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Abstract
In last 10 years, several noise reduction (NR) algorithms have been proposed to be combined with the blind source separa-
tion techniques to separate speech and noise signals from blind noisy observations. More often, techniques use voice activity 
detector (VAD) systems for the optimal solution. In this paper, we propose a new backward blind source separation (BBSS) 
structure that uses the input correlation properties to provide: (i) high convergence rates and good tracking capabilities, since 
the acoustic environments imply long and time-variant noise paths, and (ii) low misalignment and robustness against different 
noise type variations and double-talk. The proposed algorithm has an automatic behavior to enhance noisy speech signals, 
and do not need any VAD systems to separate speech and noise signals. The obtained results in terms of several objective 
criteria show the good performance properties of the proposed algorithm in comparison with state-of-the-art algorithms.

Keywords Speech enhancement · Noise reduction · Voice activity detector · BSS · Forward · Backward

1 Introduction

Speech enhancement and acoustic noise reductions applica-
tions have been active research fields in the last four decades. 
The existing speech enhancement techniques aim to improve 
speech quality by using various algorithms to provide a good 
convergence speed performance and fast tracking capabili-
ties, since the acoustic environments imply very long and 
time-variant echo path. A plethora of techniques and algo-
rithms using speech and noise characteristics can be found 
in the literature (Djendi et al. 2013; Loizou and Kim 2011; 
Loizou 2013).

Generally the speech enhancement techniques or algo-
rithms can be categorized as single channel, dual channel or 
multichannel enhancement techniques (Djendi et al. 2009; 
Ghosh and Tsiartas 2011; Sandoval-Ibarra et al. 2016). 
Single channel enhancement techniques are used in the 
situations where only one recorder microphone is available. 

The single channel speech enhancement techniques still an 
important field of research because of their simple reali-
zation and effectiveness. The single channel is particularly 
valuable in mobile communication request, where only a 
single microphone is used due to cost and size constraints 
(Sandoval-Ibarra et al. 2016). In recent times, several single 
channel algorithms have been proposed in literature.

Recently in (Upadhyay 2016; Upadhyay and Karmakar 
2015), the problem of single channel speech enhancement in 
stationary environments is discussed and it is proposed the 
Wiener filtering combined with recursive noise estimation 
algorithms to enhance speech signals. In Roy et al. (2016), 
the authors proposed a single channel speech enhancement 
algorithm using a subband iterative Kalman filter. A wavelet 
filter bank is first used to decompose the noise corrupted 
speech into a number of subbands then it is processed by an 
efficient Kalman filter. In Lee et al. (2017), Cho et al. (2016), 
the authors proposed new single-channel speech enhance-
ment methods using reconstructive using nonnegative 
matrix factorization (NMF) with spectro-temporal speech 
presence probabilities, and outlier detection are also pro-
posed. In order to improve the single channel solution to the 
problem of speech enhancement, several dual channel and 
multichannel enhancement techniques have been proposed 
in literature. For example, several papers have been proposed 
for dual channel speech enhancement techniques based on 
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the combination between the blind source separation and 
adaptive filters (Djendi 2010; Ikeda and Sugiyama 1999; 
Al-Kindi and Dunlop 1989; Gerven and Compernolle 1995). 
The same dual microphones techniques were used to propose 
several two-channel or dual adaptive filter that work only 
on blind noisy speech signals (Sato et al. 2005; Ghribi et al. 
2016). We can also cite the machine learning and the active 
learning techniques and their use in the domain of noisy 
signal classification and enhancement as given in (Vajda and 
Santosh 2017; Bouguelia et al. 2018; Zhang et al. 2015). 
Another direction of research that allows enhancing the 
speech signal from noisy observations is direction of arrival 
estimation and localization when multi-speech sources are 
available (Dey and Ashour 2018a, b, c).

In the approach where multi-channel technique is used for 
speech enhancement techniques, we can find several tech-
nique that are adaptive and not adaptive and all of them aim 
to improve the single and dual microphones techniques for 
the same application, i.e. speech enhancement and acous-
tic noise reduction application. In Marro et al. (1998), the 
authors concluded that in teleconferencing systems, the use 
of hands-free sound pick-up reduces speech quality. This 
is due to ambient noise, acoustic echo, and the reverbera-
tion produced by the acoustical environment. The authors 
of this paper presented a theoretical analysis of noise reduc-
tion and dereverberation algorithms based on a microphone 
array combined with a Wiener post-filter. It is shown that the 
transfer function of the post-filter depends on the input sig-
nal-to-noise ratio (SNR) and on the noise reduction yielded 
by the array. The use of a directivity-controlled array instead 
of a conventional beam-former was proposed to improve 
the performance of the whole system. Several papers based 
on the multichannel approach were proposed accordingly. 
Therefore, as multichannel enhancement techniques employ 
microphone arrays and take advantage of availability of mul-
tiple signal inputs to our system, to make possible the use of 
phase alignment to reject the undesired noise components 
(Meyer 1997; Lotter et al. 2003; Wang et al. 2016; Mildner 
and Goetze 2006; Senthamizh Selvi et al. 2017; Qingning 
and Waleed 2006).

In this paper, we focus our interest on the dual channel 
approach and we propose a new efficient crosstalk back-
ward blind source separation (BSS) resistant algorithm for 
automatic blind speech enhancement application. The pro-
posed algorithm is a self-controlled system for automatic 
speech enhancement application and doesn’t need of any 
voice activity detector to separate speech from very noisy 
observations.

This paper is organized as follows: after the introduc-
tion which is presented in Sect. 1, we present in Sect. 2, 
the noisy observation model that we adopt in our work. 
In Sect. 3, we give the principle of backward blind source 
separation (BSS) structure and two known backward 

algorithms that are combined with this structure. In 
Sect. 4, we give the mathematical formulation of the pro-
posed crosstalk backward blind source separation (BSS) 
resistant algorithm for automatic blind speech enhance-
ment application and its theoretical analysis. In Sect. 5, we 
show the simulation results of the proposed algorithm in 
terms of several objective criteria, and finally, in Sect. 6, 
we conclude our work.

2  Noisy observations model

In this work, we consider two-microphone configurations 
to make available two noisy observations. The two noisy 
observations are composed by one speech source signal 
and one punctual noise. We assume that the speech source 
signal us placed close to the first microphone, however, 
the second source of noise is located close to the second 
microphone (see Fig. 1). The noisy observations of this 
model are given by the following relations (Ghosh and Tsi-
artas 2011; Djendi 2010; Gerven and Compernolle 1995):

The symbol “*” stands for the linear convolution opera-
tion. The parameters h12(n) and h21(n) are the cross-cou-
pling effects between the two-channel; s(n) and b(n) are 
two sources of speech and noise respectively. Note that 
the sources signals ( s(n) , b(n) ), and the real filters ( h12(n) , 
h21(n) ) are unknown parameters, and only observed sig-
nals m1(n) and m2(n) are available. In a BSS algorithm, no 
a priori information are available in the separation pro-
cess. In practice, we often use the backward BSS (BBSS) 
structure to retrieve the speech signal from only noisy 
observations. This BBSS structure is well described in 
next section.

