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Abstract
This paper presents a new fullband–subband switching adaptive speech enhancement algorithm, based on mean square 
error estimation. The proposed algorithm is able to automatically switch between two adaptive filtering algorithms, i.e. the 
two-channel fullband normalized least mean square (TC-FNLMS) algorithm and the two-channel subband normalized least 
mean square (TC-SNLMS), where, the proposed switching mechanism leads to a significant improvement in the conver-
gence speed performance of the proposed algorithm. To confirm the efficiency and the good performances of the proposed 
algorithm in comparison with the fullband and subband versions of the two channel NLMS algorithm, several experiments 
were carried out in terms of the segmental signal-to-noise-ratio (SegSNR), segmental mean square error (SegMSE), system 
mismatch (SM) and cepstral distance (CD).
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1  Introduction

The advent and wide dissemination of mobile voice com-
munication systems has substantially increased the need 
for reliable communication systems in noisy environments. 
The environmental noise is a significant limitation on the 
performance of hands-free voice communications (Thum-
chirdchupong and Tangsangiumvisai 2013). To handle this 
critical issue, i.e. the environmental noise, several noise 
reduction and speech enhancement techniques have been 
proposed in the literature (Loizou 2017; Kuo and Peng 1999; 
Dixit and Mulge 2014). Generally, the approaches can be 
classified into a single-channel (Upadhyay and Jaiswal 2016; 
Benesty and Cohen 2018), dual-channel (Man Kima and 
Kook Kim 2014; Nabi et al. 2017) or multi-channel (Kim 

and Hasegawa-Johnson 2012; Habets and Benesty 2013) 
speech enhancement methods.

In recent years, dual-channel speech enhancement algo-
rithms have been widely used due to their good performance 
in different noise situations (i.e. stationary or non-stationary 
noise signal) (Sayoud et al. 2018; Nabi et al. 2016), unlike 
the single-channel methods that fail in the presence of non-
stationary noise (Loizou 2007). Also, they are easy to imple-
ment and do not require a large computational complexity 
compared to multi-channel speech enhancement techniques. 
Nabi et al. (2018) proposed a dual-microphone noise reduc-
tion algorithm based on the coherence function and the 
bionic wavelet transform using Kalman filter, this method 
has the ability to deal with two closely spaced microphones 
and does not require noise statistics estimation. Moreover, 
numerous dual-channel speech enhancement techniques 
based on the combination between adaptive algorithms and 
the forward and backward blind source separation structures 
have been proposed (Henni et al. 2019; Djendi and Zoulikha 
2018; Djendi 2018). Subband adaptive filtering is another 
efficient approach that is often used for speech enhance-
ment and noise reduction applications due to its capability 
in improving convergence performance for highly correlated 
input signals. Lee and Gan (2004) proposed the normal-
ized subband adaptive filtering (NSAF) algorithm, where, 
it allows to whiten the input and the desired output signals 
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by divided them into multiple subbands and that improves 
the convergence rate. For further performances improve-
ment, several modified versions of the NSAF algorithm 
have been developed (Ni and Li 2010; Yu et al. 2016; Seo 
and Park 2014). Furthermore, Djendi and Bendoumia (2013) 
proposed a two-channel subband adaptive filtering algo-
rithm based on the forward blind source separation (FBSS) 
structure, which has improved the convergence speed per-
formance of the classical FBSS, but, the performance of 
this algorithm depends on the fixed step size that reflects a 
compromise between fast convergence rate and low steady-
state error. To overcome this conflict, a two-channel subband 
FBSS structure with variables step-size has been proposed 
in Djendi and Bendoumia (2016).

In this paper, we propose a new adaptive switching algo-
rithm for noise reduction and speech enhancement appli-
cations. The proposed algorithm switches between the 
two-channel subband normalized least mean square (TC-
SNLMS) algorithm (Djendi and Bendoumia 2013) and the 
two-channel fullband normalized least mean square (TC-
FNLMS) one (Van Gerven and Van Compernolle 1992), 
where, the switching procedure is based on the mean square 
error (MSE) estimation. After a review of the proposed algo-
rithm, we can say that the proposed switching algorithm 
exhibits better speed convergence in comparison with the 
classical two-channel fullband NLMS algorithm and the 
two- channel subband NLMS one.

