Average distance between the documents from the three data-
sets in each iteration

774 International Journal of Speech Technology (2020) 23:767–777

1 3

Fig. 5 a–c show the last three iterations (the third, fourth, and fifth
iterations) of topic A and d–f show the last three iterations (third,
fourth, and fifth iterations) of topic B using iterative TWC in the Pat-
ent dataset. The figure shows that, as iterations proceed, the docu-

ments move closer to the cluster point (0,0). Random values are taken
for the Y axis for the purpose of illustrating the spread of data and the
X-axis denotes the original distance. For example, if a document had
0.7 probability of a topic, then its distance was 0.3

Fig. 6 A topic convergence
graph showing the reduction of
multiple topic assignments as
iterations proceed

775International Journal of Speech Technology (2020) 23:767–777

1 3

– In the cosine similarity method, we obtained the similar-
ity value between each pair of documents and took the
average of all the values to calculate the overall average
distance.

– In iterative TWC, we measured the distance using the
probability value, i.e., if a document had 70% (0.7) topic
A content, then we took the distance as 1–0.7 = 0.3. That
is, the document was 70% similar to (or 30% away from)
topic A.

Figure 3 shows the overall clustering efficiency for all three
datasets. The graph shows that the average distance of our
algorithm (at iteration 5) was much less than that for the
other two algorithms.

In the graph in Fig. 3, the values represent the results
obtained in the fifth iteration, and Fig. 4 visualizes the
results at each iteration (Fig. 5).

One of the advantages of our algorithm is the learning
process used; that is, it starts from a semi-supervised state
and ends in a supervised state. The word-topic convergence
is a good measure for testing this property and is illustrated
by the graph in Fig. 6. The values in the graph show the
average number of multiple topics associated with each word
at each iteration. As shown in Fig. 6, when iterations pro-
ceed, the topic convergence decreases; that is, words with

excessive topics are removed and, with further iteration,
incorrect topics are removed.

A supervised state is one in which there is no uncertainty;
that is, there are no words with zero topics. Put differently,
there are no unknown words in the dictionary of the topic-
word distribution. Our algorithm’s learning process and
noise reduction process performs this step by eliminating the
number of unknown words at each iteration. At one point,
the unknown word count becomes zero, and a supervised
state is achieved. Figure 7 shows the decrease of the number
of unknown words with iteration of the algorithm.

Our algorithm has the ability to learn from mistakes. That
is, if any word-topic distribution is added incorrectly to our
algorithm, the algorithm produces a false positive; but as
iteration proceeds, the wrong word’s probability decreases.
At one stage, the probability falls below the threshold value
and the entry is removed from the table, producing the cor-
rect result. The table shows the distance between the docu-
ments with the correct topic at each iteration. Few words are
assigned wrong probabilities; that is, few words are inserted
into the topic-word distribution in such a way that the cor-
rect topic has less probability while the wrong topics have
greater probability. The Algorithm 2 decrements the wrong
topic’s probability and, at each iteration, the correct topic
probability is increased.

Fig. 7 Number of unknown
words in each iteration

776 International Journal of Speech Technology (2020) 23:767–777

1 3

Figure 5 shows the documents (in the Patent dataset) plot-
ted in two topic graphs. The first row represents a total of
3151 documents associated with topic A in the last three
iterations. The second row represents a total of 8028 docu-
ments associated with topic B in last three iterations. The
figure clearly shows the documents moving towards the
cluster point in each iteration (i.e., reducing the average
distance).

6 Conclusion

In this study, we focused on developing an optimized algo-
rithm that clusters documents iteratively and aims to effi-
ciently assign topics to documents such that the distance
between the topic head or cluster head and the documents
is as low as possible so that there is minimal error in speech
to text conversion. We stores all the speech to text data into
a document and then we developed an iterative algorithm
that starts in a semi-supervised state at the first iteration
and learns the semantics of the documents automatically,
reaching a supervised state at future iterations. Moreover,
our algorithm learns to remove noise during intermediate
iterations without allowing noise to propagate to subsequent
iterations. We implemented this algorithm with three real-
world benchmark datasets and compared the results with
other existing algorithms such as cosine similarity and
K-Means. Our algorithm outperforms alternative methods
in terms of clustering efficiency.