(1)m1(n) = s(n) + h21(n) ∗ b(n)

(2)m2(n) = b(n) + h12(n) ∗ s(n)

Fig. 1  The simplified mixture model, s(n) and b(n) are the speech sig-
nal and the noise respectively. h

12(n) and h
21(n) represent the impulse 

responses between the channels
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3  Backward BSS (BBSS) structure

The backward blind source separation (BBSS) structure that 
we consider in this paper is shown by Fig. 2. The noisy input 
signals of this structure are m1(n) and m2(n) . The output s1(n) 
and s2(n) of this BSS structure are given by the following equa-
tions (Djendi et al. 2013; Djendi 2010; Gerven and Comper-
nolle 1995):

Inserting (1) and (2) in (3) and (4) respectively, we get the 
following outputs signals:

To get noise signal at the output s2(n) , and the speech sig-
nal at the output s1(n) , we have to satisfied wopt

21
= h21 and 

w
opt

12
= h12 ). In this case, the outputs of the BBSS structure 

become as follows s1(n) = s(n) and s2(n) = b(n)(Djendi et al. 
2013).

3.1  Classical backward BSS (CBBSS) two‑channel 
algorithm

In (Gerven and Van Compernolle 1995), the classical back-
ward BSS (CBBSS) two-channel algorithm is used to adjust 
the coefficients of the two separation filters w12(n) and w21(n) . 
The update relations, in the minimum mean squared error 

(3)s1(n) = m1(n) − w21(n) ∗ s2(n)

(4)s2(n) = m2(n) − w12(n) ∗ s1(n)

(5)

s
1(n) =

1

�(n) − w
12(n) ∗ w

12(n)
∗
(

s(n) ∗
(

�(n) − h
12(n)

∗ w
21(n)

)

+ b(n) ∗
(

h
21(n) − w

21(n)
))

(6)

s
2(n) =

1

�(n) − w
12(n) ∗ w

12(n)
∗
(

b(n) ∗
(

�(n) − h
21(n)

∗ w
12(n)

)

+ s(n) ∗
(

h
12(n) − w

12(n)
))

(MMSE) sense, of both adaptive filters w12(n) and w21(n) are 
given in a vector form as follows:

where

a n d  �1(n) =
[

s1(n), s1(n-1), ..., s1(n-L + 1)
]T  ,  �

2
(n) =

[

s
2(n), s2(n-1), ..., s2(n-L + 1)

]T are vectors that contain the 
last L sample of the output s1(n) and s2(n) respectively. �12 
and �21 are respectively the step sizes of the two adaptive 
filters w12(n) and w21(n) , respectively. To ensure stability 
and convergence of the two-channel CBBSS algorithm 
toward optimal solutions, the two step-sizes must be selected 
between 0 and 2 (Djendi 2010; Gerven and Van Comper-
nolle 1995).

A normalized version of this algorithm is obtained by 
normalizing the step sizes of each adaptive algorithms 
by �T

1
(n) �1(n) and �T

2
(n) �2(n) of the two adaptive filters 

w12(n) and w21(n) , respectively. This algorithm allows to 
take more simple relation for the step-sizes 0 < �12 < 2 
and 0 < �21 < 2.

where �1 and �2 are two small constants introduced to avoid 
division by zero. The principle of the CBBSS algorithm 
is similar to the normalized least mean square (NLMS) 
algorithm in the dual case, this equivalence has been well 
shown and proven in (Gerven and Van Compernolle 1995). 
In Table 1, the CBBSS algorithm is summarized.

(7)�12(n) = �12(n − 1) + �12s2(n) �1(n)

(8)�21(n) = �21(n − 1) + �21s1(n) �2(n)

(9)s1(n) = m1(n) − �T
21
(n) �2(n − 1)

(10)s2(n) = m2(n) − �T
12
(n) �1(n)

(11)�21(n) = �21(n − 1) +
�21

�T
2
(n) �2(n) + �1

s1(n) �2(n)

(12)�12(n) = �12(n − 1) +
�12

�T
1
(n) �1(n) + �2

s2(n) �1(n)

Fig. 2  Backward blind source 
separation BBSS structure 
[Left: simplified mixing model], 
[Right: backward blind source 
separation (BSS) structure]
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4  Proposed robust backward BSS 
crosstalk‑resistant algorithm

4.1  Motivation

In the classical use of the BBSS algorithm, the separating 
adaptive filters w12(n) and w21(n) have to converge towards 
the optimal solutions h12(n) and h21(n) , respectively, to 
separate the speech signal and the noise components from 
the noisy observation  m1(n) and  m2(n) (Djendi et al. 2013; 
Ghosh and Tsiartas 2011; Djendi 2010). This principle is 
possible thanks to the use of a voice activity detector (VAD) 
system. The VAD system allows extracting the source sig-
nals from the noisy observation with less distortion (Górriz 
et al. 2010; Mak 2014; Mukherjee et al. 2018a, b). Usually, 
the adaptive filters w12(n) and w21(n) are updated alterna-
tively, i.e. if we want to get the speech signal at the output 
 s1(n), we have to update the adaptive filter w21(n) at only 
noise presence periods, however the opposite configuration 
must be adopted for the second adaptive filter w12(n) . In this 
paper, we propose a new automatic BBSS algorithm that 
update the cross-filters w12(n) and w21(n) automatically and 
alternatively without need of any VAD system, and is robust 
for crosstalk presence components.

