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Abstract
In low Signal-to-Noise Ratio environment phase information is one of the important factor and therefore this article consider 
the importance of clean phase in single channel speech enhancement technique. The proposed method uses Deep Neural 
Network based regression model to estimate clean phase and clean amplitude for speech reconstruction. Experiments are con-
ducted over five different noises such as factory, restaurant, car, airport and babble at different levels and result are evaluated 
using objective quality measures like Perceptual Evaluation of Speech Quality, Weighted Spectral Slope, Cepstrum Distance, 
frequency weighted segmented Signal-to-Noise Ratio and Log Likelihood Ratio. The overall quality of speech improved for 
factory noise by 12% , restaurant noise by 8% , car noise by 13% , airport noise by 10% and babble noise by 14% respectively.

Keywords Speech enhancement · Deep neural network · Regression

1 Introduction

Single channel speech enhancement is active research topic 
since last few decades because of rapidly increasing real 
world applications such as mobile speech communication, 
robust speech recognition (Loizou 2013), and speaker veri-
fication (Reynolds et al. 2000) etc. All applications require 
clean speech signal for processing and generally speech 
enhancement technique is used for estimation of clean 
speech signal from noisy speech signal. Speech enhance-
ment is performed either in time domain or in frequency 
domain with the aim of increasing quality and intelligibility 
of speech in noisy environment by suppressing noise signal 
from noisy speech signal (Benesty et al. 2005). There are 
various methods developed for speech enhancement over 
the last few decades such as spectral subtraction, Wiener 
method, and gain based method like MMSE-STSA, log-
MMSE (Kamath and Loizou 2002; Ephraim and Malah 
1984, 1985; Scalart et al. 1996; Cohen 2003; Surendran and 
Kumar 2015; Bouzid et al. 2016) etc. The spectral subtrac-
tion method has been proposed by Berouti et al. (1979) and 

became popular due to its ability of reducing background 
(additive) noise but limitation is generation of annoying 
musical noise artifact (Scalart et al. 1996). Ephraim and 
Malah (1984) addressed musical noise problem using sta-
tistical model-based method and its updates are reported in 
Ephraim and Malah (1985) and Cohen (2003) respectively.

Another group of researchers were using recently devel-
oped algorithms based on Wavelet Packet Decomposition 
and DNN for speech enhancement (Bouzid et al. 2016; Dahl 
et al. 2012). The aforementioned algorithms works well at 
high Signal-to-Noise Ratio (SNR) like higher than 6 dB 
(SNR ≥ 6 dB) where as in low SNR i.e. SNR ≤ 6 dB envi-
ronment quality and intelligibility of noisy speech signal 
even deteriorate further from original clean speech hence 
speech enhancement in low SNR environment becomes dif-
ficult (Loizou and Kim 2011).

Xu et al. (2015) proposed DNN based regression model 
for speech enhancement and to generalize the regression 
model large training data set at different SNR levels were 
used. The recommended regression model in Xu et  al. 
(2015) is only applicable for high SNR signals. It claim 
improvement in musical noise by comparing minimum mean 
square error (MMSE) and the conventional speech enhance-
ment techniques but it uses noisy phase for reconstruction 
of speech along with estimated amplitude of noisy speech 
signal hence the amplitude of estimated speech signal will 
degrade and it will continue as SNR value decreases (Xu 
et al. 2015).

 * Samba Raju Chiluveru 
 samba.dee2017@iitr.ac.in

 Manoj Tripathy 
 manojfee@iitr.ac.in

1 Department of Electrical Engineering, Indian Institute 
of Technology, Roorkee, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-019-09603-y&domain=pdf


