
Vol.:(0123456789)1 3

International Journal of Speech Technology (2020) 23:747–756 
https://doi.org/10.1007/s10772-020-09727-6

Implementation of new navigation algorithm based 
on cross‑correntropy for precise positioning in low latitude regions 
of South India

P. Sirish Kumar1 · V. B. S. Srilatha Indira Dutt2 · L. Ganesh3

Received: 6 March 2020 / Accepted: 13 June 2020 / Published online: 29 June 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The objective of this article is to develop a new positioning algorithm to estimate the position accurately in low latitude 
region and assess the algorithm’s performance in terms of accuracy and precision. The Kalman Filter (KF) has been widely 
recognized as one of the most powerful state estimation techniques in estimating system state variables and suppressing 
measurement noise. The Kalman Filter is desirable because the uncertainty in the Minimum Mean Square Error (MMSE) 
estimation can be minimized. In this article, we implemented a new algorithm called as Cross-Correntropy Kalman Filter 
(CCKF) to enhance the position accuracy and performance of the GPS receiver. Primarily the improvement depends on the 
Cross-Correntropy criterion which is a measure of local similarity, and a novel Fixed-Point algorithm for updating subsequent 
estimates. In this work, we present a thorough derivation of the method suggested, how to accurately measure the estimate 
of the GPS receiver position. Furthermore, in tabular forms, we provide a comparison of receiver position error (X, Y, Z 
coordinates) and performance metrics (2-D & 3-D) together with graphical representations for both algorithms (KF & CCKF).

Keywords Cross-correntropy · Kalman filter · Cross-correntropy Kalman filter · Fixed-point algorithm · GPS

Abbreviations

Symbol
�(n)  Kalman gain
�̂(n|n − 1)∕�̂(n − 1|n − 1)  State estimates: 

previous/updated
�/�(n|n − 1)/�(n|n)  Covariance matrices: sate 

error/previous/updated
�(n)∕�̂(n|n)t∕�(n)  Vectors: state/updated 

state/measurement

�(n)  Cholesky decomposition 
matrix

�∕�  Noise covariance matrices: 
measurement/process

�∕�  Matrices: state 
transition/observation

σ/�  Bandwidth of the Kernel/small 
positive number

1 Introduction

The introduction of Global Positioning System (GPS) has 
brought a revolution in the field of positioning and leads to 
the development of many sophisticated positioning systems in 
the fields of defence and civil sectors for guiding of troops in 
the battlefield, navigation of ships, the landing of aircraft, etc. 
(Rao 2010). Even when operated to their full capacity, these 
systems provide limited accuracy for these applications and 
hence need to be improved. The three primary functions on 
which most of today’s defence systems work are Navigation, 
Tracking and Guiding and it is unimaginable to find a system 
that doesn’t have any relation with these functions. These sys-
tems require determining the two or three dimensional (3D) 
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position information of an object of interest and they use 
GPS receivers for this purpose. GPS is the constellation of 
space bodies called satellites that revolve around the earth 
and provides position information based on range measure-
ments (Sirish Kumar and Srilatha Indira Dutt 2019a). With a 
sufficient number of range measurements, GPS can provide 
position estimates to high degree accuracy (Rutledge 2010; 
Ankur 2017). The accuracy, in turn, is the function of the 
type of equipment, geographic area, uncertainty in measure-
ments, navigation algorithm, etc. In practice, the measurement 
uncertainty can never reach zero even though the system noise 
parameters and biases are modelled effectively and hence 
need a high accuracy navigation algorithm (Ashok Kumar 
et al. 2018; Kleusberg 2003) that makes out an optimal esti-
mate from these uncertain measurements.