4.2  Derivation of the proposed algorithm

The mathematic derivation of the proposed algorithm is 
presented along this section. We recall that the suggested 
technique principle is based on the use of the intermittent 
property of the speech signal to adjust the adaptive filter 
coefficients given by relations (11) and (12) (Djendi et al. 
2013). For this reason, we can start from the Newton recur-
rence (Sayed 2003; Zoulikha and Djendi 2016; Djendi and 
Zoulikha 2014) applied to the backward blind source separa-
tion structure that is given as follows (see Fig. 3):

where ��2
(n) represents the autocorrelation matrix of the 

output vector k2(n). It is given by:

and �s1�2
(n) the cross-correlation vector between the output 

 s1(n) and the output vector k2(n). It is given by:

(13)�21(n+1) = �21(n)+�21(n)
�s1 �2 − ��2

�21(n)

�1(n) � + ��2
(n)

(14)��2
(n) = E

[

�2(n) �
T
2
(n)

]

(15)�s1�2(n) = E
[

s1(n) �2(n)
]

Table 1  Summary of the 
CBBSS algorithm (16)

CBBSS algorithm steps Parameters

Initialization w12(0) = [0]T, w21(0) = [0]T, k1(0) = [0]T, k2(0) = [0]T

�
12

= �
21

= 0.98 , �
1
= �

2
= 0.001

A priori filtering errors
Construction of �

1(n) and �
2(n)

s
1(n) = m

1(n) − �T
21
(n) �2(n − 1)

�
1(n) =

[

s
1(n), s1(n-1), ..., s1(n-L + 1)

]T

s
2(n) = m

2(n) − �T
12
(n) �1(n)

�
2
(n) =

[

s
2(n), s2(n-1), ..., s2(n-L + 1)

]T

Cross-filtering updates �
21(n) = �

21(n − 1) +
�
21

�T
2
(n) �

2(n)+�1
s
1(n) �2(n)

�
12(n) = �

12(n − 1) +
�
12

�T
1
(n) �

1(n)+�2
s
2(n) �1(n)

Fig. 3  Proposed algorithm. The 
new parameters  rs1m2(n) and 
 rs2m1(n) are the cross-correla-
tions between the outputs  s1(n) 
and  s2(n) and the mixing signals 
 m1(n) and  m2(n) respectively

.

.

.

.

.

.
rs1m2(n)

s2(n)

s1(n)m1(n)

m2(n)

+

w21(n)

w12(n)

+

−

− rs2m1(n)
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and � is the N × N identity matrix ; and �1(n) is a small regu-
larization scalar. The step size µ21 is a control parameter of 
relation (13) to ensure stability and convergence. The same 
thing can be done to relation (12) as follows:

where ��1(n) is the autocorrelation matrix of the out-
put vector k1(n), it is given by ��1

(n) = E
[

�1(n) �
T
1
(n)

]

 . 
the vector �s2�1

 is the cross-correlation vector between 
the output  s2(n) and the output vector k1(n), it is given by 
�s2�1(n) = E

[

s2(n) �1(n)
]

 . �2(n) is a small regularization sca-
lar. The step size µ12 is a control parameter of relation (16) 
to ensure stability and convergence.

In general case, the parameters �1(n) � and �2(n) � are intro-
duced in the Newton recursion of (13) and (16) to allow regu-
larization of the two-channel algorithm. However, as these 
two regularization parameter are constant, the behavior of the 
Newton algorithm applied to (13) and (16) is similar in the 
transient and permanent regime. The idea is how to change 
these parameters to get enhancement in either transient or 
permanent regime. Enhancement of the Newton algorithm 
in the transient regime is got by improving the convergence 
speed of the algorithm, hence enhancing the permanent 
regime is to make the final mean square error (MSE) small, 
i.e. we want to get a blind two-channel algorithm that has a 
faster convergence speed and small final MSE.

In this paper we propose to use the cross-correlation vec-
tor of the filtering error  s1(n) and the noisy observation 
 p2(n) instead of �1(n) � in (13), and the cross-correlation 
vector of the filtering error  s2(n) and the noisy observation 
 p1(n) instead of �2(n) � in (16). These two modifications 

(16)�12(n+1)=�12(n)+�12(n)
�s2 �1 − ��1

�12(n)

�2(n) � + ��1
(n)

where �s1�2(n) is the cross-correlation vector of the output 
signal  s1(n) and the noisy observation vector m2(n), and 
�s2�1(n) is the cross-correlation vector computed between 
the output signal  s2(n) and the noisy observation vector 
m1(n). They are given as follows:

and

where L is a sample number of the cross-correlation vector 
norm. In the following, we will drive an automatic and less 
complex algorithm. We will start by relation (17) then we 
make an extrapolation for relation (18).

Step 1: In first, we introduce a parameter �1 that allows con-
trolling the contribution of ‖

‖

rs1�2(n)
‖

‖

2 in the regulariza-
tion of (17). Also, we suppose ergodic and stochastic 
condition that allows to replace �s1�2

(n) and �s2�1(n) by 
their instantaneous values, i.e. �s1�2(n) =

[

s1(n) �2(n)
]

 
and �s2�1(n) =

[

s2(n) �1(n)
]

 . The new relation of w21(n) 
is given as follows:

Step 2: In the second step, in order to reduce the complexity 
of the algorithm (23), we aim to reduce the complexity of 
(23) by using the following matrix inverse lemma:

we make the following equality beteween the denomia-
tor of (23) and (24), we get:

(18)

�12(n+1) = �12(n) + �12(n)
�s2 �1 − ��1

(n) �12(n)
(

�2(n) +
‖

‖

rs2�1(n)
‖

‖

2
)

� + ��1
(n)

(19)�s1m2(n) = E
[

s1(k) �2(k − n)
]

(20)�s2m1(n) = E
[

s2(k) �1(k − n)
]

(21)‖

‖

�s1�2(n)
‖

‖

2
=

L−1
∑

k=0

|

|

rs1�2(n − k)|
|

2

(22)‖

‖

�s2�1(n)
‖

‖

2
=

L−1
∑

k=0

|

|

rs2�1(n − k)|
|

2

(23)�21(n+1) = �21(n) +
�21(n)

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

� +
(

1 − �1
)

�2(n) �
T
2
(n)

�2(n) s1(n)

(24)
[� + ���]

−1
= �−1 − �−1�

[

�−1 + ��−1�
]−1

��−1

(25)

[� + ���]-1=
[

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

� +
(

1 − �1
)

�2(n) �
T

2
(n)

]−1

allow to the Newton algorithm of relation (13) and (16) to 
be enhanced in the transient and permanent regimes. The 
new proposed solution of the automatic speech enhance-
ment by the BBSS algorithm is given by the following 
relation:

(17)

�21(n+1) = �21(n) + �21(n)
�s1 �2 − ��2

(n) �21(n)
(

�1(n) +
‖

‖

rs1�2(n)
‖

‖

2
)

� + ��2
(n)
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  If we put � = �1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

� , � = �2(n) , 

� =
(

1 − �1
)

 , and � = �T
2
(n) , and after applying (24), 

we get the following relation:

Step 3: More simplification of (26) can be obtained. We 
multiply both sides of (26) by �2(n) and after some mod-
ification and rearrangements we get the following simple 
relation:

Step 4: If we replace relation (27) in (23) we get the final 
update relation of the filter w21(n):

  In our proposed algorithm, we expoit the symetric 
property of the backward blind source separation struc-
ture to conclude the derivation of the update relation of 
the adaptive filter w12(n) and we get:

(26)

[

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

� +
(

1 − �1
)

