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Abstract
This paper addresses the problem of speech intelligibility enhancement by subband adaptive filtering algorithms in a blind 
framework. Recently in Djendi and Sayoud (Int J Speech Technol 22:391–406, 2019), we have proposed a subband adaptive 
algorithm based on the forward blind source separation structure that is efficient for acoustic noise reduction and speech 
intelligibility enhancement applications. In this paper, we propose a novel subband domain implementation of the backward 
blind source separation structure combined with a modified version of the fast normalized least mean square (FNLMS) algo-
rithm. The new proposed subband algorithm is efficient in improving the speech signal intelligibility without introducing 
any distortion at the output. A fair comparison of the proposed backward subband FNLMS algorithm with other fullband 
type algorithms is presented. This comparison is based on the evaluation of several objective criteria. The obtained results 
show the best performance of the proposed subband algorithm in terms of speed convergence.

Keywords BBSS · Speech enhancement · Subband adaptive filtering · NLMS algorithm · SNR

1 Introduction

In many modern speech communication systems, the pres-
ence of background noise causes degradation in the quality 
and intelligibility of the communications. For this reason, 
noise reduction plays an important role in ensuring high 
quality communication and is still an active research topic. 
Many techniques for noise reduction and speech enhance-
ment applications have been developed in the literature 
depending on the number of sensors available for processing. 
These approaches can be classified into three basic catego-
ries which are: (i) the temporal filtering techniques using 
only single microphone such as optimal filtering (Benesty 
and Chen 2011) and spectral subtraction (Boll 1979), (ii) the 
adaptive noise cancellation based on a primary sensor that 
pick up the noisy signal and a reference sensor to measure 
the noise field (Widrow and Goodlin 1975), and (iii) the last 

approach is the beamforming techniques that used an sensor 
array (Habets et al. 2009).

Moreover, adaptive filtering algorithms have become 
more popular and have proven effectiveness in acoustic 
noise reduction and speech signal quality enhancement. 
The normalized least mean square (NLMS) is the most 
popular and widely used adaptive filtering algorithm 
because of its simplicity and robustness (Habets et al. 
2009). In spite of these advantages, the use of the NLMS 
algorithm has been hampered by its slow convergence 
when the input signal is highly correlated (Sayed 2003). 
To tackle this issue, numerous algorithms have been pro-
posed, such as the recursive least square algorithms and 
their fast versions (Slock and Kailath 1991), the affine 
projection algorithms and their fast versions (Ozeki and 
Umeda 1984; Bouchard 2003). In the same direction, adap-
tive filtering in subbands has been proposed to improve the 
convergence speed behavior of the conventional fullbband 
adaptive filtering algorithms (Pradhan and Reddy 1999; 
Lee and Gan 2004; Djendi and Bendoumia 2013). Subband 
adaptive filtering (SAF) employs multirate filter banks for 
signal decomposition and reconstruction. This technique 
leads to a fast convergence speed and less computational 
complexity (Lee et al. 2010; Gilloire et al. 1988). In this 
paper, we propose a new subband implementation of the 
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backward blind source separation (BBSS) combined with a 
modified version of the fast normalized least mean square 
algorithm (FNLMS) for noise reduction and speech intel-
ligibility enhancement applications.

The organization of this paper is as follows: in section 
II we present the adopted acoustic environment model. In 
section III we describe the principle of the proposed back-
ward subband FNLMS algorithm. The simulation results 
of the comparative study between the proposed backward 
subband FNLMS algorithm and other fullband type algo-
rithms are presented in section IV. Finally we conclude 
our work in section V.

1.1  Acoustical envirroment model presentation

In this paper, the acoustical environment is modeled by 
the two channel simplified convolutive mixture that was 
proposed in (Djendi and Zoulikha 2014), where two noisy 
observations m1(n) and m2(n) are generated by the propa-
gation of two uncorrelated source signals of speech s(n) 
and noise b(n) as depicted in Fig. 1.