284 International Journal of Speech Technology (2019) 22:283–292

1 3

Figure 1 shows phase deviation curve with respect to 
different values of SNR for noisy speech. The difference 
between clean phase and noisy phase is considered as phase 
difference and standard deviation of phase difference is plot-
ted w. r. t. different values of SNR for noisy speech. From 
Fig. 1 it is clear that as SNR value decreases the phase devia-
tion between clean phase and noisy phase increases and it 
will degrade speech quality. Moreover, Vary and Eurasip 
(1985) also proved the importance of phase in low SNR 
environment. Phase information is one of the important fac-
tor in human speech recognition and human ears are sensi-
tive to small phase distortions or global spectral shifts in 
low SNR environment. Therefore this article presents DNN-
based regression model to estimate clean amplitude and 
clean phase for reconstruction of speech signal to improve 
the quality and intelligibility for single channel at low SNR. 
The obtained result are compared with Xu et al. (2015) 
and it shows good improvement in its evaluation metrics 
and it is proved to be a good speech enhancer to any noise 
environments.

DNN is a member of feed forward neural network with 
many hidden layers. It has shown its excellent learning per-
formance in many applications like pattern recognition, 
speech recognition, speech enhancement and voice analy-
sis (Deng 2012) etc. Compared to shallow neural networks 
(SNNs) deep architecture has robust feature extraction 
capability and better learning ability i.e. ability to establish 
relationship between noisy speech and clean speech (LeCun 
et al. 2015). Earlier speech enhancement methods (Kamath 
and Loizou 2002; Ephraim and Malah 1984, 1985; Sca-
lart et al. 1996; Cohen 2003; Surendran and Kumar 2015; 
Bouzid et al. 2016) uses Mel Frequency Cepstral Co-effi-
cient and Linear Predictive Coding co-efficient as speech 
features, while reconstructing speech signal from estimated 
samples approximation models has been used but this leads 
to reduce in speech quality and intelligibility (Chazan et al. 
2000). Feature selection in neural network based algorithm 

is very important and if features like Mel Frequency Cepstral 
Co-efficient or Linear Predictive Coding are used than it 
causes reduction in quality and intelligibility while recon-
structing speech signal so in this proposed regression model 
direct log amplitude and phase values is used to reduce the 
speech reconstruction loss hence the overall speech quality 
and intelligibility improves (Xu et al. 2015).

Figure 2 shows typical architecture of DNN, it has N 
number of inputs (xn), M number of outputs (ym) and l num-
ber of hidden layers, though in the literature different types 
of DNN such as Deep Auto encoder (Hinton and Salakhut-
dinov 2006), Recurrent Neural Network (Graves et al. 2013), 
Long Short Term Memory (Hochreiter and Schmidhuber 
1997) and Deep Belief Network (DBN) (Lee et al. 2009) etc. 
are reported, in this article DBN is considered.

Deep Belief Network (DBN) is a generative neural net-
work model with deep architecture introduced by Hinton and 
Salakhutdinov (2006) along with a greedy layer wise learning 
algorithm. DBNs are built with stacked probabilistic model 
called Restricted Boltzmann Machine (RBM) (Bengio et al. 
2009). A RBM is a two layer neural network in which inputs 
are connected stochastically with outputs and having symmet-
rical weighted connections. The training of DBN based regres-
sion model has been performed in two stages. First stage is 
unsupervised pre-training and second stage is supervised fine 
tuning. Pre-training is performed in deep network to avoid get-
ting stuck in local minima of DBN. Discriminative fine-tuning 
of DBN is performed by adding a final layer of variables that 
represent the desired output and using back propagation Sto-
chastic Gradient Descent (SGD) algorithm (Bottou 2010). The 
back propagation SGD algorithm with MMSE based objective 
function between the logarithm of noisy absolute values to 
logarithm of clean absolute values are adapted to train DBN 
(Xu et al. 2015) and similarly for phase the DBN regression 

Fig. 1  Variation of phase with respect to SNR for noisy speech

Fig. 2  Typical architecture of deep neural network



285International Journal of Speech Technology (2019) 22:283–292 

1 3

model is trained with noisy phase as input and clean phase as 
output.

The paper is organized as follows: Sect. 2 discusses pro-
posed method, in Sect. 3 experimental result and analysis 
are explained, and at the end in Sect. 4 conclusion and future 
scope is presented.