In the present paper, we develop a new Kalman filter, 
compactly called the cross Correntropy Kalman Filter 
(CCKF), based on the correntropy criterion (Liu et  al. 
2007) and a fixed-point iterative algorithm. Similar to the 
traditional KF, the CCKF not only retains the state mean 
propagation process but also preserves the covariance matrix 
propagation process. Thus the new filter also has a recur-
sive structure and is suitable for online implementation. It is 
worth noting that the correntropy criterion has been used in 
hidden state estimation, but it involves no covariance propa-
gation process and is in the form not a Kalman filter. Unlike 
the traditional KF algorithm, the CCKF uses a fixed-point 
algorithm (Agarwal et al. 2001) to update the posterior esti-
mate of the state. The small positive number ε provides a 
stop condition (or a threshold) for the fixed-point iteration. 
The kernel bandwidth σ is a key parameter in CCKF. In 
general, a smaller kernel bandwidth makes the algorithm 
more robust (with respect to outliers) but converges more 
slowly. The kernel bandwidth has a significant influence on 
the convergence behaviour of CCKF. If the kernel bandwidth 
σ is too small, the algorithm will diverge or converge very 
slowly. A larger kernel bandwidth ensures a faster converge 
speed but usually leads to poor performance in impulsive 
noises. In practical applications, the kernel bandwidth can 
be set manually or optimized by trial and error methods. 
The effectiveness of the proposed algorithm is demonstrated 
on the estimation of the position of a GPS receiver, and its 
performance is compared to the performance of traditional 
Kalman filter (Kalman 1960; Yamaguchi and Tanaka 2006).

2  GPS position estimation using more 
than four satellites

In order to determine the position of the receiver (Rao 2010; 
Sirish Kumar and Srilatha Indira Dutt 2019a), we work out 
formulas as below.

In above equation lu, mu, nu and pi shows GPS receiver 
position coordinates and pseudorange calculated from the 
time of signal transmission (Fig. 1). Tcb represents clock 
error of the receiver. In this equation there are four unknown 
parameters, which are the position lsp,msp, nsp, and the clocl 
error Tcb of receiver. We need more than three equations, 
that is, we must acquire 4 satellites at least to calculate the 
receiver’s position (Ankur 2017).

To solve Eq. (1) Newton method is usually used, which 
expands nonlinear equation as follows.

In above equation we define

If we acquire more than 4 satellites the solution of equa-
tion is require using least-square method as follow.

(1)pi =

√(
lu − lsp

)2
+
(
mu −msp

)2
+
(
nu − nsp

)2
+ Tcb
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k+1
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k
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k
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k+1
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k
+ Δnu
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Fig. 1  GPS satellite and receiver position



749International Journal of Speech Technology (2020) 23:747–756 

1 3

After solving Eqs. (4) or (5), we can solve Eq. (2) repeat-
edly. Finally we can estimate the receiver’s position.

3  Cross‑correntropy notation

Cross-Correntropy (Liu et al. 2007; Chena et al. 2017) is a 
generalized similarity measure between two random vari-
ables. Given two random variables S, M with joint distri-
bution function ASM(s, m) , cross correntropy is defined by

where E denotes the expectation operator, and n( ·,·) is a 
shift-invariant Mercer Kernel. In this paper, without men-
tioned otherwise the kernel function is the Gaussian Kernel 
(Jσ) given by

where e = s − m, and σ > 0 stands for the kernel bandwidth.
In most practical situations, however, only limited num-

bers of data are available and the joint distribution ASM 
is usually unknown. In these cases, one can estimate the 
cross correntropy using a sample mean estimator;

where e(i) = s(i) −m(i) with 
{
s(i), m(i)}K

i=1
 , Being K sam-

ples drawn from ASM . Taking Taylor series expansion of the 
Gaussian Kernel, we have

3.1  Kalman filter

Kalman filter (Kalman 1960; Yamaguchi and Tanaka 
2006) provides a powerful tool to deal with state estima-
tion of linear systems, which is an optimal estimator under 
linear and Gaussian assumptions.