The two noisy observations p1(n) and p2(n) are modeled 
by these two equations:

where h12(n) and h21(n) represent the acoustic coupling paths 
between the source signals and the microphones. We assume 
that the speech signal is close from the first microphone and 
the noise is close from the second microphone, hence the 
impulse responses h11(n) and h22(n) are equal to the Kro-
necker unit impulse δ(n) (Van Gerven and Van Compernolle 
1995) (see Fig. 1).

2  Proposed subband backward algorithm 
descreption

In this section we describe the principle of the proposed 
backward subband FNLMS algorithm. The proposed algo-
rithm is a subband implementation of the backward blind 
source separation (BBSS) structure combined with a modi-
fied version of the fast NLMS (FNLMS) algorithm. A 
general block diagram of the proposed backward subband 
FNLMS algorithm is presented in Fig. 2.

In this figure, we find the following signals:

• m1(n) and m2(n) are the fullband mixing signal.
• m1i(n) and m2i(n) are the subband signals of each fullband 

signals m1(n) and m2(n), respectively.
• e1i,D(p) and e2i,D(p) are the decimated output sub-signals.
• E1i(n) =

[
e1i(n), e1i(n − 1),… , e1i(n − l + 1)

]
 a n d 

E2i(n) =
[
e2i(n), e2i(n − 1),… , e2i(n − l + 1)

]
 are the 

vectors of the decimated output sub-signals e1i,D(p) and 
e2i,D(p)

• e1(n) and e2(n) are the interpolated sub-signals into their 
fullband form.

(1)m1(n) = s(n) + h21(n) ∗ b(n)

(2)m2(n) = b(n) + h12(n) ∗ s(n)

Fig. 1  Simplified convolutive mixture modeling

Fig. 2  General block diagram of the proposed backward subband FNLMS algorithm
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All of these signals will be well detailed and explained by 
their mathematical derivation of the following analysis stage 
section.

2.1  Analysis stage

As shown in Fig. 2 (stage 1) the two noisy input signals m1(n) 
and m2(n) are split into M subband signals m1i(n) and m2i(n) 
by means of analysis filter banks h1(n),… , hM(n) , and they 
are decimated by a factor D = M. The decimated mixing sub-
signals are defined as follows:

where m1(n)  =  [m1(n), m1(n  −  1…, m1(n − l + 1], 
m2(n) = [m2(n), m2(n − 1…, m2(n − l + 1)]. l is the length 
of the analysis filters hi(n). The variable n is used for the 
time index of the original fullband signals, and p is used for 
the decimated sub-signals.

2.2  Adaptation prosses stage

In the second stage we applied the BBSS structure (Henni 
et al. 2019) to retrieve the original source signals s(n) and 
b(n) from only the decimated noisy observations m1i,D(p) and 
m2i,D(p). In this proposed structure, two symmetric adaptive 
filters are used to estimate the enhanced output signals. To 
update the coefficients of these adaptive filters, we use the 
modified FNLMS algorithm when combined with the BBSS 
structure. We note that the output signals of the proposed back-
ward subband FNLMS algorithm are estimated in subbands, 
while the coefficients of the adaptive filters are adapted in their 
fullband forms. A detailed descriptive scheme of the adapta-
tion process (stage 2) is given in Fig. 3.

2.3  Synthesis stage

In the last stage, the decimated output sub-signals e1i,D(p) and 
e2i,D(p) are interpolated by a factor I = M, subsequently a syn-
thesis filter banks g1(n),… , gM(n) are used to merge these 
last interpolated sub-signals into their fullband form e1(n) and 
e2(n), which are given by the following relations:

(3)m1i,D(p) = m1i(pM) i = 1,… ,M.

(4)m1i(n) = hT
i
(n)m1(n) i = 1,… ,M.

(5)m2i,D(p) = m2i(pM) i = 1,… ,M.

(6)m2i(n) = hT
i
(n)m2(n) i = 1,… ,M.