2  Speech enhancement with phase 
estimation

Let x(n) is clean speech signal and d(n) is noise signal, then 
noisy signal y(n) is represented as y(n) = x(n) + d(n), where, 
n is time index. Speech is assumed to be constant during short 
period of time (20–50 ms). Speech features are generated by 
applying Short Time Fourier Transform to the noisy speech 
signal which results in a complex values and then complex 
values of the noisy signal are obtained which are denoted 
by Yc(k, l) = Xc(k, l) + Dc(k, l), where Y(k,l) = |Yc(k, l)|, 
X(k,l) = |Xc(k, l)|, D(k,l) = |Dc(k, l)| are the amplitude spec-
tra for noisy signal, clean and noise speech respectively, while 
�X(k, l) = ∠Xc(k, l), �Y (k, l) = ∠Yc(k, l), �D(k, l) = ∠Dc(k, l) 
are phase angles of clean, noisy and noise speech signal 
respectively. Each sample of the complex number is expressed 
in terms of magnitude and phase value as shown below

(1)|Xc| =
√

X2
r
+ X2

i

(2)�X = tan−1
Xi

Xr

where Xr, Xi is real and imaginary parts of speech sample 
respectively. The proposed algorithm framework is shown 
in Fig. 3. DBN based regression model is adapted to map 
between clean and noisy speech sample. The system is 
looked in two stages i.e. training stage and enhancement 
stage. The feature extracted from noisy speech signal for 
magnitude training is logarithm of the absolute amplitude 
whereas feature extracted from noisy speech signal for train-
ing of phase is linear phase. The estimation of amplitude and 
phase of speech signal are performed by using two similar 
type of DNN architecture and architectures are pre-trained 
using Bernouli–Bernouli RBM. The RBMs are stacked-up 
to produce multi layered structure and they are trained layer-
by-layer in an unsupervised greedy fashion to maximize the 
likelihood over training samples. To improve the conver-
gence rate, the SGD based back-propagation algorithm is 
used (Bottou 2010). The noisy speech is considered as input 
signal for DNN which is normalized so that the DNN is 
prevented from entering into saturation region.

Figure 3 illustrate block diagram of proposed speech 
enhancement method which has two stages i.e. training 
stage and enhancement stage. In training stage both magni-
tude training and phase training was performed simultane-
ously with the help of two similar type of DNNs. Training 
data were prepared using clean and noisy speech corpus 
and speech features are generated for both DNN’s training 
(magnitude training and phase training) simultaneously. 
The feature extraction procedure is same at training and 
enhancement stages. Prepared noisy speech corpus were 
downsampled to 8 kHz and it is applied to pre-emphasis 
block which will enhance high frequency components and 
the resulting signal was given for framing. Framing of signal 

Fig. 3  Block diagram of proposed DNN based speech enhancement algorithm for low SNR speech signal with DNN estimated phase
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has been performed by multiplying original signal with han-
ning window of 25 ms width and the resulted frame con-
sist of 200 samples further framing losses can overcome by 
50% (i.e.100 samples) overlapping of frame size. Suppose 
a signal has S number of sample points and further has a 
window size of m with an overlapping of d sample points 
then corresponding number of frames F is given by Eq. 3 
(Mukherjee et al. 2018).

Short Time Fourier Transform is applied to the framed data 
and which result in complex data, further speech features 
are extracted from complex data i.e. logarithmic amplitude 
data and phase data. It is observed that phase shows odd 
symmetry and magnitude shows even symmetry so the half 
part of each data is rid of, the final resulted features used for 
training of respective DNNs.

Proposed algorithm was trained using SGD based back 
propagation algorithm and 50 inputs are considered for each 
epoch whereas batch size was kept at 100. The same archi-
tecture is used for both DNN-based amplitude regression 
model and DNN-based phase regression model. In DBN 
model hidden layers have sigmoid type activation function 
and output layer has ReLU type activation function (He et al. 
2015).