The organization of this paper is as follows: in Sect. 2, we 
present mixing and separation model. In Sect. 3 we describe 
the principle of the proposed algorithm. The simulation 
results of the proposed switching algorithm in comparison 
with other competitive algorithms are presented in Sect. 4. 
Finally, we conclude our work in Sect. 5.

2 � Mixing and separation model

In a car environment, the hands-free communication is nor-
mally disturbed by the surrounded noise (engine, babbling or 
street noise). As depicted on Fig. 1, the recorded signals by the 
two microphones are contaminated by the noise components, 
these noisy observations are a linear combination between 
the useful speech signal and the disturbing noise signal. The 
main problem is to recover the original source signals from 
only these two available noisy observations. The blind source 
separation structure is widely used to address this critical issue, 
(Sayoud et al. 2018; Djendi and Bendoumia 2013; Syskind 
Pedersen et al. 2007).

In this paper the acoustical environment is modeled by 
the simplified convolutive mixture shown in Fig. 2a, and in 
order to retrieve the original signals, i.e. speech signal s(n) 
and noise signal b(n) , from the observed mixed signals, i.e. 
m1(n) and m2(n) , we use the forward blind source separation 
structure (Sayoud et al. 2018; Djendi 2018; Djendi et al. 2016), 
as depicted in Fig. 2b.

Let m1(n) and m2(n) denote the two noisy observation sig-
nals that can be modeled by the following formulations:

where s(n) and b(n) are the two independent sources of 
speech and noise respectively. The symbol ‘*’ stands for 
the linear convolution operation. h12(n) and h21(n) represent 
the cross-coupling effects between the channels. We assume 
that, the first microphone is close to the speaker and the sec-
ond microphone is close to the noise source, thus, the direct 
acoustic paths h11(n) and h22(n) are equal to the Kronecker 
unit impulse �(n) (Van Gerven and Van Compernolle 1995). 
According to this assumption the two relations of the noisy 
observation signals can be rewritten as follows:

(1)m1(n) = s(n) ∗ h11(n) + b(n) ∗ h21(n)

(2)m2(n) = b(n) ∗ h22(n) + s(n) ∗ h12(n)

(3)m1(n) = s(n) + b(n) ∗ h21(n)

(4)m2(n) = b(n) + s(n) ∗ h12(n)

Fig. 1   Illustrative diagram 
of the mixing and separation 
model Speech signal

Noise signal

Mixture 1

Mixture 2

BSS
Separation

Estimated
speech

Estimated
Noise
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The two estimated output signals of the FBSS structure 
are given by the following relations:

where w21(n) and w12(n) are the adaptive filters of the FBSS 
structure.

By inserting Eqs. (3) and (4) in (5) and (6) respectively, 
we obtain:

The evident theoretical solution of the problem is 
obtained by setting h21(n) = w21(n) and h12(n) = w12(n) , the 
estimated output signals u1(n) and u2(n) can be expressed 
as follows:

From Eqs. (9) and (10), we notice that the estimated output 
signals of the FBSS structure is distorted by the post filter. 
The effect of this post filter is important when the two micro-
phones are closely spaced (Djendi et al. 2007). To avoid the 
post filter effect, we consider in our work the case where the 
two microphones are loosely spaced.

3 � Proposed algorithm

In this section, we present the proposed adaptive switching 
algorithm, where, the switching mechanism is based on the 
mean square error estimation. A block diagram of the pro-
posed algorithm is shown in Fig. 3. The proposed algorithm is 

(5)u1(n) = m1(n) − m2(n) ∗ w21(n)

(6)u2(n) = m2(n) − m1(n) ∗ w12(n)

(7)
u1(n) = b(n) ∗

[
h21(n) − w21(n)

]
+ s(n) ∗

[
�(n) − h12(n) ∗ w21(n)

]

(8)
u2(n) = s(n) ∗

[
h12(n) − w12(n)

]
+ b(n) ∗

[
�(n) − h21(n) ∗ w12(n)

]

(9)u1(n) = s(n) ∗
[
�(n) − h12(n) ∗ h21(n)

]

(10)u2(n) = b(n) ∗
[
�(n) − h21(n) ∗ h12(n)

]

very well suited to high and low noise level scenarios, where, 
it is capable of switching between the two-channel subband 
NLMS algorithm (TC-SNLMS) (Djendi and Bendoumia 
2013) and the two-channel fullband NLMS (TC-FNLMS) 
algorithm (Van Gerven and Van Compernolle 1992). The 
main idea is to use the TC-SNLMS algorithm for processing 
high level noise components and alternatively employ the TC-
FNLMS algorithm when noise intensity is low. The switching 
mechanism can be described by the following steps:

•	 Step 1 Energy calculation.