Consider a linear system described by the following 
state and measurement equations:

(5)

�
aiΔpi =

�
a2
i
Δlu +

�
aibiΔm

u +
�

aiciΔn
u +

�
aiTcb�

biΔpi =
�

aibiΔl
u +

�
b2
i
Δmu +

�
biciΔn

u +
�

biTcb�
ciΔpi =

�
aiciΔl

u +
�

cibiΔm
u +

�
c2
i
Δnu +

�
ciTcb�

Δpi =
�

aiΔl
u +

�
biΔm

u +
�

ciΔn
u +

�
Tcb

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(6)U(S,M) = E[n(S,M)] = ∫ n(s, m)dASM(s, m)

(7)(s, m) = J
�
(e) = exp

(
−

e2

2�2

)

(8)Û(S,M) =
1

K

k∑
i=1

Jσ(e(i))

(9)U(S,M) =

∞∑
k=0

(−1)k

2kσ2kk!
E
[
(S −M)2k

]

where �(n) denotes the i-dimensional state vector, �(n) rep-
resents the j-dimensional measurement vector at instant ‘n’. 
A and B stand for, respectively, the system matrix (or state 
transition matrix) and observation matrix. p (n − 1) and q(n) 
are mutually uncorrelated process noise and measurement 
noise, respectively, with zero mean and covariance matrices.

In general, Kalman filter includes the following two steps:
Step 1: Predict:
The prior mean and covariance matrix are given by

Step 2: Update:
The KF gain is computed as

The posterior state is equal to the prior state plus the inno-
vation weighted by the KF gain,

Additionally, the posterior covariance is recursively 
updated as shown in Eq. (12)

4  Cross‑correntropy Kalman filter

Traditional Kalman filter works well under Gaussian noises, 
but its performance may degrade significantly under non-
Gaussian noises, especially when the underlying system 
is disturbed by impulsive noises. The main reason for this 
is that the KF is developed based on the MMSE criterion 
(Umamaheswaran et al. 2019), which captures only the 
second order statistics of the error signal and is sensitive 
to large outliers. To address this problem, in this work we 
use the cross correntropy criterion to derive a new Kalman 
filter named as Cross Correntropy Kalman Filter (CCKF), 
which may perform much better in non-Gaussian noise envi-
ronments (Liu et al. 2007; Julier et al. 2000), as cross cor-
rentropy contains second and higher order moments of the 

(10)�(n) = �(n − 1)�(n − 1) + �(n − 1)

(11)�(n) = �(n)�(n) + �(n)

(12)E
[
�(n − 1)�T(n − 1) = �(n − 1), E

[
�(n)�T(n)] = �(n)

(13)�̂(n|n − 1) = �(n − 1)�̂(n − 1|n − 1)

(14)
�(n|n − 1) = �(n − 1)�(n − 1|n − 1)�T(n − 1) + �(n − 1)

(15)
�(n) = �(n|n − 1)�T(n)

(
�(n)�(n|n − 1)�T(n) +�(n)

)−1

(16)�̂(n|n) = �̂(n|n − 1) + �(n)(�(n) − �(n)�̂(n|n − 1))

(17)
�(n|n) = (� − �(n)�(n))�(n|n − 1)(� − �(n)�(n))T + �(n)�(n)�T(n)
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error (Chena et al. 2017). The suggested Cross-Correntropy 
Kalman Filter (CCKF) algorithm will include a number of 
steps shown in Fig. 2.

4.1  Algorithm derivation

For the linear model described in the previous section, we 
have

where, I represents identity matrix and u(n) is 

u(n) =

[
−(�(n) − �̂(n|n − 1))

�(n)

]

With

(18)
[
�̂(n|n − 1)

�(n)

]
=

[
�

�(n)

]
�(n) + u(n)

Fig. 2  Cross-correntropy 
Kalman filter computational 
flow diagram
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where �(n) can be obtained by Cholesky decomposition 
of E[u(n)uT(n) ]. Left multiplying both sides of Eq. (18) by 
�−1(k), we get

where, �(n) = �−1(n)

[
�̂(n|n − 1)

�(n)

]
 , �(n) = �−1(n)

[
�

�(n)

]
, 

�(n) = �−1(n)u(n) , since E
[
�(n)�T(n)

]
= �,

Here,�(n) is a white residual error.
Now we propose the following cross-correntropy based 

cost function

where, fi(n) is the ith element of �(n) , �i(n) is the ith row of 
�(n) , and L = a + b is the dimension of �(n).