In this work the baseline system mentioned in Xu et al. 
(2015) is used as regression model, it has three hidden layer 
and each layer consist of 500 neurons. Initialization of 
weights and biases has been done during pre-training with 
learning rate of 0.01 after that greedy layer unsupervised 
training was performed. Then back propagation of error 
derivatives are employed to fine tune the weights for optimal 
reconstruction of DBN. Output of DBN is calculated using 
following equation:

While training DBN the error function is given by fol-
lowing equation:

where Er is mean square error, Ŷn(V , b) indicate estimated 
value at sample index n, Y represent reference value at sam-
ple index n, X represents input samples, H represent activa-
tion function and N is mini batch size, for each mini batch 
weights are updated, t be number of hidden layer, for tth 
layer iterative equation is given by following equation:

(3)F =

⌈
S − m

d
+ 1

⌉

(4)�̂n = H(Xn,V
t

k
) + bn

(5)�r =
1

N

N∑

n=1

‖‖‖�̂n(V , b) − �
‖‖‖
2

where � is the learning rate, � is the momentum, k is weight 
decay coefficient, L represent total number of hidden lay-
ers. During training the DNN will learn non-linear mapping 
between the noisy speech and clean speech, no assumptions 
are made about the feature selection from noisy speech to 
the clean speech. It will automatically learn the complicated 
relationship to separate clean speech from the noisy signals 
given the sufficient training sets. To improve the generali-
zation capability of DNN dropout training is used, drop-
out mechanism omits 20% of neurons in each layer for each 
back propagation step which is known as model averaging 
to avoid the over fitting problem. Drop out may decrease 
performance but it will improve the robustness in non-sta-
tionary training data (Hinton and Salakhutdinov 2006).

In enhancement stage, trained DNN-based regression 
model was tested with noisy speech corpus to predict clean 
speech features i.e. logarithmic amplitude feature and 
phase feature. Furthermore real and imaginary part of esti-
mated complex sample value is calculated using following 
equations:

where X̂, �̂� are estimated amplitude and estimated phase 
respectively. The calculated real and imaginary values are 
converted into complex samples. The Inverse Short Time 
Fourier Transform is applied on complex samples to obtain 
an overlapped version of estimated/reconstructed speech 
signal and finally original signal is reconstructed using add 
and overlap method.

3  Objective evaluation

3.1  Datasets

The speech corpus is prepared by adding noise data with 
clean speech data at different SNR levels. Noise data was 
taken from Aurora2 database. Noise signals are selected to 
represent the most probable application scenarios for tel-
ecommunication terminals the framework was prepared as 
a contribution to the ETSI STQ-AURORA DSR Working 
Group (Pearce et al. 2000). Clean speech data was taken 
from TIMIT database which contains ten sentences spoken 

(6)
Δ(�t

n+1
, �t

n+1
) = − �

��r

�(�t
n
, �t

n
)
− k�(�t

n
, �t

n
)

+ �Δ(�t
n
, �t

n
) for 1 ≤ t ≤ L + 1

(7)Xr =
|||X̂
|||cos𝜙x

(8)Xi =
|||X̂
|||sin𝜙x
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by each of 630 speakers from eight major dialect regions of 
the United States. 70% of the speakers are male and 30% are 
female. Each speech and noise signals are sample down to 
8 kHz (Garofolo et al. 1988). In this experiment 50 types of 
real time noise signal are considered for training and clean 
speech of 150 randomly chosen utterances (which have both 
male and female utterances) are considered for preparing the 
multi-condition training data set. Clean speech of 150 clean 
utterances are added to 50 type of noises at different levels 
i.e. SNR level varying from − 25 to + 25 dB with a step size 
of 5 dB. Total speech corpus becomes 82,500 utterances and 
each utterance has an average of 2 s, total speech corpus is 
divided into training set and validation set respectively. The 
training set has 80% of prepared speech corpus and valida-
tion set has 20% of speech data. In enhancement stage for 
evaluation of proposed algorithm clean speech is added to 
car, restaurant, factory, airport and babble noises at differ-
ent levels such as − 25 to + 25 dB with a step size of 5 dB. 
Noisy speech data set was prepared with MATLAB soft-
ware (Brainard and Vision 1997) and DNN-based regression 
model is implemented in python.