(7)e1(n) =

M∑

i=1

gT
i
(n)E1i(n)

where

a n d  E1i(n) =
[
e1i(n), e1i(n − 1),… , e1i(n − l + 1)

]
 , 

E2i(n) =
[
e2i(n), e2i(n − 1),… , e2i(n − l + 1)

]
.

2.4  Mathematical formulation of the processing 
algorithm

We have adopted the FNLMS algorithm to update the two 
cross-filters of the BBSS structure in a subband framework. 
In this subsection, we present the mathematical formulation of 
the proposed backward subband FNLMS algorithm.

The estimated signals for M subbands of the proposed 
backward subband FNLMS algorithm are given as follows:

where e1i,D(p) =
[
e1i,D(p), e1i,D(p − 1),… , e1i,D(p − L + 1)

]

and e2i,D(p) =
[
e2i,D(p), e2i,D(p − 1),… , e2i,D(P − L + 1)

]
 . L 

is the length of the adaptive filters. The vectors w1(p) and 
w2(p) are the two adaptive filters of the proposed backward 
subband FNLMS algorithm, which are updated as follows:

(8)e2(n) =

M∑

i=1

gT
i
(n)E2i(n)

(9)

e1i(n) =

{
e1i,D(p∕I), n = 0,±I,±2I,…

0 otherwise
For i = 1,… ,M.

(10)

e2i(n) =

{
e2i,D(p∕I), n = 0,±I,±2I,…

0 otherwise
For i = 1,… ,M.

(11)e1i,D(p) = m1i,D(p) − wT
1
(p)e2i,D(p) i = 1,… ,M.

(12)e2i,D(p) = m2i,D(p) − wT
2
(p)e1i,D(p) i = 1,… ,M.

(13)w1(p + 1) = w1(p) − �1

M∑

i=1

[
e1i,D(p)c1i,D(p)

]

(14)w2(p + 1) = w2(p) − �2

M∑

i=1

[
e2i,D(p)c2i,D(p)

]

Fig. 3  Descriptive scheme of the adaptation process
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where 0 < 𝜇1,𝜇2 < 2 are defined as the step-size parameters 
which affects the convergence behavior of the filter weights, 
and c1i,D(p) , c2i,D(p) are the decimated subbund adaptation 
gain vectors, which are given by the following relations:

where the scalars �1i,D(p) and �2i,D(p) are the decimated sub-
band likelihood variables, which are defined as follows:

The decimated subband vectors k1i,D(p) and k2i,D(p) are 
the kalman gains, that are given by the following relations:

where the asterisk * represents the last unused element of 
the Kalman gains, � (0 < 𝜆 < 1) is an exponential forgetting 
factor and c0 is a small positive constant used to avoid divi-
sion by very small values in absence of the input signal. The 
decimated subband parameters �1i,D and �2i,D are the forward 
prediction errors variances, they are defined as follows:

The decimated subband prediction errors �1i,D(p) and 
�2i,D(p) that are used to evaluate the kalman gains can be 
calculated using a first-order prediction model as follows:

where a1i,D and a2i,D are the decimated subband prediction 
coefficients that are obtained by minimizing the functions 
E
[
�2
1i,D

(p)
]
 and E

[
�2
2i,D

(p)
]
 . The derivative of these last func-

tions with respect to a1i,D and a2i,D respectively leads to the 
following relations:

(15)c1i,D(p) = �1i,D(p)k1i,D(p) i = 1,… ,M.

(16)c2i,D(p) = �2i,D(p)k2i,D(p) i = 1,… ,M.

(17)�1i,D(p) =
1

1 − kT
1i,D

(p)e2i,D(p)
i = 1,… ,M.

(18)�2i,D(p) =
1

1 − kT
2i,D

(p)e1i,D(p)
i = 1,… ,M.

(19)
[
k1i,D(p)

∗

]
=

[
−

�1i,D(p)

��1i,D(p−1)+c0

k1i,D(p − 1)

]
i = 1,… ,M.