Then under cross correntropy, the optimal estimate of �(n) is

where ei(n) is the ith element of �(n) ∶

The optimal solution can thus be obtained by solving

It follows easily that

Since ei(n) = fi(n) − �i(n)�(n) , the optimal solution Eq. (25) 
is actually a fixed-point equation (Agarwal et al. 2001; 
Chena et al. 2017) of �(n) and this can be rewritten as

With

(19)E
[
u(n)uT(n)

]
=

[
�(n|n − 1) 0

0 �(n)

]
=

[
�c(n|n − 1)�T

c
(n|n − 1) 0

0 �q(n)�
T
q
(n)

]
= �(n)�T(n)

(20)�(n) = �(n)�(n) + �(n)

(21)ZL(�(n)) =
1

L

L∑
i=1

Jσ
(
fi(n) − �i(n)�(n)

)

(22)�̂(n) = argmax�(n)ZL(�(n)) = argmax�(n)
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i=1

Jσ
(
ei(n)

)

(23)ei(n) = fi(n) − �i(n)�(n)

(24)
�ZL(�(n))

��(n)
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�

(
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T
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)(
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(
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T
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(
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T
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(n)fi(n)
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(26)�(n) = g(�(n))

g(�(n)) =
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T
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A fixed-point iterative algorithm can be readily obtained 
as

where, �̂(n)t denotes the solution at the fixed point iteration 
‘t’.

The Eq. (25) is a fixed-point equation can be further rep-
resented as

where �(n) =

[
�x(n) 0

0 �y(n)

]
,

with �x(n) = diag
(
J
�

(
e1(n)

)
,……… J

�

(
ea(n)

))
, �y(n)

= diag
(
J
�

(
ea+1(n)

)
,……… J

�

(
ea+b(n)

))
Equation (28) can be further expressed as follows

where,

4.2  Steps in computing the cross‑correntropy 
Kalman filter

Of course, Eq. (29) is also a fixed-point equation of �(n) 
because �̄(n)) depends on �̄(n|n − 1) and �̄(n) , both related 
to �(n) via �x(n) and �y(n) , respectively. The optimal 
solution of Eq.  (29) depends also on the prior estimate 
�̂(n − 1|n − 1),which can be calculated by Eq. (13) using 
the latest estimate �̂(n − 1|n − 1).

With the above derivations, we summarize the proposed 
CCKF algorithm as follows:

Step 1:
Choose a proper kernel bandwidth σ and a small positive 

number ε; Set an initial estimate ŝ(0|0) and an initial covari-
ance matrix C(0|0) ; Let n = 1;

(27)�̂(n)t+1 = g
(
�̂(n)t

)

(28)�(n) =
(
�T(n)�(n)�(n)

)−1
�T(n)�(n)�(n)

(29)�(n) = �̂(n|n − 1) + �̃(n)(�(n) − (n)�̂(n|n − 1))

(30)

�̄(n) = �̄(n|n − 1)�T(n)
�
�(n)�̄(n|n − 1)�T(n) + �̄(n)

�−1
�̄(n|n − 1) = �c(n|n − 1)�−1

x
(n)�T

c
(n|n − 1)

�̄(n) = �q(n)�
−1
y
(n)�T

q
(n)

⎫⎪⎬⎪⎭
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Step 2:
Use Eqs. (13) and (14) to obtain �̂(n|n − 1) and �(n|n − 1) , 

and use Cholesky decomposition to obtain �c(n|n − 1)

Step 3:
Let t = 1 and �̂(n|n)t = �̂(n|n − 1) , where �̂(n|n)t denotes the 

estimated state at the fixed-point iteration t;
Step 4:
Use Eqs. (31) to (37) to Compute �̂(n|n)t

 With

Step 5: Compare the estimation of the current step 
and the estimation of the last step. If Eq.  (38) holds, 
set �̂(n|n) = �̂(n|n)t and continue to step (6). Otherwise, 
t + 1 → t, and go back to step (4).