In future work, it will be interesting to reduce the learning
time (number of iterations required) and cluster documents
in a single pass. This can be done by generating a universal
pre-learned model that can be used directly to cluster docu-
ments from any data set.

Compliance with ethical standards

 Conflict of interest The authors declare that they have no conflict of
interest.

References

Abla Chouni, B., Asmaa, B., & Imane, B. (2019). A survey of cluster-
ing algorithms for an industrial context. Procedia Computer Sci-
ence, 148, 291–302. https ://doi.org/10.1016/j.procs .2019.01.022.

Al-Zoghby, A. M., & Khaled, S. (2018). Ontological optimization for
latent semantic indexing of arabic corpus. Procedia Computer Sci-
ence, 142, 206–213. https ://doi.org/10.1016/j.procs .2018.10.477.

Atanu, D., Mamata, J., & Jitesh, J. (2018). Senti-N-Gram: An n-gram
lexicon for sentiment analysis. Expert Systems with Applications,
103, 92–105. https ://doi.org/10.1016/j.eswa.2018.03.004.

Berna, A., & Murat, C. G. (2018). Semantic text classification: A
survey of past and recent advances. Information Processing

& Management, 54(6), 1129–1153. https ://doi.org/10.1016/j.
ipm.2018.08.001.

Bishop, C. M. (2006). Pattern recognition and machine learning. New
York: Springer.

Blei, D. (2012). Probabilistic topic models. Communications of the
ACM, 55(4), 77–84.

Blei, D. M., Ng, A. Y., & Jordan, M. (2003). I: Latent Dirichlet alloca-
tion. Journal of Machine Learning Research, 3, 993–1022.

Bridgid, F., Ruthann, T., & Katherine, A. (2018). Learning more from
feedback: Elaborating feedback with examples enhances concept
learning. Learning and Instruction, 54, 104–113. https ://doi.
org/10.1016/j.learn instr uc.2017.08.007.

Daniel Carlos, G. P., Ying, W., Alexandro, B., & Chaohuan, H. (2019).
Semi-supervised and active learning through Manifold Recipro-
cal kNN graph for image retrieval. Neurocomputing, 340, 19–31.
https ://doi.org/10.1016/j.neuco m.2019.02.016.

Elizaveta, K. M., & Vsevolod, I. T. (2018). Text clustering as graph
community detection. Procedia Computer Science, 123, 271–277.
https ://doi.org/10.1016/j.procs .2018.01.042.

Fahd Saleh, A., & Vishal, G. (2018). A cognitive inspired unsu-
pervised language-independent text stemmer for Information
retrieval. Cognitive Systems Research, 52, 291–300. https ://doi.
org/10.1016/j.cogsy s.2018.07.003.

Fuyuan, C., Joshua Zhexue, H., Jiye, L., Xingwang, Z., Yinfeng,
M., Kai, F., et al. (2018). An algorithm for clustering categori-
cal data with set-valued features. IEEE Transactions on Neural
Networks and Learning Systems, 29(10), 4593–4606. https ://doi.
org/10.1109/TNNLS .2017.27701 67.

Kaizhu, H., Haiqin, Y., Irwin, K., & Michael, R. (2008). Maxi-min
margin machine: Learning large margin classifiers locally and
globally. IEEE Transactions on Neural Networks, 19(12), 260–
272. https ://doi.org/10.1109/TNN.2007.90585 5.

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2011). Data mining.
Mining of Massive Datasets,. https ://doi.org/10.1017/cbo97 81139
92480 1.002.