3.2  Performance parameters

Performance of proposed speech enhancement algorithm has 
been evaluated in two ways viz. speech quality and speech 
intelligibility. In this experiment speech quality measures 
considered are SNR (Steeneken and Houtgast 1980), seg-
mental SNR (SNRseg) (Loizou 2013), frequency-weighted 
segmental SNR (fwSNRseg) (Hu and Loizou 2008), Log-
Likelihood Ratio (LLR), Cepstral mean (Hansen and Pellom 
1998), Weighted Spectral Slope (WSS) (Klatt 1982), Com-
posite Objective Measure (COM) (Hu and Loizou 2008) 
and Perceptual Evaluation of Speech Quality (PESQ) (Rix 
et al. 2001) whereas speech intelligibility is measured using 
Short Time Objective Intelligibility (STOI) measure. In this 
work speech quality and musical noise of noisy speech was 
observed in low SNR environments.

3.3  Results and discussion

PESQ is highly correlated measurement proposed by ITU-T 
P.835 standards, it measures Mean Opinion Score (MOS), 
PESQ produces measured value in the range between − 1 
and 4.5, where, the maximum value 4.5 indicate best quality 
and − 1 indicate worst quality. Figures 4 and 5 shows the 
PESQ result for babble and restaurant noise respectively, bar 
charts are plotted at − 15 dB to 0 dB at a step size of 5 dB for 
low SNR and these results are plotted for proposed method, 
regression model with noisy phase, amplitude based regres-
sion model and logMMSE. It is found that for babble noise 
proposed method shows an improved average PESQ value 

of 9% compared to regression model with noisy phase, 190% 
compared to amplitude based regression model and 49% 
compared to logMMSE model. Similarly for restaurant noise 
improved average PESQ value of 7% compared to regression 
model with noisy phase, 185% compared to amplitude based 
regression model and 25% compared to logMMSE model.

COM is a speech quality measure and it consists of 
three ITU-T P.835 standard measures like signal distortion 
(Csd), noise distortion (Cnd), and overall signal quality 
(Covl). Any one of COM (Cx) is evaluated by

(9)Cx = �0 +

5∑

k=1

�kOk

Fig. 4  Average PESQ results using different SNR lavels for babble 
noise

Fig. 5  Average PESQ results using different SNR levels for restaurant 
noise
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where Ok is the individual objective measure and �k is the 
corresponding regression coefficient computed by multi 
variable adaptive regression splines technique (Hu and 
Loizou 2008). The regression coefficients are given in 
Table 1 (Samui et al. 2016) which shows the signal dis-
tortion (Csd), background distortion (Cnd) and overall 
signal quality (Covl), the detailed result of COM is given 
in Table 2, these result obtained for Factory, Restaurant, 
Car, Airport and Babble noise at different SNR levels i.e. 
0 dB,− 5 dB, − 10 dB and − 15dB. The proposed algorithm 
is compared with regression model with noisy phase and 
proposed method shows improvement in an average Covl 
of 12% for factory noise, 8% for restaurant noise, 13% for 
car noise, 10% for airport noise and 14% for Babble noise 
respectively.

Table 3 shows result of speech quality measures like Fre-
quency weighted Segmental Signal to Noise Ratio (fwS-
NRseg), Cepstral distance measure and WSS respectively. 

fwSNRseg is extended version of SNRseg in frequency 
domain and it is given by

where Bj is the weight placed on the jth frequency band, 
K is the number of bands, M is the total number of frames 
in the signal, F(m,j) is the filter-bank amplitude (excitation 
spectrum) of the clean signal in the jth frequency band at 
the mth frame, and F̂(m, j) is the filter-bank amplitude of the 
enhanced signal in the same band. In Table 3 proposed fwS-
NRseg measurements are compared with regression model 
with noisy phase and amplitude based regression algorithm. 
Result shows proposed method improves average fwSNRseg 
of 13% compared to regression model with noisy phase and 
340% compared to amplitude based regression algorithm. 