In the first step, we compute recursively the energy E(n) of 
the filtering error u1(n) by the following relation:

where � is a smoothing factor.
(11)E(n) = �E(n − 1) + (1 − �)u1(n)

2

Fig. 2   Diagrammatic represen-
tation of the convolutive mixing 
and the FBSS structure
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Estimated signalsAcoustic pathsSource signals

m1(n)

m2 (n)

h11= δ(n)

h22= δ(n)

h12(n)

b (n)

s (n)

h21 (n)

w12(n)

w21 (n)

u1 (n)

u2 (n)

Adaptive filters

MSEe< MSEth

NO

yes

Enhanced
speech

Enhanced
speech

MSE
Estimation

TC-SNLMS
algorithm

TC-FNLMS
algorithm

M
ix
in
g
pr
o
ce
ss

Fig. 3   Flowchart of the proposed algorithm
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•	 Step 2 MSE estimation.

Once the energy has been calculated, the mean square error 
estimate can be computed as follow:

•	 Step 3 Switching rule.

The switching mechanism between the two adaptive filter-
ing algorithms is performed by comparing the MSE estimate 
with a MSE threshold, where the MSEth value is determined 
from experimental observations. The switching rule is defined 
as follows:

3.1 � Two‑channel subband NLMS (TC‑SNLMS) 
algorithm

The TC-SNLMS algorithm is a subband implementation of 
the forward blind source separation based on the use of the 
normalized least mean square (NLMS) algorithm (Djendi 
and Bendoumia 2013). As depicted on Fig. 4, this algorithm 
consists on dividing the two noisy signals m1(n) and m2(n) 
into a set of subband signals by an M-channel analysis fil-
ter banks. The resultant subband signals m1i(n) and m2i(n) 
for i = 1, 2,… ,M are decimated according to the subbands 
number, then the forward BSS structure is applied to estimate 
the decimated output sub-signals u1i,D(p) and u2i,D(p) from 
only the decimated mixing sub-signals m1i,D(p), m2i,D(p) , 
and finally the synthesis filter banks are used to reconstruct 
the estimated signals to their fullband form u1(n) and u2(n).

The decimated output sub-signals of the TC-SNLMS algo-
rithm are given by the following formulas:

(12)MSEe(n) = 10 log10 (E)

{
if MSEe(n) < MSEth, TC - FNLMS algorithm

else, TC - SNLMS algorithm

(13)u1i,D(p) = m1i,D(p) − w
T
21
(p)m2i,D(p) i = 1, 2,… ,M.

The decimated mixing sub-signals are defined as:

where M is the number of subbands and D is the deci-
mator factor, (D = M). The variable n is used for the 
time index of the original fullband mixing signals and 
p is used for the decimated sub-signals. m1i(pM) and 
m2i(pM) are the outputs of the analysis filters banks. 
m1(n) =

[
m1(n),m1(n − 1),… ,m1(n − l + 1)

]
, m2(n) =]

=
[
m2(n),m2(n − 1),… ,m2(n − l + 1)

]
 . l is the length of the 

analysis filters Hi.
The estimated fullband signals u1(n) and u2(n) are given by 

the following relations:

where

(14)u2i,D(p) = m2i,D(p) − w
T
12
(p)m1i,D(p) i = 1, 2,… ,M.

(15)m1i,D(p) = m1i(pM) i = 1, 2,… ,M.

(16)m2i,D(p) = m2i(pM) i = 1, 2,… ,M.

(17)m1i(n) = H
T
i
m1(n) i = 1, 2,… ,M.

(18)m2i(n) = H
T
i
m2(n) i = 1, 2,… ,M.

(19)u1(n) =

M∑

i=1

G
T
i
U1i(n)

(20)u2(n) =

M∑

i=1

G
T
i
U2i(n)

(21)

u1i(n) =

{
u1i,D(p∕I), n = 0,±I,±2I,…

0 otherwise
For i = 1, 2,… ,M.

(22)

u2i(n) =

{
u2i,D(p∕I), n = 0,±I,±2I,…

0 otherwise
For i = 1, 2,… ,M.