Liang, B., Jiye, L., & Yike, G. (2018). An ensemble clusterer of mul-
tiple fuzzyk-means clusterings to recognize arbitrarily shaped
clusters. IEEE Transactions on Fuzzy Systems, 26(6), 3524–3533.
https ://doi.org/10.1109/TFUZZ .2018.28357 74.

Lulwah, A., & Mourad, Y. (2018). Interest-based clustering approach
for social networks. Arabian Journal for Science and Engineer-
ing, 43(2), 935–947. https ://doi.org/10.1007/s1336 9-017-2800-z.

Mane, D. T., & Kulkarni, U. V. (2018). Modified fuzzy hypersphere
neural network for pattern classification using supervised clus-
tering. Procedia Computer Science, 143, 295–302. https ://doi.
org/10.1016/j.procs .2018.10.399.

Mangi, K., Jaelim, A., & Kichun, L. (2018). Opinion mining using
ensemble text hidden Markov models for text classification.
Expert Systems with Applications, 94, 218–227. https ://doi.
org/10.1016/j.eswa.2017.07.019.

Manochandar, S., & Punniyamoorthy, M. (2018). Scaling feature
selection method for enhancing the classification performance of
Support Vector Machines in text mining. Computers & Indus-
trial Engineering, 124, 139–156. https ://doi.org/10.1016/j.
cie.2018.07.008.

Marcos Wander, R., Seiji, I., & Luiz Enrique, Z. (2018). Educational
data mining: A review of evaluation process in the e-learning.
Telematics and Informatics, 35(6), 1701–1717. https ://doi.
org/10.1016/j.tele.2018.04.015.

Morteza, Z., Anteneh, A., Xing, Z., Heidar, D., & Aijun, A. (2019).
A utility-based news recommendation system. Decision Support
Systems, 117, 14–27. https ://doi.org/10.1016/j.dss.2018.12.001.

Powers, D. M. W. (2011). Evaluation: From precision, recall and
F-measure to ROC, informedness, markedness & correlation.
Journal of Machine Learning Technologies, 2, 37–63.

https://doi.org/10.1016/j.procs.2019.01.022
https://doi.org/10.1016/j.procs.2018.10.477
https://doi.org/10.1016/j.eswa.2018.03.004
https://doi.org/10.1016/j.ipm.2018.08.001
https://doi.org/10.1016/j.ipm.2018.08.001
https://doi.org/10.1016/j.learninstruc.2017.08.007
https://doi.org/10.1016/j.learninstruc.2017.08.007
https://doi.org/10.1016/j.neucom.2019.02.016
https://doi.org/10.1016/j.procs.2018.01.042
https://doi.org/10.1016/j.cogsys.2018.07.003
https://doi.org/10.1016/j.cogsys.2018.07.003
https://doi.org/10.1109/TNNLS.2017.2770167
https://doi.org/10.1109/TNNLS.2017.2770167
https://doi.org/10.1109/TNN.2007.905855
https://doi.org/10.1017/cbo9781139924801.002
https://doi.org/10.1017/cbo9781139924801.002
https://doi.org/10.1109/TFUZZ.2018.2835774
https://doi.org/10.1007/s13369-017-2800-z
https://doi.org/10.1016/j.procs.2018.10.399
https://doi.org/10.1016/j.procs.2018.10.399
https://doi.org/10.1016/j.eswa.2017.07.019
https://doi.org/10.1016/j.eswa.2017.07.019
https://doi.org/10.1016/j.cie.2018.07.008
https://doi.org/10.1016/j.cie.2018.07.008
https://doi.org/10.1016/j.tele.2018.04.015
https://doi.org/10.1016/j.tele.2018.04.015
https://doi.org/10.1016/j.dss.2018.12.001

777International Journal of Speech Technology (2020) 23:767–777

1 3

Roger Alan, S., Patricia, A. J., & João Francisco, V. (2019). An anal-
ysis of hierarchical text classification using word embeddings.
Information Sciences, 471, 216–232. https ://doi.org/10.1016/j.
ins.2018.09.001.