�2(n)�
T

2
(n)

]−1

=

[

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

�
]−1

−

[

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

�
]−1

�2(n)

×

[

(

1 − �1
)−1

+ �T
2
(n)

[

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

� �2(n)
]−1

]−1

× �T
2
(n)

[

�1

(

�1(n) +
‖

‖

�s1�2(n)
‖

‖

2
)

�
]−1

(27)

[

�
1

(

�
1(n) +

‖

‖

�
s1�2(n)

‖

‖

2
)

� +
(

1 − �
1

)

�
2(n) �

T

2
(n)

]−1

�
2
(n)

=
�
2
(n)

�
1

(

�
1(n) +

‖

‖

�
s1�2(n)

‖

‖

2
)

+
(

1 − �
1

)

‖

‖

�
2(n)

‖

‖

2

(28)

�
21(n+1) = �

21(n)

+
�
21(n)

�
1

(

�
1(n) +

‖

‖

�
s1�2(n)

‖

‖

2
)

+
(

1 − �
1

)

‖

‖

�
2(n)

‖

‖

2

�
2(n) s1(n)

where �1(n) and �2(n) are small positive constants �1 , 
�2 , �21(n) , and �12(n) are control parameters of the pro-
posed algorithm. These last parameters have to be finely 
selected to accomplish the best tradeoff between faster 
convergence speed and low final MSE. The proposed 
algorithm is summarized in Table 2.

4.3  Theoretical analysis of the proposed algorithm

In this analysis, we adopt a new notation of the proposed 
algorithm of relations (28) and (29). Hence, the new two-
channel update of the cross-adaptive filters �12(n) and �21(n) 
of the proposed algorithm can be rewritten as follows:

where the two new step-sizes ∇1 (n) and ∇2 (n) are given by 
the following relations:

(29)

�
12
(n+1) = �

12
(n)

+
�
12
(n)

�
2

(

�
2
(n) + ‖

‖

�
s2�1

(n)‖
‖

2
)

+
(
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(30)�21(n+1) = �21(n) + ∇1 (n) �2(n) s1(n)

(31)�12(n+1) = �12(n) + ∇2 (n) �1(n) s2(n)

(32)
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Table 2  The proposed 
algorithm [In this paper]

Proposed algorithm steps Parameters

Initialization w12(0)=[0]T, w21(0) = [0]T, k1(0) = [0]T, k2(0) = [0]T

�
21(n) = �

12(n) = 0.5, �
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1
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In order to analysis the behavior of the proposed algorithm, 
a particular attention is made to the step-sizes of relation (32) 
and (33). From relation (32), we can note that the step size 
∇1 (n) of the adaptive filter w21(n) is large when the cross-cor-
relation factor �s1�2(n) is small, i.e. the step size ∇1 (n) takes 
large values when the speech signal is absent, and gets small 
values in the opposite case. This configuration allows to the 
adaptive filter w21(n) to be adjusted in the speech absence peri-
ods and be frozen in the opposite situation. Furthermore, this 
automatic mechanism of adjusting the adaptive filter w21(n) 
allows to formulate an adaptive noise cancellation (ANC) sys-
tem with noise-only reference, and make possible to cancel the 
noise components at the output s1 (n).

In the other hand, an invert relation between the variation 
of the step-size ∇2 (n) and the cross-correlation factor �s2�1(n) 
is observed. i.e. the step size ∇2 (n) is large when �s2�1(n) 
takes small values in speech presence periods. This automatic 
mechanism allows to the adaptive filter w12(n) to be adjusted 
to suppress the speech signal at the output s2 (n) and to get 
the noise source components in the same output, i.e. s2 (n).

This automatic mechanism that makes an alternative 
update of the adaptive filters w21(n) and w12(n) , leads to a 
blind system separation of the speech and the noise compo-
nents at the outputs s1 (n) and s2 (n) without any priori infor-
mation about them, i.e. only the mixing signals are available 
at the input of the algorithm. A demonstration of these conclu-
sions and theoretical analysis will be given in the simulations 
part of (See Subsection 5.5).

5  Simulation results

In this section, we analyze the behavior of the proposed 
algorithm in comparison with two two-channel adaptive 
BSS-based algorithm, which are the classical BSS (CBBSS) 
algorithm (16), and the variable step-size backward source 
separation (VSS-BBSS) algorithm (Djendi and Zoulikha 
2014).

5.1  Description of the experimental model 
and the used signals

We have generated the simulated impulse responses by 
the model proposed in (Djendi 2010; Ikeda and Sugiy-
ama 1999; Al-Kindi and Dunlop 1989; Gerven and Van 
Compernolle 1995; Sato et al. 2005; Ghribi et al. 2016; 
Vajda and Santosh 2017; Bouguelia et al. 2018; Zhang 
et al. 2015; Dey and Ashour 2018a, b, c; Marro et al. 1998; 
Meyer 1997; Lotter et al. 2003; Wang et al. 2016; Mildner 
and Goetze 2006; Senthamizh Selvi et al. 2017; Qingn-
ing and Waleed 2006; Vlaj and Kačič 2012; Djendi et al. 
2006), i.e. h12(n) = �(n) + �1(n) and h21(n) = �(n) + �2 , 
where �(n) is the first sample of the impulse response that 
represents the direct acoustic path from each source to 
the cross-coupled microphone. �1 and �2 are exponen-
tially weighted tail that model the room effect (Djendi 
et al. 2006). Figure 4 shows an example of each impulse 
responses h12(n) (left of Fig. 4) and h21(n) (right of Fig. 4) 
that corresponds to spaced microphones; with a sampling 
period Ts = 125 µs, the corresponding reverberation time is 
30.8 ms, and the size of the impulse responses is L = 128 
(Djendi et al. 2006).

The speech and the noises signals are real, sampled at 
f s = 8 kHz , and obtained from AURORA database (Zue 
et al. 1990; Varga and Steeneken 1993; ITU-T 2003). The 
noises that we use are White noise, USASI (United State 
of America Standard Institute now ANSI), street, car and 
babble. The mixing signals m1(n) and m2(n) are generated 
for different input SNRs, i.e. − 6, 0, and 6 dB. We give an 
example of a speech signal, a noise and mixing ones m1(n) 
in Fig. 5. The input SNR is selected to be 0 dB at the two 
microphones, respectively.