Fig. 4   Descriptive scheme of 
the TC-SNLMS algorithm

m11,D(p)

m1M,D(p)

m21,D(p)

m2M,D(p)

u11,D(p)

u2M,D(p)

u21,D(p)

u1M,D(p)

Analysis
filters
banks

Analysis
filters
banks

Synthesis
filters
banks

Synthesis
filters
banks

u1(n)

u2 (n)

m1(n)

m2 (n)

w12(p)

w21(p)

+

+

+

+

M
ux

M
ux

NLMS
algorithm

NLMS
algorithm



997International Journal of Speech Technology (2019) 22:993–1005	

1 3

I is the interpolator factor, in our case we take I = D = M. 
l is the length of the synthesis filters Gi

Adopting the NLMS algorithm to update the filters w21(p) 
and w12(p) , we get in a vector notation the following relations:

where m1i,D(p) =
[
m1i,D(p),m1i,D(p − 1),… ,m1i,D(p − L + 1)

]
 

and m2i,D(p) =
[
m2i,D(p),m2i,D(p − 1),… ,m2i,D(P − L + 1)

]
 . 

L is the length of the adaptive filters. The step-sizes 
𝜇1,𝜇2(0 < 𝜇1,𝜇2 < 2), are the control parameters of the 
TC-SNLMS algorithm, which adjusts respectively, the con-
vergence direction of the adaptive filters w21(p) and w12(p) . 
The parameter � is a small positive constant which allows 
avoiding division by very small values in absence of the 
input signal (silence periods).

3.2 � Two‑channel fullband NLMS (TC‑FNLMS) 
algorithm

The TC-FNLMS algorithm is a two channel adaptive filtering 
algorithm based on the combination between the forward blind 
source separation structure and the normalized least mean 
square algorithm (Van Gerven and Van Compernolle 1992). 
A detailed scheme of the TC-FNLMS algorithm is presented 
on Fig. 5.

The enhanced output signals of the TC-FNLMS algorithm 
are given by the following relations

and U1i(n) =
[
u1i(n), u1i(n − 1),… , u1i(n − l + 1)

]
,

U2i(n) =
[
u2i(n), u2i(n − 1),… , u2i(n − l + 1)

]
,

U2i(n) =
[
u2i(n), u2i(n − 1),… , u2i(n − l + 1)

]

(23)w21(p + 1) = w21(p) + �1

M∑

i=1

m2i,D(p)u1i,D(p)

|||� +m
T
2i,D

(p)m2i,D(p)
|||

(24)w12(p + 1) = w12(p) + �2

M∑

i=1

m1i,D(p)u2i,D(p)

|||� +m
T
1i,D

(p)m1i,D(p)
|||

where m1(n) =
[
m1(n),m1(n − 1),… ,m1(n − L + 1)

]T  and 
m2(n) =

[
m2(n),m2(n − 1),… ,m2(n − L + 1)

]T are the vec-
tors that contain the last L samples of the inputs m1(n) and 
m2(n) , respectively.

The update relations of the adaptive filters w21(n) and 
w12(n) are given as follows:

where 0 < 𝜇12,𝜇21 < 2 are the two step-size that control the 
convergence behavior of the cross-adaptive filters w21(n) and 
w12(n) . The parameter � is a small constant introduced to 
avoid division by zero.

4 � Simulation results

4.1 � Description of the used signals

In this simulation, the original speech signal s(n) is a French 
sentence of about 4 s length, taken from AURORA database 
(Combescure 1981), and it is presented on Fig. 6 with its 
manual segmentation. For the punctual noise source signal 
b(n) the USASI noise (United state of America Standard 
Institute now (ANSI)) is used (see Fig. 6). These signals 
are sampled at 8 kHz and coded on 16 bits. To generate the 
impulse responses h12(n) and h21(n) , we have used the physi-
cal model described in Djendi et al. (2006). An example of 
these impulse responses is given in Fig. 7.

We have used the signals described above to generate the 
noisy observations m1(n) and m2(n) according to the sim-
plified convolutive mixture model (describe in Sect. 2). In 
Fig. 8 we show the time evolution of the two noisy observa-
tions m1(n) and m2(n) . The input signal-to-noise-ratio (SNR) 
is selected to be SNR1 = 0 dB and SNR2 = 0 dB at the first 
and the second microphone, respectively.