Ryan, M., & Jeff, B. (2018). Towards justifying unsupervised stationary
decisions for geostatistical modeling: Ensemble spatial and mul-
tivariate clustering with geomodeling specific clustering metrics.
Computers & Geosciences, 120, 82–96. https ://doi.org/10.1016/j.
cageo .2018.08.005.

Ryosuke, M., & Tu, B. (2018). Semantic term weighting for clinical
texts. Expert Systems with Applications, 114, 543–551. https ://doi.
org/10.1016/j.eswa.2018.08.028.

Sima, S., & Omid, F. (2018). Run-time mapping algorithm for
dynamic workloads using association rule mining. Journal of
Systems Architecture, 91, 1–10. https ://doi.org/10.1016/j.sysar
c.2018.09.005.

Smita, C., & Sudarson, J. (2018). Correlation based feature selection
with clustering for high dimensional data. Journal of Electrical
Systems and Information Technology, 5(3), 542–590. https ://doi.
org/10.1016/j.jesit .2017.06.004.

Tanvir Habib, S., & Zahid, A. (2018). An analysis of MapReduce effi-
ciency in document clustering using parallel K-means algorithm.

Future Computing and Informatics Journal, 3(2), 200–209. https
://doi.org/10.1016/j.fcij.2018.03.003.

Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on
text classification. Information Processing & Management, 50(1),
104–112. https ://doi.org/10.1016/j.ipm.2013.08.006.

Ximing, L., Ang, Z., Changchun, L., Jihong, O., & Yi, C. (2018).
Exploring coherent topics by topic modeling with term weight-
ing. Information Processing & Management, 54(6), 1345–1358.
https ://doi.org/10.1016/j.ipm.2018.05.009.

Xuejuan, L., Jiabin, Y., & Hanchi, Z. (2018). Efficient and intelligent
density and delta-distance clustering algorithm. Arabian Jour-
nal for Science and Engineering, 43(12), 7177–7187. https ://doi.
org/10.1007/s1336 9-017-3060-7.

Yang, L., Wenming, Z., Zhen, C., & Tong, Z. (2018). Face recognition
based on recurrent regression neural network. Neurocomputing,
297, 50–58. https ://doi.org/10.1016/j.neuco m.2018.02.037.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ins.2018.09.001
https://doi.org/10.1016/j.ins.2018.09.001
https://doi.org/10.1016/j.cageo.2018.08.005
https://doi.org/10.1016/j.cageo.2018.08.005
https://doi.org/10.1016/j.eswa.2018.08.028
https://doi.org/10.1016/j.eswa.2018.08.028
https://doi.org/10.1016/j.sysarc.2018.09.005
https://doi.org/10.1016/j.sysarc.2018.09.005
https://doi.org/10.1016/j.jesit.2017.06.004
https://doi.org/10.1016/j.jesit.2017.06.004
https://doi.org/10.1016/j.fcij.2018.03.003
https://doi.org/10.1016/j.fcij.2018.03.003
https://doi.org/10.1016/j.ipm.2013.08.006
https://doi.org/10.1016/j.ipm.2018.05.009
https://doi.org/10.1007/s13369-017-3060-7
https://doi.org/10.1007/s13369-017-3060-7
https://doi.org/10.1016/j.neucom.2018.02.037

	An optimized iterative clustering framework for recognizing speech
	Abstract
	1 Introduction
	1.1 Contribution

	2 Related work
	3 Problem statement
	4 Document topic distribution function
	4.1 Iterative topic-word modeling
	4.2 Multi-probability normalization
	4.3 Removing noise from iterations

	5 Experiments and results
	5.1 Pre-processing
	5.2 Initial topic-word probability function
	5.3 Measuring distance

	6 Conclusion
	References