(10)fwSNRseg =
10

M

M−1�

m=0

∑K

j=1
Bjlog10

�
F2(m,j)

(F(m,j)−F̂(m,j))2

�

∑K

j=1
Bj

Table 1  Regression coefficients used for COM evaluation

Composite measure metric �
0

IS(�
1
) PESQ(�

2
) CEP(�

3
) LLR(�

4
) WSS(�

5
) SNRseg(�

6
)

Signal distortion (Csd) 3.093 − 0.02 0.603 − 0.494 − 1.029 − 0.009 –
Background distortion (Cnd) 1.634 – 0.478 − 0.319 – − 0.007 0.063
Overall signal quality (Covl) 1.594 − 0.011 0.805 – − 0.512 − 0.007 –

Table 2  COM in various noises at low SNR levels

Noise type Input SNR (dB) Signal distortion Noise distortion Overall signal quality

Estimated phase Noisy phase Estimated phase Noisy phase Estimated phase Noisy phase

Factory 0 3.6904 3.3250 2.2396 2.0478 2.9877 2.6881
− 5 3.6788 3.3134 2.2227 2.0150 2.9764 2.6686

− 10 3.6511 3.3122 2.1955 2.0006 2.9456 2.6712
− 15 3.6629 3.3109 2.2056 2.0077 2.9645 2.6809

Restarant 0 3.6848 3.5131 2.2892 2.2034 2.9806 2.8435
− 5 3.6729 3.4306 2.2605 2.1419 2.9729 2.7771

− 10 3.6630 3.3535 2.2402 2.0822 2.9690 2.7034
− 15 3.6996 3.3401 2.2267 2.0657 2.9491 2.6923

Car 0 3.6781 3.5184 2.2761 2.1967 2.9859 2.8688
− 5 3.6650 3.4517 2.2503 2.1468 2.9749 2.8142

− 10 3.5795 3.2890 2.1745 2.0306 2.8632 2.6311
− 15 3.5760 3.1933 2.1695 1.9724 2.8574 2.5294

Airport 0 3.6151 3.3199 2.2197 2.0614 2.9080 2.6625
− 5 3.5424 3.2364 2.1528 2.0065 2.8182 2.5816

− 10 3.5254 3.1455 2.1364 1.9629 2.7999 2.4950
− 15 3.4746 3.0803 2.0917 1.9341 2.7333 2.4354

Babble 0 3.6800 3.2860 2.2470 2.0220 3.6800 3.2860
− 5 3.6459 3.2446 2.2169 2.0077 3.6459 3.2446

− 10 3.6486 3.1834 2.2188 1.9813 3.6486 3.1834
− 15 3.6574 3.1964 2.2271 1.9866 3.6574 3.1964
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Cepstral distance measure is distortion measure between 
input and output speech signal which is measured in fre-
quency domain and the Cepstral distance value is shown in 
following equation:

where y(k,t) and x(k,t) are input and output speech signal 
respectively and P is maximum number of coefficients. 
Table 3 shows results of Ceptral mean for different values 
of SNR, result shows proposed method improves mean value 
of Ceptral distance by 12% compared to regression model 
with noisy phase and 240% compared to amplitude based 
regression algorithm.

Weighted Spectral Slope (WSS) is a speech quality meas-
ure in frequency domain, WSS simulated result are shown 
in Table 3. Generally WSS value decreases as accuracy of 
the system increases, from the Table 3 it is observed that 
proposed method shows an improved performance of 27% 
compared to regression model with noisy phase and 310% 
compared to amplitude based regression algorithm.

The Log Likelihood Ratio (LLR) (Hu and Loizou 2008) 
is distance quality measure which is weakly correlated with 
noise reduction and strongly correlated with speech distor-
tion, LLR value increases as distortion increases, for distor-
tion-less speech low value of LLR is required, Table 4 shows 
LLR values it is observed that the LLR values for estimated 

(11)
Cep =

10

log10

�
2
∑P

i=1
{y(k, t) − x(k, t)}2

phase method show 22% improvement compared to noisy 
phase regression model and 320% compared to amplitude 
based regression algorithm.