(31)�̂(n|n)t = �̂(n|n − 1) + �̃(n)(m(n) − �(n)�̂(n|n − 1))

(32)
�̃(n) = �̃(n|n − 1)�T(n)

(
�(n)�̃(n|n − 1)�T(n) + �̃(n)

)−1

(33)�̃(n|n − 1) = �c(n|n − 1)�̃−1
x
(n)�T

c
(n|n − 1)

(34)�̃(n) = �q(n)�̃
−1
y
(n)�T

q
(n)

(35)�̃x(n) = diag
(
Jσ
(
ẽ1(n)

)
,……… Jσ

(
ẽa(n)

))

(36)�̃b(n) = diag
(
Jσ
(
ẽa+1(n)

)
,……… Jσ

(
ẽa+b(n)

))

(37)ẽi(n) = fi(n) − �i(n)�̂(n|n)t−1

(38)
�̂(n|n)t − �̂(n|n)t−1

�̂(n|n)t−1
≤ 𝜀

Step 6: Update the posterior covariance matrix by 
Eq. (39), n + 1 → n and go back to step (2).

 The CCKF algorithm mainly involves Eqs.  (13), (14), 
(31)–(37) and (39).

5  Simulation results & discussion

This section presents the simulation results obtained after 
the proposed method was utilized to estimate the position 
of a GPS receiver. The accuracy of the proposed method is 
compared against the accuracy of traditional Kalman filter. 
The raw GPS data, collected over C/A measurements from 
the dual frequency GPS receiver located at IISc, Bangalore 
(Lat/Lon: 13.01° N/77.56° E) are processed for Relativis-
tic error and Satellite Clock biases. The data is sampled at 
the rate of 30 s. The data received on L1 (1575.42 MHz) 
frequency is only used for estimating the receiver position. 
The comparison of estimated receiver position, error in 
receiver position and smoothened positional error (w.r.t. X, 
Y, Z coordinates) logged over a day (approximately 22 h) are 
provided in the following figures for both the algorithms (KF 
& CCKF). Since this is a huge data set, estimated receiver 
position and error corresponding to X, Y, Z coordinates over 
a period of 10 epochs (randomly selected & collected for 
30 s. each) is shown in Tables 1 and 2 respectively.

Figure 3 shows a comparison of the estimated receiver 
position with the true receiver position (Black solid line) 
for both algorithms (KF & CCKF). It can be clear that the 
estimated position with CCKF (Red Line) is closer to the 
true position. Figures 4 and 5 represents the estimated error 
curves whereas Figs. 6 and 7 represents the smoothened 

(39)

�(n|n) =
(
� − �̃(n)�(n)

)
�(n|n − 1)

(
� − �̃(n)�(n)

)T
+ �̃(n)�(n)�̃T(n)

Table 1  Estimated receiver 
position (X, Y, Z coordinates) 
with KF and CCKF

True position of the receiver: X = 1337936.309 m; Y = 6070317.116 m; Z = 1427876.908 m

Time (HH:MM:SS) Estimated receiver position (m)

X coordinate Y coordinate Z coordinate

KF CCKF KF CCKF KF CCKF

08:50:47 1337901.81 1337912.31 6070341.05 6070326.77 1427883.08 1427881.33
08:51:16 1337901.81 1337911.74 6070341.05 6070326.68 1427883.08 1427880.78
08:51:47 1337901.72 1337911.03 6070341.01 6070327.24 1427883.18 1427880.91
08:52:17 1337901.72 1337911.10 6070341.01 6070327.96 1427883.18 1427880.59
08:52:46 1337901.72 1337911.46 6070341.01 6070327.24 1427883.18 1427880.73
08:53:17 1337901.82 1337911.21 6070341.00 6070327.78 1427883.22 1427880.34
08:53:47 1337901.89 1337910.49 6070341.09 6070327.53 1427882.86 1427881.44
08:54:16 1337901.89 1337911.09 6070341.09 6070328.05 1427882.86 1427880.25
08:54:47 1337901.89 1337911.54 6070341.09 6070328.02 1427882.86 1427880.74
08:55:17 1337900.94 1337911.29 6070341.07 6070327.00 1427882.93 1427881.86
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error curves over an hour due to both algorithms respectively 
(KF & CCKF). To ease graphical comparison, each figure 
also includes the corresponding mean value (dashed line) 
for both algorithms as a horizontal line. The comparison 
of the algorithms was carried out based on the following 
descriptive statistics calculated on the error curves: mean 
variance, standard deviation, maximum and minimum which 
are shown in Table 3.