5.2  Simulation parameters of the algorithms

In order to objectively compare our proposed algorithm 
against the performances of two other competitive ones, 

Fig. 4  Simulated impulse 
responses in the spaced micro-
phones case; [Left]: h

12(n) , 
[Right]: h

21(n) . The real filters 
length is L = 128. f s = 8 kHz
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i.e. the conventional blind source separation (CBBSS) 
(Gerven and Van Compernolle 1995), and the variable 
step-size blind source separation (VSS-BBSS) algorithms 
(Djendi and Zoulikha 2014), we have selected the best 
parameters of each algorithm to achieve the best behavior 
with speech signals. The parameters of each algorithm are 
summarized in Table 3. We recall here that the CBBSS 
algorithm (Gerven and Van Compernolle 1995) uses a 
manual voice activity detector (MVAD) mechanism to 
control the adaptation of both adaptive estimated filters 
w12(n) and w21(n) , however the VSS-BBSS (Djendi and 
Zoulikha 2014), which is an improved version of CBBSS, 
uses a variable step-sizes technique that performs as an 
automatic voice activity detector (AVAD) mechanism. 
Recall that the adaptation process of the estimated filters 
w12(n) and w21(n) by the proposed algorithm is done auto-
matically thanks to the variable step-sizes that are given 
by relations (32) and (33), respectively. This modification 
allows to our algorithm to be adapted automatically with-
out need to any VAD system. We note that these param-
eters are used in all the simulations that we have done and 
are presented along this paper.

From Table 3, we can see that the proposed and simulated 
algorithms share some parameters. The shared parameters 
of these algorithms are the adaptive filters length of w12(n) 
and w21(n) which is selected to be equal to L = 128 , or 256 
(for more details about these parameters, see Table 3). The 
considered situation of the simulation is exact modeliza-
tion of the adaptive filter, i.e. the adaptive filters length is 
equal to the real ones. The other parameters are specific for 
each algorithm. Moreover, the control parameters of our 
algorithm are the optimal ones, and several simulations are 
carried out to get these optimal values. Finally, we note 
that control parameters of Table 3 are used along all the 
carried out simulations and experiments. All the presented 
simulations are carried out with speech signal and noise 
components sampled at 8 kHz and coded on 16 bits.

5.3  Time‑domain outputs of the proposed 
algorithm

Simulated and proposed algorithms aim to extract speech at 
the first output s1(n) and the noise components at the second 
output s2(n) . As we are interested on speech enhancement, 

Fig. 5  Source, noise and mixing signal samples. [Top]: the speech 
signal and its spectrogram. [Middle]: the noise (white) and its spec-
trogram. [Bottom]: the mixing signal m

1(n) and its spectrogram. The 

input SNR is selected to be 0 dB at the two microphones, and the real 
filters length is L = 128
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we only focus on the output s1(n) and the behavior of the 
adaptive cross-filter w21(n) . In Fig. 6, we illustrate the output 
s1(n) of the proposed algorithm, CBBSS and VSS-BBSS 
algorithms with the parameters of Table 3. This figure shows 

the good performance of each algorithm in reducing the 
acoustic noise components at the output s1(n) . No further 
performance comparisons between the algorithms can be 
done according to this figure.

Table 3  Control parameters 
of the conventional BBSS 
(CBBSS), the variable ste-size 
BBSS (VSS-BBSS), and the 
proposed algorithms

Conventionnel and proposed algorithms Parameters

Conventional BBSS (CBBSS) (Gerven and 
Van Compernolle 1995)

Length of the filters: L = 128 or 256
Step sizes of the filters: �

12
= 0.4;�

21
= 0.4

Variable step-size BBSS (VSS-BBSS) 
(Djendi and Zoulikha 2014)

Length of the filters: L = 128 or 256
Step sizes of the filters: �

12
= 0.4; �

21
= 0.4

Step sizes of the sub filters: μ
w

cont1
= 0.4 ; μ

w
cont2

 = 0.001

Step sizes of the main filters:
�
w
12
min = 0; �w

12
max = 0.02

�
w
21
min = 0; �w

21
max = 0.2

Signal-to-noise ratios threshold
SNR

1min
= −40 dB; SNR

1max
= −15 dB

SNR
2min

= −1 dB; SNR
2max

= 6 dB

Proposed algorithm
(In this paper)

Length of the filters: L = 128 or 256
Step sizes of the main filters: �12

= 0.4; �
21

= 0.4

�
1
= 0.5; �

2
= 0.5

�
1
= 0.5; �

2
= 0.5

Fig. 6  The output speech signals of, [Top]: the CBBSS, [middle]: the VSS-BBSS and [Bottom]: the proposed algorithm. Each output has its 
spectrogram in the right. L = 256
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5.4  Evaluation of the system mismatch (SM) 
criterion

The system mismatch (SM) criterion is often used to evaluate 
the convergence speed performance behavior of any algorithm. 
The SM criterion evaluates the distance between the estimated 
adaptive filtering coefficients and the real ones. As we are 
interested only on the output s1(n) , we focus on the adaptive 
filter w21(n) and we compute the SM by the following relation 
(Hu and Loizou 2008):

where h21 is the real impulse response, and the symbol ‖⋅‖ 
is the mathematical Euclidean norm. We have done much 
experiments to evaluate the SM criterion of the three 

(34)SMdB = 10 log10

(

‖

‖

h21 − w21(n)
‖

‖

2

‖

‖

h21
‖

‖

2

)

algorithms, i.e. CBBSS, VSS-BBSS, and the proposed 
RBBSS. The real and adaptive filters length is the same 
equal to L = 128 , and 256. Four noise types from AURORA 
database (Zue et al. 1990) are used, i.e. white, USASI, bab-
ble, and street. The obtained results by CBBSS, VSS-BBSS 
and our proposed algorithms are represented on Fig. 7 for 
inputs SNR equal to − 3 dB at the two microphones, respec-
tively. We can easily see, from this figure, the superiority of 
our proposed algorithm in terms of convergence speed per-
formance in comparison with the other ones. We have used 
the same control parameters of each algorithm as given in 
Table 3, and the same input signals as explained in Sect. 5.1.

5.5  Step‑sizes analysis of the proposed algorithm

In order to analysis the behavior of the proposed algorithm, 
and as we are interested on speech enhancement problem at 
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Fig. 7  The system mismatch (SM) comparison between the CBBSS, VSS-BBSS and the proposed algorithms for L = 128 [In left], and L = 256 
[in right]. The parameters of each algorithm are given in Table 3

Fig. 8  Original speech signal 
(in black), Manual VAD (in 
green), and the automatic VAD 
obtained by relation (32) [in 
red]. The control parameters 
are the same as given in Table 3 
for the proposed algorithm. The 
adaptive and real filter length is 
L = 128. (Color figure online)
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the output  s1(n), we will focus our interest on relation (32) 
and its evolution in time domain. Under the same simula-
tion conditions of Sects. (5.2) and (5.3), we have shown the 
evolution of the step-size ∇1 (n) . In Figs. 8 and 9, we give 
the time evolutions of the step-size of relation (32) in the 
cases of two values of the adaptive filters L, i.e. L = 128, and 
256. On the same figures, we show the input speech signal.