4.2 � Time evolution of the output speech signal

In this section, we present a simple visual test on the output 
signal obtained by the proposed switching algorithm. As 
we are interested on speech enhancement, we focus only 
on the first output u1(n) . Parameters setting of the proposed 

(25)u1(n) = m1(n) − w
T
21
(n)m2(n)

(26)u2(n) = m2(n) − w
T
12
(n)m1(n)

(27)w21(n + 1) = w21(n) + �21

m2(n)u1(n)

|||� +m
T
2
(n)m2(n)

|||

(28)w12(n + 1) = w12(n) + �12

m1(n)u2(n)

|||� +m
T
1
(n)m1(n)

|||

+

+m1(n)

m2(n)

u1(n)

u2(n)

w21(n) w12(n)

NLMS
algorithm

NLMS
algorithm

Fig. 5   Detailed scheme of the TC-FNLMS algorithm
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algorithm are given as follows: the adaptive filters length is 
L = 128, the subband filters length for M = 2, M = 4, M = 8 
are respectively: l = 16, l = 32, l = 64, the MSE threshold 
value is: MSEth = −45 dB , the input SNR is selected to be 
0 dB at the two microphones. In Fig. 9, we show the time 
evolution of the output speech signal u1(n) obtained by the 
proposed switching algorithm with 2, 4 and 8 subband con-
figurations. This figure shows the good behavior of the pro-
posed algorithm in reducing the acoustic noise components 
with all subband configurations.

4.3 � Objective evaluation

In order to evaluate objectively the performances of the 
proposed switching algorithm in comparison with the clas-
sical two-channel fullband NLMS (TC-FNLMS) algorithm 
and the two-channel subband NLMS (TC-SNLMS) algo-
rithm, intensive experiments have been done in terms of 
the following objective criteria:

	 (i)	 The system mismatch (SM),
	 (ii)	 The segmental mean square error (SegMSE),
	 (iii)	 The segmental signal to noise ratio (SegSNR),
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	 (iv)	 The Cepstral distance (CD).

4.3.1 � System mismatch (SM) evaluation

To assess the speed convergence performance of the pro-
posed switching algorithm in comparison with the TC-
FNLMS and TC-SNLMS algorithms, we have used the SM 
criterion which is computed between the adaptive filter 
w21(n) and the real one h21(n) as follows [31]:

where the symbol ∥. ∥ represent the mathematical Euclid-
ean norm operator. The simulation parameters of each algo-
rithm (i.e. TC-FNLMS, TC-SNLMS and proposed switching 
algorithm) are summarized in Table 1. The obtained results 
of the SM comparison between TC-FNLMS, TC-SNLMS 
algorithms and proposed switching algorithm for three 
input SNRs i.e. -3 dB, 0 dB and 3 dB, and with different 

(29)SMdB = 20log10

(
h21 − w21(n)

h21

)

subband configurations (2, 4 and 8 subbands) are reported 
on Figs. 10, 11 and 12. It can be obviously seen from these 
figures that the proposed algorithm with (2, 4 and 8 sub-
bands) outperforms the other simulated algorithms in terms 
of speed convergence for all input SNR levels. This good 
performance of the proposed algorithm is achieved thanks 
to the fullband–subband switching procedure based on 
MSE estimation, where, the use of the TC-SNLMS algo-
rithm when the MSEe is superior than the MSEth, and the 
alternative use of the TC-FNLMS algorithm in the opposite 
case allows getting a fast speed convergence in transient and 
steady phases.

4.3.2 � Segmental mean square error (SegMSE) evaluation

In this subsection, we have evaluated the mean square 
error criterion for the TC-FNLMS, TC-SNLMS algorithms 
and the proposed one. The segmental mean square error 
(SegMSE) allows to quantify the speed convergence perfor-
mance of each simulated algorithm. This SegMSE criterion 
is given by the following relation:

where N is the segment length of the original signal s(n) 
and the enhanced one u1(n) , and M represent the number of 
segments in silence periods. We note that the SegMSE crite-
rion is evaluated only in the absence speech periods (Ghribi 
et al. 2016). The simulation parameters of each algorithm 
are summarized in Table 1. Considering Figs. 13, 14 and 15 
which show the SegMSE evaluation of the TC-FNLMS, TC-
SNLMS (with 2, 4, 8 subbands) and the proposed switching 
algorithm (with 2, 4, 8 subbands) for three input SNRs i.e. 
− 3 dB, 0 dB and 3 dB, we notice that the proposed algo-
rithm has better speed convergence performance in compari-
son with the other ones. This remarks is observed with the 
entire test when M = 2, 4 and 8.