Spectrogram of utterance “the birch canoe slid on the 
smooth planks” is shown in Fig. 6. English clean speech 
utterance is of 3s width and it is sampled at 8 kHz. The clean 
speech shown in Fig. 6a, noise audio of airport is shown in 
Fig. 6b, and mixture of both clean speech and airport noise 
at − 15 dB SNR shown in Fig. 6c. The enhanced speech 
has been obtained using logMMSE, noisy phase constructed 
regression model and proposed method, Fig. 6d shows spec-
trogram of logMMSE reconstructed speech signal, Fig. 6e 
shows noisy phase constructed speech spectrogram and 
Fig. 6f shows the proposed method speech spectrogram. 
From Fig. 6 it is observed that Fig. 6d, e (i.e. logMMSE 
and noisy phase reconstructed spectrogram) shows high 
frequency noisy components after reconstruction whereas 
proposed method shows (i.e. Fig. 6f) better filtering of 
high frequency components so logMMSE and noisy phase 
regression model may not filter high frequency components 
which are responsible for musical noise and musical noise is 
highlighted in spectrogram with circles, whereas proposed 
algorithm filtered high frequency components hence the 
proposed method reduces musical noise compare to other 
two methods.

The proposed algorithm is evaluated with speech quality 
measure like PESQ, COM, WSS and LLR. The result of pro-
posed method compared with noisy phase based regression 
model, without phase based regression model (amplitude 

Table 4  LLR measure values Noise type Input SNR (dB) Estimated phase Noisy phase Without phase

Factory 0 0.4456 0.5604 1.6846
− 5 0.4508 0.5714 1.6846

− 10 0.4552 0.5743 1.6847
− 15 0.4586 0.5850 1.6844

Restarant 0 0.4405 0.5108 1.6807
− 5 0.4494 0.5480 1.6797

− 10 0.4577 0.5730 1.6820
− 15 0.4546 0.5685 1.6815

Car 0 0.4621 0.6549 1.6844
− 5 0.4686 0.5582 1.6843

− 10 0.4688 0.5844 1.6854
− 15 0.4661 0.6029 1.6865

Airport 0 0.4629 0.5644 1.6770
− 5 0.4701 0.5931 1.6792

− 10 0.4736 0.6252 1.6794
− 15 0.4753 0.6549 1.6777

Babble 0 0.4600 0.5964 1.6888
− 5 0.4620 0.6167 1.6909

− 10 0.4677 0.6338 1.6892
− 15 0.4689 0.6266 1.6879
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based model) and logMMSE model and the comparative 
result shows good improvement interms quality measure for 
proposed method. Among all compared methods proposed 
method shows constant improvement for all SNR values 
whereas remaining methods shows sharp falloff in speech 
quality as SNR value decreases. The proposed method shows 
good improvement over amplitude based regression model 
interms of all parameters. Further it can be found that the 
improvement between phase estimated regression method 
and noisy phase regression method is less as SNR value 
of noisy speech increases (shown in Fig. 5). Spectra illus-
trated in Fig. 6f which is obtained from the proposed method 
shows the removal of musical noise compared with noisy 
phase regression model as shown in Fig. 6d and logMMSE 
model shown in Fig. 6c respectevely.

4  Conclusion and future scope

In this contribution we presented importance of phase esti-
mation in low SNR environment for single channel noisy 
speech signal. DNN-based regression model used for estima-
tion of clean phase and clean logarithm of amplitude in low 
SNR environment and it is proved that the importance of 
phase estimation in low SNR (negative SNR) environment. 
Proposed method compared with noisy phase regression 
model, amplitude based regression model and logMMSE 

model and it is observed that proposed method shows 
improved result. A clear distinction in the reconstructed 
speech signal is observed in terms of musical noise along 
with improvement in various objective measures such as 
PESQ, LLR, WSS, fwSNRseg and Cep-mean.

In future the proposed method may be implemented with 
live data on Field Programmable Gate Array so that it can be 
tested in real time environment. The live data can be handled 
by active learning (Bouguelia et al. 2018).
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