Table 3 summarizes the corresponding descriptive sta-
tistics. The CCKF algorithm was observed to surpass the 
KF algorithm by providing high accuracy and low variance 
in position estimation. The CCKF showed a mean differ-
ence of position of X = 11.24m, Y = 10.92 m Z = 1.94 
m and position variance difference of var(X) = 17.85 m, 
var(Y) = 123.6 m and var(Z) = 10.38 m over the KF algo-
rithm. Also the GPS Statistical Accuracy Measures (SAM) 

Table 2  Error in receiver 
position for X, Y, Z coordinates 
with KF and CCKF

Time (HH:MM:SS) Error in receiver position (meters)

X coordinate Y coordinate Z coordinate

KF CCKF KF CCKF KF CCKF

08:50:47 34.50 24.00 23.93 9.65 6.17 4.42
08:51:16 34.50 24.57 23.93 9.56 6.17 3.87
08:51:47 34.59 25.28 23.89 10.12 6.27 4.00
08:52:17 34.59 25.21 23.89 10.84 6.27 3.68
08:52:46 34.59 24.85 23.89 10.12 6.27 3.82
08:53:17 34.49 25.10 23.88 10.66 6.31 3.43
08:53:47 34.42 25.82 23.97 10.41 5.95 4.53
08:54:16 34.42 25.22 23.97 10.93 5.95 3.34
08:54:47 34.42 24.77 23.97 10.90 5.95 3.83
08:55:17 35.37 25.02 23.95 9.88 6.02 4.95

Fig. 3  Time vs. estimated receiver position with KF and CCKF

Fig. 4  Time vs. estimated position error with KF

Fig. 5  Time vs. estimated position error with CCKF
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for both the algorithms are calculated for the entire range of 
data (2640 epochs) and tabulated in Table 4. Various SAM 
(Statistics and its relationship to accuracy measure in GPS 

2003; Sirish Kumar and Srilatha Indira Dutt 2019b) such 
as Circular Error Probability (CEP), Distance Root Mean 
Square (DRMS), Twice the Distance Root Mean Square 
(2DRMS),Spherical Error Probability (SEP), Mean Radial 
Spherical Error (MRSE), Spherical Accuracy Standard 
(SAS) are used in the evaluation of algorithms accuracy per-
formance. Table 4 depicts the SAM of both the algorithms 
on IISC, Bangalore receiver and is given below.

It is obvious from the accuracy measures that the position 
estimated by the CCKF will be within 19.79 m from its true 
position with a probability of 0.99, where KF estimates the 
position within 29.10 m. In 2-D space, with the proposed 
CCKF algorithm, minimum of 33% improvement in accu-
racy is achieved over the traditional Kalman filter. Simi-
larly, in 3-D space, minimum of 32% accuracy is achieved 
with proposed CCKF algorithm over the traditional Kalman 
filter. This shows the efficiency of the proposed algorithm 
over traditional KF. Note that the two parameters DRMS, 
2DRMS are explained in terms of average squared error and 
the other two parameters CEP, SEP are defined directly from 
the position error distribution (the scatter). Thus, we can 
immediately associate these CEP & SEP with error prob-
abilities. If we assume that the error distribution along any 
coordinate (X, Y, Z) is “normal” or Gaussian, then we can 
also derive probabilities associated with the DRMS and 
2DRMS accuracy measures. (The normal or Gaussian dis-
tribution is the one to which the dispersion of the sum of a 
very large number of very small errors always converges). 
The two algorithms error probabilities corresponding to the 
X, Y, Z coordinates are depicted in Fig. 8.

Figure 8 shows the comparison of Gaussian distribution 
curve corresponding to the X Y, Z coordinates, (also known 
as the Normal distribution) is a probability distribution 
curve. Its bell-shaped curve is dependent on μ, the mean, 
and σ, the standard deviation (σ2 being the variance). The 
peak of the graph is always located at the mean and the 
area under the curve is always exactly equal to 1. 68% of all 
the values lie within one standard deviation of the mean as 
shown in Table 5.