4.3.3 � Segmental signal‑to‑noise‑ratio (SegSNR) evaluation

In order to analyze the noise reduction performance of the 
proposed algorithm in comparison with the TC-FNLMS and 
TC-SNLMS algorithms, we have used the SegSNR crite-
rion, which is evaluated for each algorithm as follows (Del-
ler et al. 1993; Sayed 2003):

where s(n) and u1(n) are the original and the enhanced 
speech signals, respectively. The parameters M and N are the 

(30)

SegMSEdB =
10

M

M−1∑

m=0

log10

(
1

N

Nm+N−1∑

n=Nm

||s(n) − u1(n)
||
2

)

(31)

SegSNRdB =
10

M

M−1�

m=0

log10

� ∑Nm+N−1

n=Nm
�s(n)�2

∑Nm+N−1

n=Nm
��s(n) − u1(n)

��
2

�
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Fig. 9   Time evolution of the output speech signal u1(n) obtained by 
the proposed switching algorithm with: (in top) 2 subbands, (in mid-
dle) 4 subbands, (in bottom) 8 subbands
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number of segments and the segment length, respectively. 
We note that at the output, we get M values of the Seg-
SNR criterion, each one is mean averaged on ‘N’ samples. 
The symbol | · | represents the absolute operator. We recall 
here that all the ‘M’ segments correspond to only speech 
signal presence periods. The symbol log10 is the base 10 
logarithm. Figures 16, 17 and 18 show the SegSNR evalua-
tion of the proposed algorithm in comparison with the TC-
FNLMS and TC-SNLMS ones for three global input SNRs 

i.e. − 3 dB, 0 dB and 3 dB. For each algorithm, we use the 
same parameters given in Table 1.

According to the obtained results, we can say that the 
proposed algorithm behaves more efficiently than the other 
competitive algorithms (TC-FNLMS and TC-SNLMS) for 
different input SNR levels i.e. − 3 dB, 0 dB and 3 dB. 
We have also noted that the output SegSNR values of 
the TC-SNLMS algorithm decrease in the steady state 
regime when the number of subbands is selected high (4, 

Table 1   Simulation parameters of the simulated algorithms i.e. TC-FNLMS algorithm (Van Gerven and Van Compernolle 1992), TC-SNLMS 
algorithm (Djendi and Bendoumia 2013), proposed switching algorithm (In this paper)

Simulation parameters

Input signals Original speech signal: a French sentence phonetically equilibrated
Noise signal: USASI noise
Sampling frequency rate: fs = 8 kHz
Input SNRs: SNR1 = SNR2 = − 3 dB, 0 dB and 3 dB

TC-FNLMS algorithm (Van Gerven and Van Compernolle 1992) Adaptive filters length: L = 128
Fixed step-sizes: �12 = �21 = 0.9

Positive constant: � = 10−6

TC-SNLMS algorithm (Djendi and Bendoumia 2013) Adaptive filters length: L = 128
Subband filters length for M = 2, M = 4 and M = 8 are respectively: l = 16, 

l = 32 and l = 64
Fixed step-sizes: �1 = �2 = 0.9

Positive constant: � = 10−6

Proposed switching algorithm (In this paper) Switching mechanism
MSE threshold: MSE

th
= −45 dB

Smoothing factor: � = 0.05

TC-SNLMS algorithm
Adaptive filters length: L = 128
Subband filters length for M = 2, M = 4 and M = 8 are respectively: l = 16, 

l = 32 and l = 64
Fixed step-sizes: �1 = �2 = 0.9

Positive constant: � = 10−6

TC-FNLMS algorithm
Adaptive filters length: L = 128
Fixed step-sizes: �12 = �21 = 0.9

Positive constant: � = 10−6
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Fig. 10   SM evaluation of the TC-FNMLS (Van Gerven and Van 
Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) and 
the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 8. Input SNR1 = SNR2 = −3 dB
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8 subbands), however the proposed switching algorithm 
with (2,4 and 8 subbands) has given the higher values of 
the SegSNR in transient and steady phases. This is the 
main benefit of the proposed switching algorithm that 

aim to combine the good convergence performance of the 
TC-SNLMS algorithm when the number of subbands is 
selected high with the good final values of the TC-FNLMS 
algorithm.
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Fig. 11   SM evaluation of the TC-FNMLS (Van Gerven and Van 
Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) and 
the proposed switching (in this paper) algorithms, with different sub-

band configurations, (in left) M = 2, (in middle) M = 24, (in right) 
M = 28. Input SNR1 = SNR2 = 0 dB
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Fig. 12   SM evaluation of the TC-FNMLS (Van Gerven and Van 
Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) and 
the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4 (in right) 
M = 8. Input SNR1 = SNR2 = 3 dB
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Fig. 13   SegMSE evaluation of the TC-FNMLS (Van Gerven and 
Van Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) 
and the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 8. Input SNR1 = SNR2 = −3 dB
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4.3.4 � Cepstral distance (CD) evaluation