From Fig. 8 (for L = 128), and 9 (for L = 256), we can 
observe that the step size ∇1 (n) of the filter w21(n) is large 
when the cross-correlation factor �s1m2(n) is small, i.e. the 
step size ∇1 (n) takes large values when the speech sig-
nal is absent, and gets small values in the opposite case. 
This configuration allows to the filter w21(n) to be adjusted 
in the speech absence periods and be frozen in the oppo-
site situation. This automatic mechanism of adjusting the 
adaptive filter w21(n) allows to formulate an adaptive noise 
cancellation (ANC) system with noise-only reference, and 
make possible to cancel the noise components at the out-
put s1 (n) . In the other hand, an invert relation between 
the variation of the step-size ∇2 (n) and the cross-correla-
tion factor �s2m1(n) is concluded, i.e. ∇2 (n) is large when 
�s2m1(n) takes small values in speech presence periods. This 
automatic mechanism allows to the adaptive filter w12(n) 
to be adjusted to suppress the speech signal at the output 
s2 (n) and to get the noise source components in the same 
output, i.e. s2 (n) . This automatic mechanism that makes 
an alternative update of the adaptive filters w21(n) and 
w12(n) , leads to a blind system separation of the speech 
and the noise components at the outputs s1 (n) and s2 (n) 
respectively, without any a priori information about them, 
i.e. only the mixing signals are available at the proposed 
algorithm inputs.

5.6  Evaluation of the cepstral distance (CD) 
criterion

The cepstral distance (CD) criterion is used in this Sec-
tion to quantify the output speech signal processing dis-
tortion of each algorithm, i.e. CBBSS, VSS-BBSS and 
the proposed algorithm. The CD criterion is evaluated by 
the log-spectrum distance between the original speech 
signal s(n) and the output speech signal s1(n) of each algo-
rithm (Hu and Loizou 2008). The CD is computed only 
in speech presence periods and is given by the following 
relation:

where cps(n) =
1

2�
∫ �

−�
log |S(�)|ej�nd� and cps1(n) =

1

2�

∫ �

−�
log |

|

S1(�)
|

|

ej�nd� are the nth real cepstral coefficients 
of the signals s(n) ands1(n) , respectively. We recall here that 
S(�) and S1(�) are the short Fourier transform (SFTF) of 
the original speech signal s(n) and the enhanced one s1(n) , 
respectively. ′ T ′ is the mean averaging value of the CD cri-
terion and ′M′ represents the number of segment where only 
speech is present. We have estimated the CD criterion for 
three inputs SNRs at the two microphones are − 6 dB, 0 dB 
and 6 dB . In addition, we have used four types of noise com-
ponents from AURORA database (Zue et al. 1990; Varga 
and Steeneken 1993; ITU-T 2003) to generate the noisy 
observations, which are white, USASI, babble, and street 
noises. The simulation parameters of ach algorithm are 
similar to those of the previous experiments and are also 

(35)CDdB =
10

M

M−1
∑

m=0

log10

Tm+T−1
∑

n=Tm

(

cps(n) − cpe1 (n)
)2

Fig. 9  Original speech signal 
(in black), Manual VAD (in 
green), and the automatic VAD 
obtained by relation (32) [in 
red]. The control parameters 
are the same as given in Table 3 
for the proposed algorithm. The 
adaptive and real filter length is 
L = 256. (Color figure online)
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summarized in Table 3. The obtained results of the CD cri-
terion are reported on Fig. 10.

The obtained results of Fig. 10 show clearly the effi-
ciency of the proposed RBBSS algorithm in providing an 
output speech signal that is very close to the original one 
and with minimal spectral distortions. Also, we have noted 
that the proposed algorithm is the one that alters less the 
speech signal in comparison with the other ones.

5.7  Evaluation of the segmental SNR (SegSNR) 
criterion

In this section, we analyze the noise reduction performance 
of the proposed algorithm in terms of segmental signal to 
noise (SegSNR) criterion. The SegSNR criterion is com-
puted on frames of ′N ′ samples between the original speech 
signal s(n) and its enhanced version for each algorithm s1(n) . 
This SegSNR criterion is estimated as follows (Sayed 2003; 
Zoulikha and Djendi 2016):

where the parameters ′M′ and ′N′ are the number of frame 
and the frame length, respectively. We note that at the out-
put, we get ′M′ values of the SegSNR criterion, each one is 

(36)

SegSNRdB =
10

M

M−1
�

m=0

log10

�

∑Nm+N−1

n=Nm
�s(n)�2

∑Nm+N−1

n=Nm
�

�

s(n) − s1(n)
�

�

2

�

mean averaged on ′N′ samples. The symbol | .| stands for 
the absolute operator. We recall here that all the ′M′ frames 
correspond to only speech signal presence periods. The log10 
symbol is the base 10 logarithm. The simulation parameters 
are the same as given in Table 3. We have evaluated the 
SegSNR criterion for three inputs SNRs, i.e. − 6 dB, 0 dB 
and6 dB . Moreover, four types of noise are used to gener-
ate the noisy observations. These noise components which 
are white, USASI, babble, and street noises are taken from 
AURORA database (Zue et al. 1990; Varga and Steeneken 
1993; ITU-T 2003). The obtained results are reported on 
Fig. 11.

According to the obtained results, we can easily see that 
the proposed RBBSS algorithm behaves more efficiency 
than the other algorithms, and leads to an important SNR 
at the output. This means that the proposed algorithm sup-
presses more noise at the output in comparison with the 
state-of-the-art algorithms, i.e. CBBSS, and VSS-BBSS 
algorithms. We also conclude that the proposed algorithm 
has a good performance in different situations when corre-
lated and uncorrelated noises are present. At the end, we can 
claim that the obtained SegSNR results are another proof 
performances superiority of the proposed algorithm when 
combined with BSS structure to restore speech source signal 
in blind situation when no a priori informations are available 
about the target.
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Fig. 10  The cepstral distance (CD) evaluation by: (1) BBSS algo-
rithm, (2) the VSS-BSS algorithm, and (3) the proposed algorithm. 
The simulation parameters of each algorithm are the same as reported 

on Table 3 except the length of the adaptive filters L = 128. The input 
SNRs are − 6 dB, 0 dB and 6 dB
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6  Conclusion

In this paper, we have proposed a new approach for speech 
enhancement application. The proposed approach is adap-
tive and based on the combination between a new automatic 
adaptive algorithm with the backward blind source separa-
tion structure, and allows to automatically adjust the coef-
ficients of the cross-filters.