(20)
[
k2i,D(p)

∗

]
=

[
−

�2i,D(p)

��2i,D(p−1)+c0

k2i,D(p − 1)

]
i = 1,… ,M.

(21)�1i,D(p) = ��1i,D(p − 1) + �2
1i,D

(p) i = 1,… ,M.

(22)�2i,D(p) = ��2i,D(p − 1) + �2
2i,D

(p) i = 1,… ,M.

(23)�1i,D(p) = e2i,D(p) − a1i,De2i,D(p − 1) i = 1,… ,M.

(24)�2i,D(p) = e1i,D(p) − a2i,De1i,D(p − 1) i = 1,… ,M.

where r1i,D(p) and r2i,D(p) represent respectively, the first 
coefficient of the autocorrelation function of the decimated 
output sub-signals e2i,D(p) and the power of the decimated 
output sub-signals e2i,D(p) . r3i,D(p) and r4i,D(p) represent 
respectively, the first coefficient of the autocorrelation 
function of the decimated output sub-signals e1i,D(p) and 
the power of the decimated output sub-signals e1i,D(p) . An 
estimation of these last prediction coefficients for each sub-
band can be performed as follows:

where r1i,D(p) , r2i,D(p) , r3i,D(p) , and r4i,D(p) are estimated 
recursively by the following relations:

where �a is a forgetting factor and is ca a small positive 
constant.

3  Simulation results

3.1  Descreption of the used signals

In this simulation, we consider that the mixing model of 
Fig. 1 generates two noisy observations m1(n) and m2(n) , 
where the original speech signal s(n) is a French male 
speaker of about 4 seconds length and the noisy disturbance 
source b(n) is a USASI (United State of America Standard 
Institute now ANSI) noise taken from AURORA database 
(Sayoud et al. 2018). Fig. 4 shows the time evolution of 
the source signals s(n) and b(n). These source signals are 

(25)

a1i,D(p) =
E
[
e2i,D(p)e2i,D(p − 1)

]

E
[
e2
2i,D

(p − 1)
] =

r1i,D(p)

r2i,D(p)
i = 1,… ,M.

(26)

a2i,D(p) =
E
[
e1i,D(p)e1i,D(p − 1)

]

E
[
e2
1i,D

(p − 1)
] =

r3i,D(p)

r4i,D(p)
i = 1,… ,M.

(27)a1i,D(p) =
r1i,D(p)

r2i,D(p) + ca
i = 1,… ,M.

(28)a2i,D(p) =
r3i,D(p)

r4i,D(p) + ca
i = 1,… ,M.

(29)
r1i,D(p) = �ar1i,D(p − 1) + e2i,D(p)e2i(p − 1) i = 1,… ,M.

(30)r2i,D(p) = �ar2i,D(p − 1) + e2
2i,D

(p) i = 1,… ,M.

(31)
r3i,D(p) = �ar3i,D(p − 1) + e1i,D(p)e1i,D(p − 1) i = 1,… ,M.

(32)r4i,D(p) = �ar4i,D(p − 1) + e2
1i,D

(p) i = 1,… ,M.
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sampled at 8kHz with 16 bit quantification. We have used 
the model proposed in (Djendi et al. 2006) to generate the 
two impulse responses h12(n) and h21(n) . Figure 5 shows 
an example of the two simulated impulse responses with 
L = 128 . In Fig. 6 we show the time evolution of the two 
noisy observation m1(n) and m2(n) , the input SNR (signal-to-
noise ratio) at the inputs of the two microphones is selected 
equal to 0dB.

3.2  Time evolution of the enhanced output

Figure 7 presents the time evolution of the enhanced out-
put signal e1(n) obtained by the proposed backward sub-
band FNLMS algorithm with M = 2 and M = 4 . As shown 
in Fig. 7, the enhanced output speech signal is completely 
denoised, this means that the proposed backward subband 
FNLMS algorithm can efficiently enhances noisy speech.