Table  5 summarizes that the proposed algorithm 
achieved an error distribution with a higher peak and 
smaller dispersion corresponding to X, Y, Z coordinates 
when compared with the traditional Kalman filter. When 

Fig. 6  Time vs. smoothened position error with KF

Fig. 7  Time vs. smoothened position error with CCKF

Table 3  Descriptive statistics of 
the error curves

Error X coordinate Y coordinate Z coordinate

KF (m) CCKF (m) KF (m) CCKF (m) KF (m) CCKF (m)

Mean 35.34 24.10 26.25 15.33 6.22 4.28
Standard deviation 7.79 6.54 13.80 8.17 4.36 2.93
Variance 60.64 42.79 190.32 66.72 18.97 8.59
Maximum 94.51 54.64 69.75 38.51 72.33 18.71
Minimum 16.66 8.19 0.05 0.34 0.01 0.00
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GPS positions are logged over time, the positions are 
scattered over an area due to measurement errors. This 
dispersion of points is called a scatter plot, which GPS 
manufacturers use to characterize their equipments accu-
racy. The area within which the measurements or esti-
mated parameters are likely to be is called the confidence 
region. Figure 9 shows the scatter plot of the horizontal 
point positions (i.e. X, Y) observed by the IISc, Bangalore 
GPS receiver for 22 h and its accuracy radii of CEP.

Figure 9 reveals that the CEP circle of CCKF is smaller 
than the CEP circle of KF and the receiver position is 
closer to the true receiver position, 50% of the time rela-
tive to the KF algorithm.

Table 4  Comparison of 
statistical accuracy measures

Statistical accuracy 
measure (SAM)

Formula Probabil-
ity (%)

KF (m) CCKF (m) Improvement in accu-
racy with CCKF (%)

2-D DRMS
√

�2

x
+ �2

y

65 15.84 10.46 33.96

2DRMS
2

√
�2

x
+ �2

y

95 31.68 20.93 33.93

CEP 0.62�
y
+ 0.56�

x
50 12.91 8.73 32.37

3-D SEP 0.51
(
�
x
+ �

y
+ �

z

)
50 13.23 9.0 31.97

MRSE
√

�2

x
+ �2

y
+ �2

z

61 16.43 10.87 33.84

SAS 1.122
(
�
x
+ �

y
+ �

z

)
99 29.10 19.79 32.16

Fig. 8  Comparison of Gaussian distribution curve

Table 5  Comparison of error 
distribution statistics

Method X—Coordinate (m) Y—Coordinate (m) Z—Coordinate (m)

μ − 1σ μ + 1σ μ − 1σ μ + 1σ μ − 1σ μ + 1σ

KF 27.55 43.13 12.45 40.05 1.86 10.58
CCKF 17.56 30.64 7.16 23.5 1.35 7.21
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6  Conclusion

A new Kalman type filtering algorithm, called Cross Cor-
rentropy Kalman filter (CCKF), has been proposed in this 
paper. The CCKF is derived by using the correntropy 
criterion as the optimality criterion, instead of using the 
well-known minimum mean square error (MMSE) crite-
rion. The propagation equations for the prior estimates of 
the state and covariance matrix in CCKF are the same as 
those in KF. However, different from the KF, the CCKF 
uses a novel fixed-point algorithm to update the posterior 
estimations. With a proper kernel bandwidth, the CCKF 
can outperform the KF significantly, especially when the 
underlying system is disturbed by some impulsive non-
Gaussian noises. The proposed method was utilized to 
estimate the position of a GPS receiver located at IGS 
station:IISc, Bangolore (Lat/Lon: 13.01° N/77.56° E) and 
its performance was compared against traditional Kalman 
filter.

The estimated receiver position and error, along with its 
mean, standard deviation, and SAM obtained from the two 
algorithms i.e. KF and CCKF are assessed. In 2-D space, 
minimum of 33% improvement in accuracy and in 3-D 
space, minimum of 32% accuracy is achieved respectively 
with the proposed CCKF algorithm over the traditional 
Kalman filter. Hence from these results, it is concluded that 
the position estimated with CCKF is more accurate than KF. 
Interestingly, the mean position error recorded as a conse-
quence of the CCKF and the KF algorithm is X = 24.10 m, 
Y = 15.33 m, Z = 4.28 m, and X = 35.34 m, Y = 26.25 m, 
and Z = 6.22 m. It is also evident that the CCKF results 
in estimates of the low variance position compared to the 

KF with a disparity in position deviation of std(X) = 1.25 
m, std(Y) = 5.63 m and std(Z) = 1.43 m. The results show 
that the proposed method (CCKF) outperformed traditional 
Kalman filter and is suitable for real time defense applica-
tions like navigation of ships, landing of CAT I and II air-
crafts etc. over the Indian subcontinent.