Intensive experiments were conducted to validate the 
performance of the proposed algorithm in comparison with 
two state-of-the-art algorithms, i.e. the classical BBSS and 
its variable step-size version (VSS-BBSS). The obtained 
results, expressed in terms of system mismatch, have shown 
that the proposed algorithm converges quickly to the optimal 
solutions and this behavior is obtained thanks to the nor-
malization by the norm of the output filtering errors. The 
obtained CD values have confirmed that the proposed algo-
rithm does not distort the output speech signal especially in 
the case of loosely spaced microphones (about − 14 dB of 
minimum CD values). The SegSNR results have also shown 
that the proposed algorithm reduces the acoustic noise 
components by about 50 dB at the output in several input 
SNR conditions. The residual noise amount is very small in 
the case of our proposed algorithm and it do not affect the 
speech intelligibility at the output.

Finally, we conclude that all the obtained results in terms 
of CD and SegSNR criteria have shown the superiority of 

the proposed algorithm in comparison with the other ones. 
The obtained results have proven the efficiency of the pro-
posed algorithm and show that it can be a good candidate 
and alternative for speech enhancement and acoustic noise 
reduction applications. As a future work, the proposed algo-
rithm can be combined with active learning techniques to be 
used for live stream audio (speech) analysis and can be the 
one of the contemporary issues in the domain.

References

Al-Kindi, M. J., & Dunlop, J. (1989). Improved adaptive noise cancel-
lation in the presence of signal leakage on the noise reference 
channel. Signal Processing, 17(3), 241–250.

Bouguelia, M. R., Nowaczyk, S., Santosh, K. C., & Verikas, A. (2018). 
Agreeing to disagree: Active learning with noisy labels without 
crowdsourcing. International Journal of Machine Learning and 
Cybernetics, 9(8), 1307–1319.

Cho, E., Lee, B., & Schafer, R., Widrow, B. (2016). Single channel 
speech enhancement using outlier detection. Computer Science. 
https ://arxiv .org/pdf/1605.01329 .pdf

Dey, N., Ashour, A. S. (2018a). Challenges and future perspectives in 
speech-sources direction of arrival estimation and localization. In 
Direction of arrival estimation and localization of multi-speech 
sources. SpringerBriefs in electrical and computer engineering 
(pp. 49–52). Cham: Springer.

Dey, N., & Ashour, A. S. (2018b). Direction of arrival estimation and 
localization of multi-speech sources. SpringerBriefs in Speech 
Technology. Cham: Springer.

48,27

51,99

56,88

51,55 52,73
55,76

50,88

54,8
56,87

51,14
53,23

56,75

-10

0

10

20

30

40

50

60

-6 0 6 -6 0 6 -6 0 6 -6 0 6

White USASI Babble Street

Se
gm

en
ta

l S
N

R 
(S

eg
SN

R)
 in

 (d
B)

Input SNR and noise type

Noisy Speech CBBSS [16] VSS-BBSS [40] Proposed algorithm [In this paper]

Fig. 11  The Segmental SNR (SegSNR) criterion evaluation by: (1) 
CBBSS algorithm, (2) the VSS-BSS algorithm, and (3) the proposed 
algorithm. The parameters of the simulation are the same as reported 

on Table 3 except the length of the adaptive filter L = 128. The input 
SNRs are − 6 dB, 0 dB and 6 dB

https://arxiv.org/pdf/1605.01329.pdf


822 International Journal of Speech Technology (2018) 21:809–823

1 3

Dey, N., & Ashour, A. S. (2018c). Applied examples and applications 
of localization and tracking problem of multiple speech sources. 
In Direction of arrival estimation and localization of multi-speech 
sources. SpringerBriefs in Electrical and Computer Engineering 
(pp. 35–48). Cham: Springer.

Djendi, M., Scalart, P., & Gilloire, A. (2006). Noise cancellation 
using two closely spaced microphones: Experimental study with 
a specific model and two adaptive algorithms. In Proceedings of 
ICASSP, Vol. 3, pp. 744–747.

Djendi, M. Advanced techniques for two-microphone noise reduction 
in mobile communications, Ph.D. Dissertation (in French). Uni-
versity of Rennes 1. France 2010, n°19012010.

Djendi, M., Scalart, P., & Gilloire, A. (2013). Analysis of two-sen-
sors forward BSS structure with post-filters in the presence of 
coherent and incoherent noise. Speech Communication, 55(10), 
975–987.

Djendi, M., Scalart, P., Gilloire, A. (2009). Comparative study of new 
blind source separation structures for two-channel acoustic noise 
cancellation. In Proceedings of the IEEE, Glasgow, Scotland, 
pp. 24–28.

Djendi, M., & Zoulikha, M. (2014). New automatic forward and back-
ward blind sources. Separation algorithms for noise reduction and 
speech enhancement. Computer and Electrical Engineering, 40, 
2072–2088.

Fukuda, T., Ichikawa, O., & Nishimura, M. (2010). Long-term spectro-
temporal and static harmonic features for voice activity detec-
tion. IEEE Journal on Selected Topics in Signal Processing, 4(5), 
834–844.

Ghosh, P. K., & Tsiartas, A., Narayanan, S. (2011). Robust voice activ-
ity detection using long-term signal variability. IEEE Transactions 
on Audio, Speech, and Language Processing, 19(3), 600–613.

Ghribi, K., Djendi, M., & Berkani, D. (2016). A New wavelet-based 
forward BSS algorithm for acoustic noise reduction and speech 
quality enhancement. Applied Acoustics, 105, 55–66.

Górriz, J. M., Ramírez, J., Lang, E. W., Puntonet, C. G., & Turias, I. 
(2010). Improved likelihood ratio test based voice activity detector 
applied to speech recognition. Speech Communication, 52(7–8), 
664–677.

Hu, Y., & Loizou, P. C. (2008). Evaluation of objective quality meas-
ures for speech enhancement. IEEE Transactions on Audio, 
Speech and Language Processing, 16(1), 229–238.

Ikeda, S., & Sugiyama, A. (1999). An adaptive noise canceller with low 
signal distortion in the present of crosstalk. In IEICE Transactions 
on Fundamentals, Vol. 82.a, No. 8.

ITU-T P.835.2003. (2003). Subjective test methodology for evaluating 
speech communication systems that include noise suppression 
algorithm. ITU-T Recommendation, p. 835.

Lee, S., Han, D. K., & Ko, H. (2017). Single-channel speech enhance-
ment method using reconstructive NMF with spectrotempo-
ral speech presence probabilities. Applied Acoustics, 117(B), 
257–262.

Loizou, P. C. (2013). Speech enhancement: Theory and practice (2nd 
Ed.). Boca Raton: Taylor & Francis.