Fig. 4  Time evolution of the 
used signals: a original speech 
signal s(n) , b USASI noise 
signal b(n)

(a)

(b)

Fig. 5  Time evolution of the 
noisy observations: a m

1
(n) , b 

m
2
(n) (a)

(b)

Fig. 6  Simulated impulse 
responses: a h

12
(n) , b h

21
(n) , 

with real filters length L = 128. (a)

(b)
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3.3  Performance evaluations

This subsection, is reserved to evaluate the performance 
properties of the proposed backward subband FNLMS algo-
rithm in comparison with the following adaptive fullband 
type algorithms: (i) the backward normalized least mean 
square (BNLMS) algorithm (Van Gerven and Van Comper-
nolle 1992), which is based on the combination between 
the BBSS structure and the NLMS algorithm, (ii) the back-
ward fast normalized least mean square algorithm (BFN-
LMS) proposed recently in our previous work (Sayoud et al. 
2018). This algorithm is based on the combination between 
the BBSS structure and the FNLMS algorithm, which rep-
resents the fullband version of our proposed backward sub-
band FNLMS algorithm. We recall here that all simulated 
algorithms are controlled by a manual activity voice detec-
tor (MAVD) to retrieve the speech signal at the first output 
e1(n) . The simulation parameters of each algorithm are given 
in Table 1. This comparative study is based on the following 
objective criteria:

(i) System Mismatch (SM) criterion which is computed 
between the adaptive filter w1(n) and the real one h21(n) as 
follow (Hu and Loizou 2008):

(ii) Segmental Mean Square Error (SegMSE) criterion is 
given by the following relation (Ghribi et al. 2016):

Where N is the segment length of the original signal s(n) and 
the enhanced one e1(n) , and K is the number of segments in 
silence periods. We note that the SegMSE criterion is evalu-
ated only in silence periods.

(iii) Segmental signal-to-noise-ratio (SegSNR) criterion 
is calculated using the following formula (Rabiner and Juang 
1993):

where s(n) and e1(n) are the original and the enhanced speech 
signals, respectively. The parameters K and N are the number 
of segments and the segment length, respectively.

(33)SMdB = 20log10

�‖h21 − w1(n)‖
‖h21‖

�

(34)

SegMSEdB =
10

K

K−1∑

m=0

log10

(
1

N

Nm+N−1∑

n=Nm

||s(n) − e1(n)
||
2

)

(35)SegSNRdB =
10

K

K−1�

m=0

log10

� ∑Nm+N−1

n=Nm
�s(n)�2

∑Nm+N−1

n=Nm
��s(n) − e1(n)

��
2

�

Fig. 7  Time evolution of 
the enhanced output signal 
e
1
(n) obtained by: a proposed 

backward subband algorithm 
with two subbands, b proposed 
backward subband algorithm 
with four subbands

(a)

(b)

Table 1  Simulation parameters of the following algorithms i.e. proposed backward subband FNLMS algorithm, BNLMS algorithm and BFN-
LMS algorithm

Algorithms Simulation parameters

BNLMS algorithm (Van Gerven and Van Compernolle 1992) Adaptive filter length of w
1
 , w

2
 : L = 128 . Fixed step-sizes: �

1
= �

2
= 0.8

BFNLMS algorithm (Sayoud et al. 2018) Adaptive filter length of w
1
 , w

2
 : L = 128 . Fixed step-sizes: �

1
= �

2
= 0.8

Exponential forgetting factor: � = 0.99. Forgetting factor: �
a
= 0.996.

Positive constant: c
0
= 1,c

a
= 0.001 . Initialisation constant: E

0
= 0.5

Proposed backward subband FNLMS algorithm [in this paper] Adaptive filter length of w
1
 , w

2
 : L = 128 . Subband filters length for 

M = 2 , M = 4 are respectively: l = 16 , l = 32 . Fixed step-sizes: 
�
1
= �

2
= 0.8

Exponential forgetting factor: � = 0.99. Forgetting factor: �
a
= 0.996.