References

Agarwal, R. P., Meehan, M., & Regan, D. O. (2001). Fixed point theory 
and applications. Cambridge, UK: Cambridge Univ. Press.

Ankur. (2017). Calculating position from raw GPS data. Retrived from 
July 17, 2017, from http://www.teles ens.co/autho r/ankur /.

Ashok Kumar N., Suresh, C., & Sasibhushana, Rao G. (2018). 
Extended kalman filter for GPS receiver position estimation. 
SPRINGER - Advances in Intelligent Systems and Computing, 
695, 481–488.

Chena, B., Liu, X., Zhao, H., & Principe, J. C. (2017). Maximum cor-
rentropy Kalman Filter. Automatica, 76, 70–77.

Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method 
for the nonlinear transformation of means and covariances in 
filters and estimators. IEEE Transactions on Automatic Control, 
45(3), 477–482.

Kalman, R. E. (1960). A new approach to linear filtering and prediction 
problems. Transactions of the ASME. Series D, Journal of Basic 
Engineering, 82, 35–45.

Kleusberg, A. (2003). Analytical GPS navigation solution. In Geodesy-The 
challenge of the 3rd millenium (pp. 93–96). Heidelberg: Springer.

Liu, W., Pokharel, P. P., & Principe, J. C. (2007). Correntropy: proper-
ties, and applications in non-Gaussian signal processing. IEEE 
Transactions on Signal Processing, 55(11), 5286–5298.

Rao, G. S. (2010). Global navigation satellite systems. Tata 
McGraw Hill Education Private limited, 2010, ISBN 
((13):978-0-07-070029-1.

Rutledge, D. (2010). Accuracy versus precision: A primer on GPS 
truth. GPS World, 21(5), 42–49.

Sirish Kumar, P., Srilatha Indira Dutt, V. B. S. (2019a). Evaluation 
of GPS Receiver Position Accuracy Improvement Using Least 
Squares Estimator over the South Zone of Indian Subcontinent. 
Journal of Advanced Research in Dynamical & Control Systems, 
11(6), 2019.

Sirish Kumar, P., & Srilatha Indira Dutt, V. B. S. (2019b). A hypotheti-
cal analysis on GPS evolution, error sources, accuracy measures 
and positioning services. International Journal of Innovative 
Technology and Exploring Engineering (IJITEE) ISSN: 2278-
3075, Vol.-8 Issue-9

Statistics and its relationship to accuracy measure in GPS, NovAtel, 
APN-029, Rev-1, pp. 1–6, 2003.

Umamaheswaran, S., Lakshmanan, R., Vinothkumar, V., et al. (2019). 
New and robust composite micro structure descriptor (CMSD) 
for CBIR. International Journal of Speech Technology. https ://
doi.org/10.1007/s1077 2-019-09663 -0.

Yamaguchi, S., Tanaka, T. (2006). GPS standard positioning using 
Kalman filter. IEEE SICE-ICASE Joint Conference, pp. 
1351–1354.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Fig. 9  Horizontal position scatter plot with KF and CCKF

http://www.telesens.co/author/ankur/
https://doi.org/10.1007/s10772-019-09663-0
https://doi.org/10.1007/s10772-019-09663-0

	Implementation of new navigation algorithm based on cross-correntropy for precise positioning in low latitude regions of South India
	Abstract
	1 Introduction
	2 GPS position estimation using more than four satellites
	3 Cross-correntropy notation
	3.1 Kalman filter

	4 Cross-correntropy Kalman filter
	4.1 Algorithm derivation
	4.2 Steps in computing the cross-correntropy Kalman filter

	5 Simulation results & discussion
	6 Conclusion
	References