Loizou, P. C., & Kim, G. (2011). Reasons why current speech-enhance-
ment algorithms do not improve speech inelligibility and sug-
gested solutions. IEEE Transactions on Audio, Speech, and Lan-
guage Processing. 19(1), 47–56.

Lotter, T., Benien, C., & Vary, P. (2003). Multichannel speech enhance-
ment using Bayesian spectral amplitude estimation. In Proceed-
ings of ICASSP, Hong-Kong, pp. 20–24.

Mak, M. W., Yu, H. B. (2014). A study of voice activity detection 
techniques for NIST speaker recognition evaluations. Computer 
Speech and Language, 28(1), 295–313.

Marro, C., Mahieux, Y., & Simmer, K. U. (1998). Analysis of noise 
reduction and dereverberation techniques based on microphone 

arrays with postfiltering. IEEE Transactions on Speech and Audio 
Processing, 6(3), 240–259.

Meyer, J., Uwe, K. (1997). Simmer multi-channel speech enhancement 
in a car environment using wiener filtering and spectral subtrac-
tion. In Proceedings of ICASSP, IEEE, pp. 1–4.

Mildner, V., Goetze, S., Kammeyer, K.-D. (2006). Multi-channel 
speech enhancement using a psychoacoustic approach for a post-
filter. In Proceedings of ITG-Fachtagung Sprachkommunikation, 
Kiel, Germany, pp. 1–4.

Mukherjee, H., Obaidullah, S. M., & Phadikar., S. (2018a). MISNA—
A musical instrument segregation system from noisy audio with 
LPCC-S features and extreme learning. Multemedia Tools Appli-
cations. https ://doi.org/10.1007/s1104 2-018-5993-6.

Mukherjee, H., Obaidullah, S. M., Santosh, K. C. (2018b). Line 
spectral frequency-based features and extreme learning machine 
for voice activity detection from audio signal. International 
Journal on Speech Technology, https ://doi.org/10.1007/s1077 
2-018-9525-6.

Qingning, Z., & Waleed, A. (2006). Speech enhancement by multi-
channel crosstalk resistant adaptive noise cancellation. In Pro-
ceedings of IEEE ICASS, Vol. 1, pp. 485–488.

Roy, S. K., Zhu, W. P., & Champagne, B. (2016). Single channel speech 
enhancement using subband iterative Kalman filter. In IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pp. 22–26.

Sandoval-Ibarra, Y., Diaz-Ramirez, V. H., & Kober, V. I. (2016). 
Speech enhancement with adaptive spectral estimators. Journal 
of Communications Technology and Electronics. 61(6), 672–678.

Sato, M., Sugiyama, A., & Ohnaka, A. (2005). An adaptive noise can-
celler with low signal-distortion based on variable step size sub 
filter for human-robot communication. In IEICE Transactions on 
Fundamentals of Electronics, Communications and Computer Sci-
ences, Vol. e88-a, No. 8, pp. 2055–2061.

Sayed, A. H. (2003). Fundamentals of adaptive filtering. New York: 
Wiley.

Senthamizh Selvi, R., & Suresh, G. R., Kanaga Suba Raj, S. (2017). 
Speech enhancement using harmonic-model with multichannel 
Wiener Filter. Journal of Advanced Research in Dynamical and 
Control Systems, 9(3), 48–54.

Upadhyay, N., Jaiswal, K. (2016). Single channel speech enhancement: 
Using Wiener filtering with recursive noise estimation. Procedia 
Computer Science, 84, 22–30.

Upadhyay, N., & Karmakar, A. (2015). Speech Enhancement using 
spectral subtraction-type algorithms: A comparison and simula-
tion study. In Eleventh International Multi-Conference on Infor-
mation Processing-2015 (IMCIP-2015). Procdia Computer Sci-
ence. Vol. 4, pp. 574–584.

Vajda, S., & Santosh, K. C. (2017). A fast k-nearest neighbor classifier 
using unsupervised clustering. In Recent Trends in Image Pro-
cessing and Pattern Recognition. RTIP2R 2016. Communications 
in Computer and Information Science, Vol. 709, pp. 185–193. 
Singapore: Springer.

Van Gerven, S., & Van Compernolle, D. (1995). Signal separation 
by symmetric adaptive decorrelation: Stability, convergence, 
and uniqueness. IEEE Transactions on Signal Processing, 74(3), 
1602–1612.

Varga, A., & Steeneken, H. J. (1993). Assessment for automatic speech 
recognition: II. Noisex-92: A database and an experiment to study 
the effect of additive noise on speech recognition systems. Speech 
Communication, 12(3), 247–251.

Vlaj, D., Kačič, Z., & Kos, M. (2012). Voice activity detection algo-
rithm using nonlinear spectral weights, hangover and hang 
before criteria. Computers and Electrical Engineering, 38(6), 
1820–1836.

Wang, X., Guo, Y., Fu, Q., & Yan, Y. (2016). Speech enhancement 
using multi-channel post-filtering with modified signal presence 

https://doi.org/10.1007/s11042-018-5993-6
https://doi.org/10.1007/s10772-018-9525-6
https://doi.org/10.1007/s10772-018-9525-6


823International Journal of Speech Technology (2018) 21:809–823 

1 3

probability in reverberant environment. Chinese Journal of Elec-
tronics, 25(3), 512–519.

Zhang, J., Wu, X., & Shengs, V. S. (2015). Active learning with imbal-
anced multiple noisy labeling. IEEE Transactions on Cybernetics, 
45(5), 1095–1107.

Zoulikha, M., & Djendi, M. (2016). A new regularized forward blind 
source separation algorithm for automatic speech quality enhance-
ment. Applied Acoustics, 112, 192–200.

Zue, V., Seneff, S., & Glass, J. (1990). Speech database development at 
MIT: TIMIT and beyond. Speech Communication, 9(4), 351–356.


	A new efficient backward BSS crosstalk-resistant algorithm for automatic blind speech quality enhancement
	Abstract
	1 Introduction
	2 Noisy observations model
	3 Backward BSS (BBSS) structure
	3.1 Classical backward BSS (CBBSS) two-channel algorithm

	4 Proposed robust backward BSS crosstalk-resistant algorithm
	4.1 Motivation
	4.2 Derivation of the proposed algorithm
	4.3 Theoretical analysis of the proposed algorithm

	5 Simulation results
	5.1 Description of the experimental model and the used signals
	5.2 Simulation parameters of the algorithms
	5.3 Time-domain outputs of the proposed algorithm
	5.4 Evaluation of the system mismatch (SM) criterion
	5.5 Step-sizes analysis of the proposed algorithm
	5.6 Evaluation of the cepstral distance (CD) criterion
	5.7 Evaluation of the segmental SNR (SegSNR) criterion

	6 Conclusion
	References