Positive constant: c
0
= 1,c

a
= 0.001 . Initialisation constant: E

0
= 0.5
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3.4  System mismatch (SM) evaluation

We have used the SM criterion to evaluate the speed con-
vergence performance of the proposed backward subband 
FNLMS algorithm in comparison with the fullband BNLMS 
and fullband BFNLMS ones. The simulation parameters of 
each simulated algorithm are given in Table 1. The obtained 
results for three inputs SNR (i.e. − 3dB, 0dB, 3dB) are 
shown in Fig. 8. From these results we can see clearly the 
superiority of the proposed backward subband algorithm in 
comparison with the other ones (i.e. BNLMS, BFNLMS) 
in terms of speed convergence performance for every case 
of input SNR.

3.5  Segmental mean square error (SegMSE) 
evaluation

The obtained results of the SegMSE criterion for the three 
algorithms i.e. proposed backward subband FNLMS algo-
rithm, BNLMS and BFNLMS algorithms are reported 
on Fig. 9. The simulation parameters of each simulated 

algorithm are given in Table 1. From this experiment of 
Fig. 9 we can confirm again that the proposed backward sub-
band FNLMS algorithm behaves more efficiently in terms 
of speed convergence than the other algorithms i.e. BNLMS 
and BFNLMS, especially when the number of subbands is 
selected high ( M = 4).

3.6  Segmental (SegSNR) signal‑to‑noise‑ratio 
evaluation

In order to evaluate the noise reduction performance of 
the proposed backward subband FNLMS algorithm, in the 
steady state, in comparison with the BNLMS and BFNLMS 
algorithms, we have used the SegSNR criterion to compute 
the final values of SNR and only in speech activity periods. 
We recall here that the simulation parameters of Table 1 are 
used for each simulated algorithm. In Fig. 10 we present the 
obtained results of the SegSNR evaluation for three inputs 
SNR (i.e. − 3dB, 0dB, 3dB). According to these results, 
we can see clearly that our proposed backward subband 
FNLMS algorithm has almost the same SegSNR values 
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Fig. 8  SM evaluation of the proposed backward subband algorithm and the state-of-the-art algorithms (i.e. BNLMS, BFNLMS) for the input 
SNR at the two observations: a − 3 dB, b 0 dB, c 3 dB
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with the fullband BFNLMS algorithm when the number of 
subbands is selected to M = 2 . However, the output Seg-
SNR values decrease when the number of subbands is high 
( M = 4 ). We have also noted that the output SegSNR values 
of the proposed backward subband FNLMS algorithm with 
2 and 4 subbands are superior to 40 dB, which confirm the 
good behavior of the proposed backward subband FNLMS 
algorithm in reducing the acoustic noise components. A poor 
behavior of the BNLMS algorithm is noted.

4  Conclusion

In this paper, we have proposed a new backward subband 
FNLMS adaptive filtering algorithm for noise reduction 
and speech intelligibility enhancement application. The 
proposed backward subband FNLMS algorithm is a sub-
band implementation of the BBSS structure based on the 
use of the modified FNLMS algorithm. The performances 
of the proposed backward subband FNLMS algorithm are 
compared with two fullband type algorithms i.e. BNLMS 
and BFNLMS. Therefore, intensive experiments were 
conducted in terms of three objective criteria, i.e. system 
mismatch (SM), segmental signal to-noise-ratio (SegSNR), 
and segmental mean square error (SegMSE). The obtained 
results with different noisy observations levels (i.e. highly 
and slightly noisy observations), have confirmed that the 
proposed backward subband FNLMS algorithm improves 
the speed convergence behavior in the transient phase espe-
cially when the number of subbands is selected high. We 
have also noted a degradation of the output SegSNR values 
when the number of subbands is selected high, however the 
proposed backward subband FNLMS algorithm reduces the 
acoustic noise components by about 40 dB at the output, 
with low and high selected subbands number. Finally we can 

say that the proposed backward subband FNLMS algorithm 
is an interesting candidate for acoustic noise reduction and 
speech enhancement applications.
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