In order to quantify the distortion amount introduced in the 
output speech signal obtained by the proposed switching 
algorithm in comparison with the TC-FNLMS and TC-
SNLMS ones, we have used the cepstral distance criterion 
which is estimated by the following relation (Hu and Loizou 
2008; Rabiner and Juang 1993):

where S(�,�) and U1(�,�) represent the short Fourier trans-
form of the original speech signal s(n) and the enhanced 
one u1(n) respectively at each frame � , and T is the mean 

(32)

CDdB =

T−1∑

�=0

IFFT
[
log (S|(�,�)|) − log

(
U1|(�,�)|VAD�

)]2
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Fig. 14   SegMSE evaluation of the TC-FNMLS (Van Gerven and 
Van Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) 
and the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 8. Input SNR1 = SNR2 = 0 dB
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Fig. 15   SegMSE evaluation of the TC-FNMLS (Van Gerven and 
Van Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) 
and the proposed switching [in this paper] algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 28. Input SNR1 = SNR2 = 3 dB
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Fig. 16   SegSNR evaluation of the TC-FNMLS (Van Gerven and 
Van Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) 
and the proposed switching (in this paper), algorithms with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 8. Input SNR1 = SNR2 = −3 dB
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averaging value of the CD criterion, and VAD parameter 
is a voice activity detector. We have reported on Figs. 19, 
20 and 21 the CD evaluation results obtained by the three 
algorithms for three input SNRs i.e. − 3 dB, 0 dB and 3 dB 
and with different subband configurations (2,4 and 8 sub-
bands). We recall that the simulation parameters of each 
algorithm are the same as given by Table 1. These results 

show that the TC-FNLMS algorithm outperforms the other 
algorithms (i.e. TC-SNLMS and proposed algorithm) in 
terms of steady-state CD values. Also a close behavior of 
the proposed algorithm with the TC-SNLMS one is noted. It 
is worth noting that the CD values of the proposed algorithm 
for all subband configurations and in divers situations are 
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Fig. 17   SegSNR evaluation of the TC-FNMLS (Van Gerven and 
Van Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) 
and the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 28. Input SNR1 = SNR2 = 0 dB
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Fig. 18   SegSNR evaluation of the TC-FNMLS (Van Gerven and 
Van Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) 
and the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 82. Input SNR1 = SNR2 = 3 dB
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Fig. 19   CD evaluation of the TC-FNMLS (Van Gerven and Van 
Compernolle 1992), TS-SNLMS (Djendi and Bendoumia 2013) and 
the proposed switching (in this paper) algorithms, with different 

subband configurations, (in left) M = 2, (in middle) M = 4, (in right) 
M = 8. Input SNR1 = SNR2 = −3 dB
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below − 5 dB. This indicates the good intelligibility of the 
output speech signal.

5 � Conclusion

In this paper, we have proposed a new switching adap-
tive speech enhancement algorithm, wherein, the two-
channel fullband NLMS (TC-FNLMS) algorithm and the 
two-channel subband NLMS (TC-SNLMS) algorithm are 
switched alternatey according to the estimated MSE. To 
validate the performance of the proposed switching algo-
rithm in comparison with TC-FNLMS and TC-SNLMS 
algorithms, intensive experiments have been performed 
using several objective criteria. The obtained results of 
the SM and the segmental MSE have confirmed the supe-
riority of the proposed algorithm in terms of convergence 
speed, this good performance is obtained thanks to the 
proposed fullband–subband switching technique. The 
SegSNR evaluation has also proved the efficiency of the 
proposed algorithm on reducing the acoustic noise at the 

processing output. Unfortunately, for the CD evaluation we 
have noted a slight degradation on the performance of the 
proposed algorithm in the steady state regime. In a future 
work, we aim to address the issue and improve the pro-
posed switching algorithm in the situation where it fails.
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